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Abstract: This paper researches the issue of the finite-time combination-combination (C-C) synchro-
nization (FTCCS) of fractional order (FO) chaotic systems under multiple stochastic disturbances
(SD) utilizing the nonsingular terminal sliding mode control (NTSMC) technique. The systems we
considered have different characteristics of the structures and the parameters are unknown. The
stochastic disturbances are considered parameter uncertainties, nonlinear uncertainties and external
disturbances. The bounds of the uncertainties and disturbances are unknown. Firstly, we are going to
put forward a new FO sliding surface in terms of fractional calculus. Secondly, some suitable adaptive
control laws (ACL) are found to assess the unknown parameters and examine the upper bound of
stochastic disturbances. Finally, combining the finite-time Lyapunov stability theory and the sliding
mode control (SMC) technique, we propose a fractional-order adaptive combination controller that
can achieve the finite-time synchronization of drive-response (D-R) systems. In this paper, some of
the synchronization methods, such as chaos control, complete synchronization, projection synchro-
nization, anti-synchronization, and so forth, have become special cases of combination-combination
synchronization. Examples are presented to verify the usefulness and validity of the proposed scheme
via MATLAB.

Keywords: fractional-order chaotic system; finite-time synchronization; adaptive sliding mode
control; stochastic disturbance

MSC: 34A08; 34D06

1. Introduction

Chaos is not an accidental or individual event, but a universal existence in various
macro and micro systems in the universe. It promotes and relies on other sciences, which
derive many interdisciplinary subjects, such as chaotic meteorology, chaotic economics,
chaotic mathematics, and so forth. Because chaos is ubiquitous in many systems, the re-
search on chaotic systems has drawn widespread attention of scholars. Thanks to the
nonlinear nature of the chaotic system and the sensitivity to the initial value, the control
and synchronization to the chaotic system has become a very difficult problem. Up to now,
many valid synchronization methods were researched, such as drive-response synchro-
nization [1], projective synchronization [2,3], adaptive fuzzy control [4–6], neural network
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synchronization [7,8], feedback synchronization [9] and pulse synchronization [10,11],
sliding mode control [12,13] and so forth.

Some scholars have taken the above methods into consideration for the synchroniza-
tion problem of FO chaotic systems [14–19]. However, the above research content does
not consider the uncertainties of the system and external disturbances. Since the chaotic
system is sensitive to the initial values; in practical applications, it is inevitable that the
orbit of the system will change dramatically due to some small disturbances. One has
adopted the active nonlinear control method to address the issue of modified projective
synchronization for the FO chaotic systems with noise disturbance in Ref. [20]. Qin et al.
established the system with the unknown nonlinear functions and uncertainties which
are addressed by fuzzy logic method [4]. Meanwhile, replacing the FO chaotic systems
in Ref. [4] with non-identical complex FO chaotic systems, the adaptive sliding mode
synchronization has developed in Ref. [21]. Luo et al. derived some novel sufficient con-
ditions for chaos synchronization of FO chaotic systems with nonlinear uncertainties and
external disturbances [22]. In Ref. [23], the authors researched the multi-state uncertain
synchronization of chaotic systems in which the structure is non-identical, parameters are
unknown, and systems have a time-varying delay. This means the synchronization of the
single master system with multiple slave systems which have more potential applications
in real life. However, the master–slave system they considered was an integer order system
and the synchronization of both systems is asymptotic and takes place in infinite time. This
is also the case in Ref. [24]. It is generally found that fractional derivatives are better suited
to describe memory and hereditary characteristics of different materials and processes
than integer derivatives [25]. Mirrezapour et al. [26] used the sliding mode control to
synchronize fractional-order chaotic systems with uncertainties and affected by distur-
bance. In Ref. [26], a new fractional sliding mode controller according to nonlinear FO
controllers is proposed. However, there are some disadvantages here. Firstly, the author
did not consider the effect of unknown parameters on the system. Then, from the numerical
simulation results (synchronization errors converges to zero at t = 10 (approx)), it can be
seen that the controller is not very effective in overcoming uncertainty and disturbance.
On the contrary, the nonsingular terminal sliding mode control in our paper has a bet-
ter transient performance, easy realization, rapid response, and insensitivity to external
disturbances and so on. Of course, there are some studies on uncertain parameters of
systems [27–29]. However, it can be seen from the above that for the uncertainties of the
system, that is, parameter uncertainties and nonlinear uncertainties, and the influence of
external disturbances on the system, most authors study some of the situations while a few
authors have considered the three of them at the same time [30–32]. Furthermore, the above
mentioned papers reveal that the convergence of the ideal dynamics is promised without
time limit. We know that the finite time convergence with even existing disturbances has
merits in strengthening the robustness, getting over the disturbance [33] and improving
the security of information transmission in the field of chaotic communication [34]. Some
more theoretical results about the synchronization of FO chaotic systems with uncertainties
and external disturbances in finite-time can be seen in [35–42]. At present, with full consid-
eration of system uncertainties and external disturbances in the given time as well as the
unknown system parameters, no researchers have considered this situation.

There is another fact that we must note that the aforementioned papers focused on
the single D-R system for the synchronization scheme. There are relatively few studies on
multi-drive systems and multi-response systems, as well as the combination synchroniza-
tion of each system. Actually, in engineering, communication theory, physics, electrical
and many other fields, the combination–combination synchronization has more potential
applications [43,44]. Just take the secure communication, for example, the transmitting
signals can be understood as two basic ways. The first is to divide the transmission signals
into multiple parts, each loaded with different drive systems. For example, assume the
transmitted signal is cost, the signal cost can be broken down into two parts: 1

3 cost and
2
3 cost. The signal 1

3 cost can be delivered to the first drive system, while 2
3 cost can be de-
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livered to the second drive system. The second way is to break down time into different
intervals. Let the signals in different intervals load in different drive systems. It is clear to
observe that the traditional master–slave synchronization schemes (one to one system) do
not satisfy the above communication signals but can be transferred in our model. Thus,
it is imperative to pay more attention to the synchronization research of multi-systems.
Sun et al. [42] realized the parameter identification and C-C synchronization in a finite
time. In [24], the authors handle a hybrid projective C-C synchronization scheme between
four specific hyper-chaotic systems utilizing SMC. The idea of dual C-C multi switching
synchronization adopted the eight chaotic systems was addressed in [45]. The global
exponential multi switching combination synchronization was introduced in terms of three
different chaotic systems, in [46]. There are also some papers here that also mention the
issue of C-C synchronization [47–50]. However, the systems they consider are all integer
order chaotic systems and some of them do not consider the SD.

