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Abstract: The interrelations of Triebel–Lizorkin spaces on smooth domains of Euclidean space Rn

are well-established, whereas only partial results are known for the non-smooth domains. In this
paper, Ω is a non-smooth domain of Rn that is bounded and uniform. Suppose p, q ∈ [1, ∞) and
s ∈ (n( 1

p −
1
q )+, 1) with n( 1

p −
1
q )+ := max{n( 1

p −
1
q ), 0}. The authors show that three typical types

of fractional Triebel–Lizorkin spaces, on Ω: Fs
p,q(Ω), F̊s

p,q(Ω) and F̃s
p,q(Ω), defined via the restriction,

completion and supporting conditions, respectively, are identical if Ω is E-thick and supports some
Hardy inequalities. Moreover, the authors show the condition that Ω is E-thick can be removed
when considering only the density property Fs

p,q(Ω) = F̊s
p,q(Ω), and the condition that Ω supports

Hardy inequalities can be characterized by some Triebel–Lizorkin capacities in the special case of
1 ≤ p ≤ q < ∞.

Keywords: Triebel–Lizorkin space; Hardy inequality; uniform domain; fractional Laplacian

1. Introduction

The Triebel–Lizorkin spaces Fs
p,q(Rn) on the Euclidean space Rn, with parameters

s ∈ R and p, q ∈ (0, ∞], were introduced in 1970s (see [1–3]). They provide a unified treat-
ment of various kinds of classical concrete function spaces, such as Sobolev spaces, Hölder-
Zygmund spaces, Bessel-potential spaces, Hardy spaces and BMO spaces. Nowadays,
the theory of Fs

p,q(Rn) is well-established in the literature as has numerous applications
(see [4–10] and their references).

When trying to extend the theory of Triebel–Lizorkin space from Rn to a domain Ω of
Rn, one usually meets the fundamental problem of identifying the interrelations among a
number of related spaces that are defined from distinct perspectives. In particular, there are
three typical ways of defining Triebel–Lizorkin spaces on Ω (see, e.g., [10]). To be precise,
let D(Ω) = C∞

0 (Ω) be the collection of all infinitely differentiable functions in Rn with
compact supports in Ω and D′(Ω) the dual space of D(Ω). For any s ∈ R and p, q ∈ (0, ∞],
recall that

(I) Fs
p,q(Ω) := { f ∈ D′(Ω) : there is a g ∈ Fs

p,q(Rn) with g|Ω = f } being the restriction
Triebel–Lizorkin space endowed with the quasi-norm

‖ f ‖Fs
p,q(Ω) := inf ‖g‖Fs

p,q(Rn), (1)

where the infimum is taken over all g ∈ Fs
p,q(Rn) satisfying g|Ω = f . Here, for any

g ∈ S ′(Rn), g|Ω is the restriction of g to Ω, defined as a distribution in Ω such that for
any ϕ ∈ D(Ω),

(g|Ω)(ϕ) := g(ϕ);

(II) F̊s
p,q(Ω) := D(Ω)

‖·‖Fs
p,q(Ω) is the completion Triebel–Lizorkin space that is defined as the

completion of D(Ω) in Fs
p,q(Ω) with respect to the quasi-norm ‖ · ‖Fs

p,q(Ω), as in (1);
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(III) F̃s
p,q(Ω) := { f ∈ D′(Ω) : there is a g ∈ Fs

p,q(Rn) with g|Ω = f and supp g ⊂ Ω}
being the supporting Triebel–Lizorkin space endowed with the quasi-norm

‖ f ‖F̃s
p,q(Ω) = inf ‖g‖Fs

p,q(Rn),

where the infimum is taken over all g ∈ Fs
p,q(Rn) satisfying g|Ω = f and supp g ⊂ Ω.

Note that if Ω = Rn is the Euclidean space, it follows easily from their definitions and
the density property of Fs

p,q(Rn) that the aforementioned three kinds of Triebel–Lizorkin
spaces are identical (see, e.g., [4]). However, if Ω 6= Rn, the situation becomes much
more complex, since in this case the above density property and many other important
properties, including the availability of restriction, trace and extension operators may
fail (see, e.g., [6,8]). Indeed, it turns out that the interrelations of the aforementioned
three kinds of Triebel–Lizorkin spaces depend heavily on the geometry of domain Ω and
parameters s, p and q. Let us review some of the known results on this subject.

If Ω is a bounded C∞-domain, it is known that the following results are almost sharp
(see ([8], Chapter 5)).

(A) Fs
p,q(Ω) = F̊s

p,q(Ω), if and only if, one of the following two conditions is satisfied:

(a1) 0 < p < ∞, −∞ < s < 1
p and 0 < q < ∞;

(a2) 1 < p < ∞, s = 1
p and 0 < q < ∞.

(B) F̊s
p,q(Ω) = F̃s

p,q(Ω), if 0 < p < ∞, 0 < q < ∞, s > σp := n( 1
p − 1)+ and s− 1

p /∈ Z+.

(C) Fs
p,q(Ω) = F̃s

p,q(Ω), if 0 < p ≤ ∞, 0 < q ≤ ∞ and max{ 1
p − 1, n( 1

p − 1)} < s < 1
p .