In response to this situation, we are going to consider the finite-time combination–
combination (C-C) synchronization (FTCCS) of FO chaotic systems with different structures
and unknown parameters under multiple SD via the NTSMC technique. The multiple SD
are explained as parameter uncertainties, nonlinear uncertainties and external disturbances.
In the light of finite-time Lyapunov stability theory and the SMC technique, we propose an
FO adaptive combination controller and some appropriate ACL.

Compared with other references, there are four advantages of the proposed method:
(1) The finite-time control theory is different from the traditional stability theory and its
control structure can be regarded as closed-loop feedback control. The complexity of the
finite-time controller is relatively high, which is reflected in the anti-interference ability to
the outside world and the robustness to the uncertainty of the system itself; (2) This paper
extends the traditional drive-response synchronization schemes (single drive-response
system) to combination–combination synchronization schemes. Thus, when the specific
parameter values are gained to the D-R systems, the corresponding system or systems’
combination are chose. The controller does not need to be redesigned for two systems or
systems’ combinations for every application. This not only has a wider range of applications
but also saves too much time and effort. This advantage is reflected in Corollaries 1–3 in
the paper; (3) In communication theory, comparing the traditional transmission model with
the combination-combination synchronization model, our method has stronger anti-attack
ability and anti-translated capability; (4) The nonsingular terminal sliding mode control
avoids the singularity problem effectively that terminal sliding mode control (TSMC)
would have and retains the characteristic of the finite-time convergence. Besides, the
NTSMC has higher control accuracy than linear sliding mode control (SMC); (5) Based
on the nonsingular terminal sliding mode control (NTSMC) and adaptive control, the
combination–combination drive-response systems with unknown parameters and multiple
stochastic disturbances is considered. The controller and parameter updating laws are
designed to make the state of drive-response system gradually stable within a finite time.
Our controller has good robustness and anti-interference performance.

This article is organized as follows. In Section 2, some definitions, lemmas and
stability theories that need to be used are introduced. In Section 3, problem statements and
assumptions are given. In Section 4, sliding mode synchronization controller and adaptive
control laws are designed. In Section 5, the numerical simulations proved that our method
is effective. In Section 6, there is a conclusion.

2. Preliminaries
2.1. Definitions and Lemmas of Fractional Derivative

Next, let us present the Riemann–Liouville (R-L) derivative and the Caputo derivative,
which are equivalent if and only if the order α is a negative real number and a positive
integer. The R–L definition is best suited for theoretical analysis and can simplify the
computation of FO derivatives. The Caputo is more relevant to modern engineering and
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makes Laplace’s transformation more concise. Thus, we only display the mathematical
expression of the Caputo derivative with order α.

Definition 1 ([51]). The mathematical expression of the fractional integral of the function f (t)
is following:

Iα
t f (t) =

1
Γ(α)

∫ t

a

f (υ)
(t− υ)1−α

dυ, (1)

where Γ(α) indicates the Gamma function.

Definition 2 ([51]). The mathematical expression of Caputo derivative with order α is given as:

C
a Dα

t f (t) =
1

Γ(p− α)

∫ t

a
(t− υ)p−α−1 f (p)(υ)dυ, (2)

where p− 1 < α < p, p ∈ Z+.

Lemma 1 ([18]). When x(t) ∈ Rn has a continuous first derivative, then

aDα
t (

1
2

xT(t)Qx(t)) ≤ xTQaDα
t x(t), (3)

where α ∈ (0, 1) and Q ∈ Rn × Rn indicate a positive definite matrix.

Lemma 2 ([52]). For any real constants ai, i = 1, 2, · · · , n and σ ∈ (0, 1), the following inequal-
ity exists:

(|a1|+ |a2|+ · · ·+ |an|)σ ≤ |a1|σ + |a2|σ + · · ·+ |an|σ. (4)

2.2. Stability Theories of Fractional Order System

It follows that, if most things around us are nonlinear, we write the FO nonlinear
system to be:

0Dα
t x(t) = f (t, x(t)), (5)

where α ∈ (0, 1), f = ( f1, f2, · · · , fn)T , x(t) ∈ Rn and f : [t0, ∞]×Ω → Rn satisfies the
requirements of Lipschitz conditions; the initial value is x(t0) = x0, t0 ≥ 0. The equilibrium
point x∗ of (5) can be calculated from f (x∗) = 0.

Theorem 1 ([53]). Suppose that D ∈ Rn is a domain that contains the origin. If there exists a
locally bounded Lyapunov function V(t, x) : [t0, ∞]× D → R which meets the local Lipschitz
condition about x adapting to

η1(‖x‖a) ≤ V(t, x) ≤ η2(‖x‖ab), (6)

0Dα
t V(t, x) ≤ −η3(‖x‖ab), (7)

where α ∈ (0, 1), a > 0, b > 0, ηi(i = 1, 2, 3) > 0, then the system (5) is called Mittag-
Leffler stable.

Theorem 2. Suppose that D ⊂ Rn is a domain that contains the origin. If there is a locally bounded
Lyapunov function V(t, x) : [t0, ∞]× D → R that meets the local Lipschitz condition about x
adapting to
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(1)η1(‖x‖a) ≤ V(t, x) ≤ η2(‖x‖ab),

(2)0Dα
t V(t, x) ≤ −η3(‖x‖ab), (8)

(3)0Dα
t V(t, x) ≤ −kV1/β(t, x),

where α ∈ (0, 1), a > 0, b > 0, k > 0, β > 1, α > 1/β, ηi(i = 1, 2, 3) > 0, then the system (5) is
called finite-time stable. The system (5) will be stabilized in time T given by:

T ≤
[

Vα− 1
β (0, x)

Γ(1− 1
β )Γ(1 + α)

Γ(α− 1
β + 1)k

] 1
α

. (9)

Proof. It is clear that the conditions (1) and (2) in Theorem 2 satisfy Theorem 1. Thus,
the system (5) is Mittag–Leffler stable. Then, there is an equilibrium point x(t0) for sys-
tem (5). According to condition (3), one obtained

V−1/β(t, x)[t0 Dα
t V(t, x)] ≤ −k. (10)

For convenience, let ν = 1/β. Based on the property of Caputo fractional derivatives
Dα

t xµ = Γ(µ+1)
Γ(µ+1−α)

xµ−αDα
t x [54], we get

aDα
t Vα−ν(t, x) =

Γ(α− ν + 1)
Γ(1− ν)

V−ν(t, x)aDα
t V(t, x) (11)

V−ν(t, x)aDα
t V(t, x) =

Γ(1− ν)

Γ(α− ν + 1) aDα
t Vα−ν(t, x). (12)

Then,

Γ(1− ν)

Γ(α− ν + 1) aDα
t Vα−ν(t, x) ≤ −k, (13)

aDα
t Vα−ν(t, x) ≤ −k

Γ(α− ν + 1)
Γ(1− ν)

. (14)

Integrating (14) from 0 to T gives:

Vα−ν(T, x)−Vα−ν(0, x) ≤ −k
Γ(α− ν + 1)

Γ(1− ν)Γ(1 + α)
Tα. (15)

Time T can be expressed as:

T ≤
[

Vα−ν(0, x)
Γ(1− ν)Γ(1 + α)

Γ(α− ν + 1)k

] 1
α

. (16)

Namely,

T ≤
[

Vα− 1
β (0, x)

Γ(1− 1
β )Γ(1 + α)

Γ(α− 1
β + 1)k

] 1
α

. (17)

3. Problem Description and Assumptions

In this chapter, since the the initial values have a great influence on the initial values,
in practical application, it is inevitable that the orbit of the system will change dramatically
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due to some small disturbances. Therefore, it is reasonable to treat them as bounded. This
will also make our theory easier to understand.

The FO D-R systems with uncertainties and external disturbance are demonstrated as:
The two drive systems

0Dα
t x1(t)=F1(x1(t))(θ1+∆θ1)+ f1(x1(t))+∆ f1(x1(t))+d1(x1, t), (18)

0Dα
t x2(t)=F2(x2(t))(θ2+∆θ2)+ f2(x2(t))+∆ f2(x2(t))+d2(x2, t). (19)

and the two response systems

0Dα
t y1(t)=G1(y1(t))(ϑ1+∆ϑ1)+g1(y1(t))+∆g1(y1(t))+µ1(y1, t)+u1(t), (20)

0Dα
t y2(t)=G2(y2(t))(ϑ2+∆ϑ2)+g2(y2(t))+∆g2(y2(t))+µ2(y2, t)+u2(t), (21)

where θi = (θ1i, θ2i, · · · , θni)
T and ϑi = (ϑ1i, ϑ2i, · · · , ϑni)

T are the vectors of system param-
eters; xi(t) = (x1i, x2i, · · · , xni)

T and yi(t) = (y1i, y2i, · · · , yni)
T ; Fi(xi(t)) = (F1i, F2i, · · · ,

Fni)
T , Gi(yi(t)) = (G1i, G2i, · · · , Gni)

T , Fji, Gji ∈ R1×n, j = 1, 2, · · · , n, fi(xi(t)) = ( f1i, f2i,
· · · , fni)

T , gi(yi(t)) = (g1i, g2i, · · · , gni)
T are the nonlinear continuous functions; di(xi) =

(d1i, d2i, · · · , dni)
T and µi(yi) = (u1i, u2i, · · · , uni)

T are the external disturbances; αi ∈ (0, 1)
represents the fractional order; ∆θi and ∆ϑi, ∆ fi(xi(t)) and ∆gi(yi(t)), are the parameter
uncertainties and the nonlinear uncertainties. ui(t) = (u1i, u2i, · · · , uni)

T are the controllers.
Then all of above satisfy i = 1, 2.

Definition 3. Suppose that A, B, C, D ∈ Rn ×Rn, C 6= 0, or D 6= 0 are four constant matrices,
then for T > 0, we have

lim
t→T
‖e(t)‖ = lim

t→T
‖Cy1(t) + Dy2(t)− Ax1(t)− Bx2(t)‖ = 0, t < T, (22)

‖e(t)‖ = 0, t ≥ T.

Then the FO error system, between a combination of drive systems (18), (19) and combination of
response systems (20), (21) , can reach FTCCS.

Remark 1. The matrices A, B, C, D ∈ Rn ×Rn C 6= 0, or D 6= 0 indicating in (22) are named
as the scaling matrices. They can also have different meanings, either as constant matrices or as
functions of state variables x1, x2, y1 and y2.

Remark 2. If C = D = I, A = B = λI, then it will be transformed into finite-time C-C complete
synchronization with multiple SD for λ = 1; It will be transformed into finite-time C-C anti-
synchronization with multiple SD for λ = −1; What’s more, if A = C = 0, D = I, B = λI, then
it will be transformed into finite-time combination complete synchronization with multiple SD for
λ = 1, the finite-time combination anti-synchronization with multiple SD for λ = −1.

Remark 3. If C = 0, A = 0 or C = 0, B = 0 or D = 0, A = 0 or D = 0, B = 0, then the issue of
finite-time C-C synchronization with multiple SD will be transformed into the issue of finite-time
synchronization with multiple SD.

Remark 4. If A = 0, D = 0, C = I or A = 0, C = 0, D = I or B = 0, D = 0, C = I
or B = 0, C = 0, D = I, then it will be transformed into finite-time combination projective
synchronization.
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Remark 5. It is supposed that A = 0, B = 0, C = 0 or A = 0, B = 0, D = 0, then finite-time
C-C synchronization with multiple SD will be transformed into the issue of chaos control with
multiple SD in the finite time .

Remark 6. Based on all the above synchronization methods, we can also consider ∆θi = 0, ∆ϑi = 0,
or ∆ fi(xi(t)) = 0, ∆gi(yi(t)) = 0, or di(xi, t) = 0, µi(yi, t) = 0 or ∆θi = 0, ∆ϑi =
0, ∆ fi(xi(t)) = 0, ∆gi(yi(t)) = 0 or ∆θi = 0, ∆ϑi = 0, di(xi, t) = 0, µi(yi, t) = 0, or di(xi, t) =
0, µi(yi, t) = 0, ∆ fi(xi(t)) = 0, ∆gi(yi(t)) = 0, or all of the uncertainties and external distur-
bance equal to zero for i = 1, 2.

Remark 7. Starting from Definition 3, the number of D-R systems can be extended to three or
more equations. Furthermore, D-R systems of the C-C synchronization scheme can be the same
structure where Fi(xi(t)) = Gi(yi(t)) and fi(xi(t)) = gi(yi(t)) for i = 1, 2.

It follows from the Equation (22) that the error system is rewritten as:

0Dα
t e(t) = H(x1, x2, y1, y2) + Q(x1, x2, y1, y2) + R(x1, x2, y1, y2)

+ ∆R(x1, x2, y1, y2) + V(x1, x2, y1, y2) + Cu1(t) + Du2(t), (23)

where

H(x1, x2, y1, y2)=CG1(y1(t))ϑ1+DG2(y2(t))ϑ2−AF1(x1(t))θ1−BF2(x2(t))θ2,

Q(x1, x2, y1, y2) = CG1(y1(t))(∆ϑ1) + DG2(y2(t))(∆ϑ2)− AF1(x1(t))(∆θ1)

− BF2(x2(t))(∆θ2),

R(x1, x2, y1, y2) = Cg1(y1(t)) + Dg2(y2(t))− A f1(x1(t))− B f2(x2(t)),

∆R(x1, x2, y1, y2) = C∆g1(y1(t)) + D∆g2(y2(t))− A∆ f1(x1(t))− B∆ f2(x2(t)),

V(x1, x2, y1, y2) = Cµ1(y1, t) + Dµ2(y2, t)− Ad1(x1, t)− Bd2(x2, t).

From the above discussion, we make the following assumptions to ensure that our
conclusions are more realistic.

Assumption 1. Assume that uncertain nonlinear vectors ∆ fi(xi(t)), ∆gi(yi(t)), the external
disturbances di(xi, t), µi(xi, t) and the parameter uncertainties ∆θi , ∆ϑi for (i = 1, 2) all have a
bounded norm. Namely, there are suitable positive constants h, l, q that satisfy:

‖C∆g1(y1(t)) + D∆g2(y2(t))− A∆ f1(x1(t))− B∆ f2(x2(t))‖ ≤ h,

‖Cµ1(y1, t) + Dµ2(y2, t)− Ad1(x1, t)− Bd2(x2, t)‖ ≤ l,

‖CG1(y1(t))(∆ϑ1) + DG2(y2(t))(∆ϑ2)− AF1(x1(t))(∆θ1)

− BF2(x2(t))(∆θ2)‖ ≤ q.

(24)

Remark 8. The parameter vectors of D-R systems θi, ϑi, (i = 1, 2) and the three constants h, l, q
are all unknown. Later, the parameters adaptive laws will be selected to identify them.

Assumption 2. Assume that the unknown vector parameters θi, ϑi, (i = 1, 2) and the three
unknown constants h, l, q satisfy:

‖θ1‖ ≤ δ1, ‖θ2‖ ≤ δ2, ‖ϑ1‖ ≤ δ3, ‖ϑ2‖ ≤ δ4, |h| ≤ h∗, |l| ≤ l∗, |q| ≤ q∗,

where δ1, δ2, δ3, δ4, h∗, l∗, q∗ is selected as a larger constant generally.

4. Sliding Mode Synchronization Controller Design within Finite Time

The main feature of the sliding mode control is that it directs the system states from
their initial states towards the appropriate sliding surface which is specified and then it
keeps the states in the corresponding sliding surface for all subsequent times. Designing a



Mathematics 2022, 10, 712 8 of 26

sliding mode controller consists of the following two steps : (1) To select a sliding mode
surface; (2) To design a controller to make sure that the system’s state converges to the
sliding surface.

The nonsingular terminal FO sliding mode surfaces are designed as:

s(t) = γe(t) + Iα
t sgn(e(τ))‖e(τ)‖ξ dτ, (25)

where γ > 0, 0 < α < 1 and 0 < ξ < 1 and its FO derivative with α satisfies:

0Dα
t s(t) = γ[0Dα

t e(t)] + sgn(e(t))‖e(t)‖ξ . (26)

When the system is in the sliding mode surface, the following conditions should be
satisfied:

s(t) = 0, 0Dα
t s(t) = 0. (27)

Thus,

0Dα
t e(t) = − 1

γ
sgn(e(t))‖e(t)‖ξ . (28)

Remark 9. Now, the nonsingular terminal sliding mode control (NTSMC) technique is very
popular in the study of stochastic disturbances of chaotic systems. This is a new technique. In ad-
dition, some the state-of-the-art methods have appeared in the study of the synchronization of
chaotic systems, such as: based on the state decoupling strategy and the Lyapunov-based ap-
proach, the minimum-energy synchronization control for interconnected networks is addressed
by Li et al. [55]. The synchronization of Henon maps using adaptive symmetry control has re-
cently been proposed [56]. The finite-time and fixed-time synchronization analysis of shunting
inhibitory memristive neural networks with time-varying delays is introduced via constructing
Lyapunov functions and feedback control schemes [57]. Combining adaptive control theory with
Lyapunov–Krasovskii theory, Yuan et al. [58] solved the problem of finite-time synchronization
(FTS) for complex dynamical networks with time-varying delays and unknown internal coupling
matrices. Furthermore, a novel decentralized non-integer order controller applied on nonlinear
fractional-order composite system is addressed in [59]. Li et al. [60] explored the issue of network
synchronization for an FO chaotic system based on an event-triggered mechanism for the first time.

Theorem 3. When Assumptions 1 and 2 are satisfied and assume that the error system (23) is
controlled by following combination controller (30) and adaptive laws (31), then the state trajectory
of the error systems (23) will arrive the sliding surface s(t) in the finite time given by:

T1 ≤
[

Vα− 1
2 (0, x)

Γ( 1
2 )Γ(1 + α)√
2ςΓ(α + 1

2 )

] 1
α

. (29)

Cu1(t) + Du2(t) = −R(x1, x2, y1, y2) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2

− CG1(y1(t))ϑ̂1 − DG2(y2(t))ϑ̂2 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖

+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3 + δ4

+ ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

, (30)

where k > ς > 0 and ρ1, ρ2, ρ3 ∈ (0, 1). θ̂i, ϑ̂i and ĥ, l̂, q̂ represent the estimations of θi, ϑi and
h, l, q. Their errors defined as θ̃i = θ̂i − θi, ϑ̃i = ϑ̂i − ϑi, h̃ = ĥ− h, l̃ = l̂ − l, q̃ = q̂− q where
i = 1, 2.



Mathematics 2022, 10, 712 9 of 26

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))CTs(t), (31)

0Dα
t ϑ̃2 = γGT

2 (y2(t))DTs(t)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Proof. Adopting the Lyapunov function:

V(t) =
1
2

sT(t)s(t) +
1
2

θ̃T
1 θ̃1 +

1
2

θ̃T
2 θ̃2 +

1
2

ϑ̃T
1 ϑ̃1 +

1
2

ϑ̃T
2 ϑ̃2 +

1
2ρ1

h̃T h̃ +
1

2ρ2
l̃T l̃

+
1

2ρ3
q̃T q̃. (32)

The FO derivative is expressed as:

0Dα
t V(t, x(t)) ≤ sT

0Dα
t s + θ̃T

1 0Dα
t θ̃1 + θ̃T

2 0Dα
t θ̃2 + ϑ̃T

1 0Dα
t ϑ̃1 + ϑ̃T

2 0Dα
t ϑ̃2

+
1
ρ1

h̃T
0Dα

t h̃ +
1
ρ2

l̃T
0Dα

t l̃ +
1
ρ3

q̃T
0Dα

t q̃

= sT(γ0Dα
t e(t) + sgn(e(t))‖e(t)‖ξ) + θ̃T

1 (−γFT
1 (x1(t))ATs(t))

+ θ̃T
2 (−γFT

2 (x2(t))BTs(t)) + ϑ̃T
1 (γGT

1 (y1(t))CTs(t))

+ ϑ̃T
2 (γGT

2 (y2(t))DTs(t)) + h̃T(γ‖s(t)‖) + l̃T(γ‖s(t)‖) (33)

+ q̃T(γ‖s(t)‖).

Substituting (30) into Equation (23), we obtain:

0Dα
t e(t) = −CG1(y1(t))ϑ̃1 − DG2(y2(t))ϑ̃2 + AF1(x1(t))θ̃1 + BF2(x2(t))θ̃2

+ Q(x1, x2, y1, y2) + ∆R(x1, x2, y1, y2) + V(x1, x2, y1, y2)

− 1
γ

sgn(e(t))‖e(t)‖ξ−ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )

− (ĥ + l̂ + q̂)sgn(s)− k
γ

. (34)

Substituting (34) into Equation (33), we obtain:

0Dα
t V(t, x(t)) ≤ sT[γQ(x1, x2, y1, y2) + γ∆R(x1, x2, y1, y2) + γV(x1, x2, y1, y2)

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s
‖s‖2 )− γ(ĥ + l̂ + q̂)sgn(s)− k]

+ h̃T(γ‖s(t)‖) + l̃T(γ‖s(t)‖) + q̃T(γ‖s(t)‖). (35)
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It follows from Assumption 1 that we get:

0Dα
t V(t, x(t)) ≤ γ‖s‖(q + h + l − (ĥ + l̂ + q̂)) + h̃T(γ‖s(t)‖)

+ l̃T(γ‖s(t)‖) + q̃T(γ‖s(t)‖)− k‖s‖ − sT(ς(‖θ̂1‖
+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s
‖s‖2 ))

= −ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1

+ δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)− k‖s‖. (36)

It follows from Assumption 2 that we get:

‖θ̂1 − θ1‖ ≤ ‖θ̂1‖+ ‖θ1‖ ≤ ‖θ̂1‖+ δ1, ‖θ̂2 − θ2‖ ≤ ‖θ̂2‖+ ‖θ2‖ ≤ ‖θ̂2‖+ δ2,
‖ϑ̂1 − ϑ1‖ ≤ ‖ϑ̂1‖+ ‖ϑ1‖ ≤ ‖ϑ̂1‖+ δ4, ‖ϑ̂2 − ϑ2‖ ≤ ‖ϑ̂2‖+ ‖ϑ2‖ ≤ ‖ϑ̂2‖+ δ4,
|ĥ− h| ≤ |ĥ|+ |h| ≤ |ĥ|+ h∗, |l̂ − l| ≤ |l̂|+ |l| ≤ |l̂|+ l∗,
|q̂− q| ≤ |q̂|+ |q| ≤ |q̂|+ q∗.

Finally,

0Dα
t V(t, x(t)) < −ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ĥ + l̂ + q̂ + δ1

+ δ2 + δ3 + δ4 + h∗ + l∗ + q∗)− k‖s‖
≤ −ς‖s‖ − ς(‖θ̂1 − θ1‖+ ‖θ̂2 − θ2‖+ ‖ϑ̂1 − ϑ1‖
+ ‖ϑ̂2 − ϑ2‖+ ρ1|ĥ− h|+ ρ2|l̂ − l|+ ρ3|q̂− q|). (37)

According to the Lemma 2:

0Dα
t V(t, x(t)) < −

√
2ςV1/2. (38)

Motivated by the Theorem 1, it is clear that the system (5) is Mittag–Leffler stable. Then,
we can obtain that the combination drive-response systems (18)–(21) achieve finite-time
synchronization. Additionally,

T1 ≤
[

Vα− 1
2 (0, x)

Γ( 1
2 )Γ(1 + α)√
2ςΓ(α + 1

2 )

] 1
α

, (39)

where 0 < α < 1.

Theorem 4. The dynamic of the sliding mode (28) is finite-time stable and the trajectories and state
variables of the FO error system (23) converge to the equilibrium point in finite-time T2.

Proof. Adopting the Lyapunov function:

V(t) =
1
2

eT(t)e(t). (40)

The FO derivative is illustrated as:

0Dα
t V(t, x(t)) ≤ eT

0Dα
t e

= eT(− 1
γ

sgn(e(t))‖e(t)‖ξ)

≤ − 1
γ
‖e(t)‖ξ+1

= − 1
γ

2(ξ+1)/2V(ξ+1)/2. (41)
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Thus, the error system (23) is Mittag–Leffler stable in finite-time T1 under the sliding
mode dynamics (28), described by:

T2 ≤

Vα− ξ+1
2 (0, x)

Γ(1− ξ+1
2 )Γ(1 + α)

1
γ 2

ξ+1
2 Γ(α− ξ+1

2 + 1)

 1
α

. (42)

Remark 10. According to Theorem 3, the FO error systems (23) can be driven to the sliding surface
s(t) via the controller (30) in finite time T1, that is, the sliding mode surface has accessibility; when
it is on the sliding mode surface, according to Theorem 4, the FO error system (23) converges to the
equilibrium point in finite time T2. So Theorem 3 and Theorem 4 achieve combination–combination
synchronization within time T ≤ T1 + T2.

The following corollaries are successfully analyzed from Theorem 4 and their proofs
are omitted here.

Corollary 1.

(i) Assume the matrix C = 0, then the drive systems (18), (19) achieve the finite-time combination
synchronization (FTCS) with the response system (21) provided the following controller:

Du2(t) = −R(x1, x2, y2) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2 − DG2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))DTs(t), (43)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(ii) Assume the matrix D = 0, then the drive systems (18), (19) achieve the FTCS with the
response system (20) provided the following controller:

Cu1(t) = −R(x1, x2, y1) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2 − CG1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,
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and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))CTs(t), (44)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Corollary 2.

(i) Assume the matrices A = C = 0, D = I then the drive system (19) achieve the FTCS with
the response system (21) provided the following controller:

u2(t) = −R(x2, y2) + BF2(x2(t))θ̂2 −G2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂2‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ2 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t),

0Dα
t h̃ = γρ1‖s(t)‖, (45)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(ii) Assume the matrices A = D = 0, C = I then the drive system (19) achieve the FTCS with
the response system (20) provided the following controller:

u1(t) = −R(x2, y1) + BF2(x2(t))θ̂2 −G1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂2‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ2 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t), (46)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.
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(iii) Assume the matrices B = D = 0, C = I then the drive system (18) achieve the FTCS with
the response system (20) provided the following controller:

u1(t) = −R(x1, y1) + AF1(x1(t))θ̂1 −G1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t), (47)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(iv) Assume the matrices B = C = 0, D = I then the drive system (18) achieve the FTCS with
the response system (21) provided the following controller:

u2(t) = −R(x1, y2) + AF1(x1(t))θ̂1 −G2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t), (48)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Corollary 3.

(i) Assume the matrices A = B = C = 0, D = I, then the equilibrium point (0, 0, 0, 0) of
response system (21) is asymptotically stable provided the following controller:

u2(t) = −R(y2)−G2(y2(t))ϑ̂2 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|

+ ρ3|q̂|+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t)

0Dα
t h̃ = γρ1‖s(t)‖, (49)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.
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(ii) Assume the matrices A = B = D = 0, C = I, then the equilibrium point (0, 0, 0, 0) of
response system (20) is asymptotically stable provided the following controller:

u1(t) = −R(y1)−G1(y1(t))ϑ̂1 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|

+ ρ3|q̂|+ δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t),

0Dα
t h̃ = γρ1‖s(t)‖, (50)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Remark 11. The scaling matrices A, B, C, D ∈ Rn ×Rn could be the diagonal matrices or the
identity matrices, or some of them are zero. As described in Remark 2, when A = B = C = D =
I ∈ Rn ×Rn, then the topic will be transformed into finite-time C-C complete synchronization with
multiple SD; the numerical simulation results are displayed in Section 5.

5. Numerical Simulation

Let the FO hyperchaotic Lorenz and Chen system under multiple SD be the drive
systems 

0Dα
t x11

0Dα
t x21

0Dα
t x31

0Dα
t x41

 =


x21 − x11 0 0 0

0 x11 0 0
0 0 −x31 0
0 0 0 x41




a1 + ∆a1
b1 + ∆b1
c1 + ∆c1
d1 + ∆d1

 (51)

+


x41 + ∆ f11

−x11x31 − x21 + ∆ f21
x11x21 + ∆ f31
−x21x31 + ∆ f41

+


d11
d21
d31
d41

.


0Dα

t x12

0Dα
t x22

0Dα
t x32

0Dα
t x42

 =


x22 − x12 0 0 0 0

0 0 x22 x12 0
0 −x32 0 0 0
0 0 0 0 x42




a2 + ∆a2
b2 + ∆b2
c2 + ∆c2
d2 + ∆d2

r + ∆r

 (52)

+


x42 + ∆ f12

−x11x32 + ∆ f22
x12x22 + ∆ f32
x22x32 + ∆ f42

+


d12
d22
d32
d42

.

Let the FO hyper-chaotic Lü and Liu chaotic system under multiple SD and controller
be the response systems
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0Dα

t y11

0Dα
t y21

0Dα
t y31

0Dα
t y41

 =


y21 − y11 0 0 0

0 y21 0 0
0 0 −y31 0
0 0 0 y41




a3 + ∆a3
b3 + ∆b3
c3 + ∆c3
d3 + ∆d3

 (53)

+


y41 + ∆g11

−y11y31 + ∆g21
y11y21 + ∆g31
y11y31 + ∆g41

+


µ11 + u11
µ21 + u21
µ31 + u31
µ41 + u41

.


0Dα

t y12

0Dα
t y22

0Dα
t y32

0Dα
t y42

 =


y22 − y12 0 0 0 0

0 y12 0 0 0
0 0 −y32 0 y2

12
0 0 0 −y12 0




a4 + ∆a4
b4 + ∆b4
c4 + ∆c4
d4 + ∆d4
m + ∆m

 (54)

+


∆g12

−y12y32 + y42 + ∆g22
∆g32
∆g42

+


µ12 + u12
µ22 + u22
µ32 + u32
µ42 + u42

.

The chosen parameters are a1 = 10, b1 = 28, c1 = 8/3, d1 = − 1, a2 = 35, b2 = 3,
c2 = 12, d2 = 7, r = 0.5, a3 = 36, b3 = 20, c3 = 3, d3 = 0.5, a4 = 10, b4 = 40, c4 = 2.5,
d4 = 10, m = 4. The initial values take as x1(0) = (2,−2, 1,−1), x2(0) = (1, 1, 2, 2),
y1(0) = (−1, 3, 1, 3), y2(0) = (2, 1, 2, 1). The orders take as α = 0.99. The combination
D-R systems are in hyper-chaotic state which are presented in Figure 1.
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Figure 1. The attractors with respect to the FO hyper-chaotic Lorenz, Chen, Lü, Liu system indicating
in sub-pictures (a–d) respectively for α = 0.99.
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Remark 12. The ranges of fractional order that make the FO hyper-chaotic Chen, Lorenz, L and
Liu chaotic system appear hyper-chaotic are chose as 0.8 ≤ α < 1, 0.97 ≤ α < 1, 0.94 ≤ α ≤ 1,
0.96 ≤ α ≤ 1 respectively. If the drive-response systems are in hyper-chaotic, the influence of
stochastic disturbances on the system can be better studied, and the effectiveness and robustness of
the controller can be proved. It follows that the dynamic error has the same fractional-order as the
drive and response systems that the fractional order α is chose as 0.97 ≤ α < 1 which can ensure
that the all drive-response systems are hyper-chaotic. Thus, in the numerical simulation section, we
also consider the α = 0.97 to validate the proposed method.

According to the above equations, we consider:

θ̂1 = (â1, b̂1, ĉ1, d̂1)
T , θ̂2 = (â2, b̂2, ĉ2, d̂2, r̂)T ,

ϑ̂1 = (â3, b̂3, ĉ3, d̂3)
T , ϑ̂2 = (â4, b̂4, ĉ4, d̂4, m̂)T ,

The uncertain terms ∆θi, ∆ϑi, ∆ fi(xi(t)), ∆gi(yi(t)) and external disturbance di(xi(t)),
µi(yi(t)) for i = 1, 2 are demonstrated as:

∆θ1 = (0.2sin(t), 0.2sin(0.2t), 0.2sin(3t), 0.2sin(0.4t))T ,

∆θ2 = (0.2sin(5t), 0.2sin(0.6t), 0.2sin(0.8t), 0.2sin(2t), 0.2sin(10t))T ,

∆ϑ1 = (0.2sin(t), 0.2sin(2t), 0.2sin(3t), 0.2sin(4t))T ,

∆ϑ2 = (0.2sin(0.5t), 0.2sin(6t), 0.2sin(t), 0.2sin(0.2t), 0.2sin(3t))T ,

d1(x1(t)) = (−0.1cos(t),−0.2cos(2t), 0.3sin(3t), 0.4sin(4t))T , (55)

d2(x2(t)) = (−0.1sin(t),−0.2sin(2t), 0.3cos(3t), 0.4cos(4t))T ,

µ1(y1(t)) = (0.1cos(5t), 0.2cos(6t), 0.3sin(7t), 0.4sin(8t))T ,

µ2(y2(t)) = (0.1sin(5t), 0.2sin(6t), 0.3cos(7t), 0.4cos(8t))T ,

∆ fi(xi(t)) = (0.1cos(x1i), 0.2cos(x2i), 0.3cos(x3i), 0.4cos(x4i))
T ,

∆gi(yi(t)) = (0.1sin(y1i), 0.2sin(y2i), 0.3sin(y3i), 0.4sin(y4i))
T ,

where i = 1, 2. It follows from (30), (31) and (34) that the error dynamics and the updating
rules of unknown parameters are expressed as:

0Dα
t e1(t)= [−(â3−a3)− 0.2sin(t)](y21−y11)−[(â4−a4) + 0.2sin(0.5t)](y22−y12)

+ [(â1 − a1)− 0.2sin(t)](x21 − x11) + [(â2 − a2)− 0.2sin(5t)](x22 − x12)

+ [0.1sin(y11) + 0.1sin(y12)− 0.1cos(x11)− 0.1cos(x12)]

+ [0.1cos(5t) + 0.1sin(5t) + 0.1cos(t) + 0.1sin(t)]− 1
γ

sgn(e1(t))‖e(t)‖ξ

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s1

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s1)−
k
γ

.

0Dα
t e2(t) =

[
−(b̂3 − b3) + 0.2sin(2t)

]
y21 −

[
(b̂4 − b4)− 0.2sin(6t)

]
y12

+
[
(b̂1 − b1)− 0.2sin(0.2t)

]
x11 + [(ĉ2 − c2)− 0.2sin(0.6)]x22

+
[
(d̂2 − d2)− 0.2sin(0.8)

]
x12 + [0.2sin(y21) + 0.2sin(y22)]

[−0.2cos(x21)−0.2cos(x22)] + [0.2cos(6t)+0.2sin(6t)+0.2cos(2t)+0.2sin(2t)]

− 1
γ

sgn(e2(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1

+ δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s2

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s2)−
k
γ

.
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0Dα
t e3(t) = [(ĉ3 − c3)− 0.2sin(3t)]y31 + [(ĉ4 − c4)− 0.2sin(t)]y32

− [(m̂−m)− 0.2sin(3t)]y2
12 − [(ĉ1 − c1)− 0.2sin(3t)]x31

−
[
(b̂2−b2)−0.2sin(0.6t)

]
x32+[0.3sin(y31)+0.3sin(y32)−0.3cos(x31)−0.3cos(x32)]

+ [0.3cos(7t) + 0.3sin(7t)− 0.3cos(3t)− 0.3sin(3t)]− 1
γ

sgn(e3(t))‖e(t)‖ξ

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2

+ δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s3

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s3)−
k
γ

.

0Dα
t e4(t) =

[
−(d̂3 − d3) + 0.2sin(4t)

]
y41 +

[
(d̂4 − d4) + 0.2sin(0.2t)

]
y12

+
[
(d̂1 − d1)− 0.2sin(0.4t)

]
x41 + [(r̂− r)− 0.2sin(10t)]x42

+ [0.4sin(y41) + 0.4sin(y42)− 0.4cos(x41)− 0.4cos(x42)]

+ [0.4cos(8t) + 0.4sin(8t)− 0.4cos(4t)− 0.4sin(4t)]

− 1
γ

sgn(e4(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖

+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s4

γ‖s‖2 )

− (ĥ + l̂ + q̂)sgn(s4)−
k
γ

.

0Dα
t θ̃1 = γ

[
((x11 − x21)s1,−x11s2, x31s3,−x41s4)

T
]
,

0Dα
t θ̃2 = γ

[
((x12 − x22)s1, x32s3,−x22s2,−x12s2,−x42s4)

T
]
,

0Dα
t ϑ̃1 = γ

[
((y21 − y11)s1, y21s2,−y31s3, y41s4)

T
]
,

0Dα
t ϑ̃2 = γ

[
((y22 − y12)s1, y12s2,−y32s3,−y12s4, y2

12s3)
T
]
,

0Dα
t h̃ = γρ1

√
(s2

1 + s2
2 + s2

3 + s2
4),

0Dα
t l̃ = γρ2

√
(s2

1 + s2
2 + s2

3 + s2
4),

0Dα
t q̃ = γρ3

√
(s2

1 + s2
2 + s2

3 + s2
4),

In the numerical simulation section, the method we adopted for the fractional order
chaotic system is the Adams–Bashforth–Moulton type predictor-corrector scheme [25]. We use
the Matlab software (R2016a) to solve them. For the simulation procedure, The initial values of
D-R systems take as x1(0) = (2,−2, 1,−1), x2(0) = (1, 1, 2, 2), y1(0) = (−1, 3, 1, 3), y2(0) =
(2, 1, 2, 1). The orders take as α = 0.99. The time step is 0.003. The number of iterations is 3000.
The initial conditions of parameters estimation are (a1(0), b1(0), c1(0), d1(0)) = (1, 1, 1, 1),
(a2(0), b2(0), c2(0), d2(0), r(0)) = (1, 1, 1, 1, 1), (a3(0), b3(0), c3(0), d3(0)) = (1, 1, 1, 1), h(0),
l(0), q(0) = (1, 1, 1), (a4(0), b4(0), c4(0), d4(0), m(0)) = (1, 1, 1, 1, 1). The constants are
chosen as γ = 1, δ1 = 100, δ2 = 100, δ3 = 100, δ4 = 100, h∗ = 50, l∗ = 50, q∗ = 50, ρ1 =
0.1, ρ2 = 0.2, ρ3 = 0.3, ξ = 0.5, ς = 3, k = 4. For α = 0.99, the trajectories about the error
variables ei(t), (i = 1, 2, 3, 4) are depicted in Figure 2 and the synchronization for the state
trajectories of drive systems (18), (19) and response system (20), (21) are drawn in Figures 3.
The trajectories of estimations θ̂i, ϑ̂i, (i = 1, 2), ĥ, l̂, q̂ are depicted in Figure 4. Finally, in order
to prove that the error variables converge completely to zero for α = 0.99, the sum of squares
of all errors (e2

1 + e2
2 + e2

3 + e2
4) is conducted as shown in Figure 5. For α = 0.97, the trajectories
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about the error variables ei(t), (i = 1, 2, 3, 4) are drawn in Figure 6 and the trajectories of
estimations θ̂i, ϑ̂i, (i = 1, 2), ĥ, l̂, q̂ are drawn in Figure 7. Finally, in order to prove that the
error variables converge completely to zero for α = 0.97, the sum of squares of all errors
(e2

1 + e2
2 + e2

3 + e2
4) is conducted as shown in Figure 8. It all demonstrates that the the error

does converge completely to zero. Therefore, this controller and the updated rules of the
parameters are effective.
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Figure 2. The C-C synchronization errors e1, e2, e3, e4 change with time t for α = 0.99.
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Figure 3. The synchronization for state variable x11 + x12 and y11 + y12, x21 + x22 and y21 + y22,
x31 + x32 and y31 + y32, x41 + x42 and y41 + y42 of drive systems (51), (52) and response systems (53),
(54) indicating in sub-pictures (a–d) respectively for α = 0.99.
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Figure 4. The estimation of parameters â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2, d̂2, r̂ of drive systems (51) (a) and (52)
(b), â3, b̂3, ĉ3, d̂3, â4, b̂4, ĉ4, d̂4, m̂ of response systems (53) (c) and (54) (d), ĥ, l̂, q̂ (e) for α = 0.99.
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Figure 6. The C-C synchronization errors e1, e2, e3, e4 change with time t for α = 0.97.
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â4

b̂4

ĉ4

d̂4

m̂

(d)

0 1 2 3 4 5 6 7 8 9 10

t/s

1

2

3

4

5

6

7

ĥ
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Figure 7. The estimation of parameters â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2, d̂2, r̂ of drive systems (51) (a) and (52)
(b), â3, b̂3, ĉ3, d̂3, â4, b̂4, ĉ4, d̂4, m̂ of response systems (53) (c) and (54) (d), ĥ, l̂, q̂ (e) for α = 0.97.
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Figure 8. The C-C synchronization total error e2
1 + e2
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4 changes with time t for α = 0.97.

Remark 13. In the numerical simulation section, the fractional order (FO) hyper-chaotic Lorenz and
Chen system are the drive systems. The fractional order hyper-chaotic Lü and Liu chaotic system are the
response systems. The equilibrium positions of drive-response systems are as follows. The FO hyper-chaotic
Lorenz system E1 = (0, 0, 0, 0), E2 = (−1.17,−21.63, 9.46, 204.60), E3 = (1.17, 21.63, 9.46,−204.60).
The FO hyper-chaotic Chen system E1 = (0, 0, 0, 0). The FO hyper-chaotic Lü system E1 = (0, 0, 0, 0),
E2 = (7.75, 9.30, 3.60, 55.77), E3 = (−7.75,−9.30, 3.60,−55.77) The FO hyper-chaotic Liu system
E1 = (0, 0, 0, 0). Now, there is a question worth thinking about, which is whether the proposed method is
still valid for systems with a large number of equilibria. Thus, the numerical simulation for the systems
with three equilibrium positions are conducted. They are the FO Lorenz system, the FO Lü system, the
FO Genesio–Tesi system and the FO Arneodo system. The results are also valid. In fact, the adaptive
combination controller has nothing to do with the number of equilibrium positions. In addition to the
numerical simulation results we have obtained, there are also some references [45,46,49,61]. From the
numerical simulation section of this literature, the choice of the drive-response system is arbitrary. Thus,
the proposed method is still valid for systems with a large number of equilibria.

A comparison analysis between the proposed finite-time combination–combination
(C-C) synchronization (FTCCS) scheme and the earlier published work is as follows. In
Ref. [62], the author applied the adaptive control method to achieve C-C synchronization
among four identical hyper-chaotic systems where it noted that the synchronization states
happened at t = 5 (approx). In Ref. [61], the author used the sliding mode control scheme
to address multiple chaotic systems with unknown parameters and disturbances in which
the synchronization happened at t = 5 (approx). Besides, in Ref. [63], the author solved a
new type of C-C synchronization for four identical or different chaotic systems via adaptive
control, where the desired synchronization happened at t = 5.5 (approx). The combination
synchronization of FO non-autonomous chaotic systems with different dimensions adopt-
ing a scaling matrix is studied in Ref. [64], where the error synchronization happened at
t = 6 (approx). Furthermore, the phase synchronization of FO complex chaotic systems
with different structures is discussed in Ref. [65]; in the process of C-C synchronization,
the desired synchronization happened at t = 4.5 (approx). The nonsingular terminal sliding
mode control to achieve the finite-time synchronization between two complex-variable
chaotic systems with unknown parameters is adopted in Ref. [66]; here it has been found
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that the synchronization error converges to zero at t = 10 (approx). In addition to the
above studies, we have investigated the FTCCS scheme among fractional order (FO) chaotic
systems under multiple stochastic disturbances (SD), utilizing the nonsingular terminal
sliding mode control (NTSMC) technique in which it has been recorded that the synchro-
nization occurs at t = 3.1 (approx) as depicted in Figure 5. Therefore, comparing the
synchronization times discussed above with those obtained by our proposed scheme, our
method is dominant. This also illustrates the vitality and effectivity of the considered
methodology.

Remark 14. After calculation, the finite synchronization time satisfies T1 ≤ 5.71, T2 ≤ 7.34
theoretically. Thus, we have T ≤ T1 + T2 = 13.05. Comparing the numerical simulation results,
we can see that our control scheme is effective.

Remark 15. The dynamic error has the same fractional-order as the D-R systems in our paper. It
is worth considering that the non-integer order in the derivative of error is different from the D-R.
If we only consider this situation, there are many papers that have discussed it. In Ref. [67], the
author proposed a modified adaptive sliding-mode control technique to investigate the reduced-order
and increased-order synchronization. Ouannas et al. [68] investigated the inverse full state hybrid
function projective synchronization (IFSHFPS) of non-identical systems characterized by different
dimensions and different orders. Furthermore, the hybrid projective synchronization of different
dimensional fractional order chaotic systems with time delay and different orders is discussed by [69].
More research results can be found in Ref. [70–72]. All the above literature about the non-integer
order in the derivative of error is different from the drive-response systems. Our next step will
consider this situation.

6. Conclusions

In this article, the FTCCS of FO chaotic systems among four systems with different
structures and unknown parameters is solved. The most important point is that the condi-
tions we consider are under multiple stochastic disturbances. Our thought for this topic
is that under the action of the finite-time Lyapunov theory and the nonsingular terminal
sliding mode control technique, we deduced a new FO sliding surface, adaptive combina-
tion controller and some parameter updating laws, which can achieve the combination–
combination synchronization of systems under multiple stochastic disturbances in finite
time. The unknown parameters are identified precisely. Moreover, the combination drive
systems and combination response systems that we introduced are very general. The ex-
pression of the synchronization error system makes many synchronization methods, such as
chaos control, complete synchronization, projection synchronization, anti-synchronization
and so forth, become special cases of combination–combination synchronization. From the
numerical simulation results, it is obvious that the error variables of the D-R systems
quickly converge to the origin point in the given time. Therefore, this controller and the
updated parameter laws are effective. Next, for the multiple stochastic disturbances, we
will study the fractional order multi switching synchronization of eight chaotic systems
with time-delay in which the systems’ parameters are still unknown.
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