A combination of (A), (B) and (C) immediately implies the following identities.

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω), (2)

if 0 < p < ∞, 0 < q < ∞ and max{ 1
p − 1, n( 1

p − 1)} < s < 1
p .

Note the restriction that s < 1
p in the above identities can be relaxed if Ω supports

some Hardy inequalities. In particular, it is known that

F̃s
p,q(Ω) = Fs

p,q(Ω) ∩ Lp(Ω, d(·, ∂Ω)−s), (3)

if 0 < p < ∞, 0 < q < ∞ and

s > σp,q := n
(

1
min{p, q} − 1

)
+

,

where for any x ∈ Ω, d(x, ∂Ω) denotes the distance from x to the boundary ∂Ω of Ω and

Lp(Ω, d(·, ∂Ω)−s) :=

{
f : ‖ f ‖Lp(Ω,d(·,∂Ω)−s) =

(∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx

)1/p
< ∞

}

denotes the weighted Lebesgue space on Ω. The identity (3) together with (A) and (B)
shows that if Ω supports the Hardy condition Fs

p,q(Ω) ⊂ Lp(Ω, d(·, ∂Ω)−s), then identities
(2) hold for all

1 < p < ∞, 1 ≤ q < ∞ and 0 < s < ∞. (4)

Recall that on the smooth domain, the Hardy inequalities

‖ f ‖Lp(Ω,d(·,∂Ω)−s) ≤ C‖ f ‖F̃s
p,q(Ω)

hold for any f ∈ F̃s
p,q(Ω) with 0 < p ≤ ∞, 0 < q ≤ ∞ and s > σp with σp as in (B).
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If Ω is a non-smooth domain, there is no comprehensive treatment compared with
what is available for smooth domains. Moreover, in the former case we meet much more
complicated situations influenced by the geometry of Ω. Let us mention some of the
related results.

(i) If Ω ⊂ Rn is a bounded domain such that its boundary ∂Ω is porous and has upper
Minkowski dimension D ∈ (0, n], Caetano ([11], Proposition 2.5) proved the following identity.

(A’) Fs
p,q(Ω) = F̊s

p,q(Ω), if 0 < p < ∞, 0 < q < ∞ and −∞ < s < (n− D)/p.

Note that for an arbitrary bounded domain Ω, it holds that D ∈ [n − 1, n], and if
D = n− 1, then the range of s in (A’) equal to that in (a1).

(ii) If Ω ⊂ Rn is a domain whose closure Ω is a n-set, and ∂Ω is a d-set with n− 1 <
d < n, Ihnatsyeva et al. ([12], Theorem 4.3) obtained the following inclusion.

(B’) F̊s
p,q(Ω) ⊂ F̃s

p,q(Ω), if 1 < p < ∞, 1 ≤ q < ∞ and (n− d)/p < s < ∞.

Note that if ∂Ω is a d-set with d < n, then ∂Ω is porous (see ([10], Chapter 3)) and has
upper Minkowski dimension d (see ([7], Chapter 1)).

(iii) If Ω ⊂ Rn is an arbitrary domain, Triebel ([10], Chapter 2) proved the follow-
ing identity.

(C’) F0
p,2(Ω) = F̃0

p,2(Ω), if 1 < p < ∞.

Moreover, if Ω is a bounded Lipschitz domain, then it is proved in ([9], Proposition
3.1) that identity (2) holds true for all

0 < p < ∞, min{p, 1} < q < ∞ and max
{

1
p
− 1, n

(
1
p
− 1
)}

< s <
1
p

. (5)

Motivated by the aforementioned results, it is natural to ask the following.

Main question: Let Ω be a bounded non-smooth domain. Is it possible to extend identity
(2) for parameters from (5) to the general fractional case s ∈ (0, 1)?

In this paper, we give an affirmative answer to the above question in the setting that
Ω is a bounded uniform domain, which contains a bounded Lipschitz domain as a special
case. Recall that a domain Ω ⊂ Rn is called a uniform domain (see [13,14]), if there exist
constants c1 and c2 > 0 such that each pair of points x, y ∈ Ω can be connected by a
rectifiable curve Γ ⊂ Ω for which{

L(Γ) ≤ c1|x− y|,
min{|x− z|, |y− z|} ≤ c2d(z, ∂Ω), for any z ∈ Γ,

where L(Γ) denotes the length of Γ.
A closely related notion of uniform domain is the so-called E-thick domain. Recall

in [10] that a domain Ω ⊂ Rn is said to be E-thick, if there exists j0 ∈ N such that for any
interior cube Qi ⊂ Q satisfying

l(Qi) ∼ 2−j and d(Qi, ∂Ω) ∼ 2−j for some j ≥ j0 ∈ N,

one finds a complementary exterior cube Qe ⊂ Ωc = Rn \Ω satisfying

l(Qe) ∼ 2−j and d(Qe, ∂Ω) ∼ d(Qi, Qe) ∼ 2−j,

where the implicit constants are independent of Qi, Qe and j. It is known that any bounded
Lipschitz domain is E-thick and uniform; and if a domain Ω is uniform, then Ω c is E-thick.
Moreover, there exists domain in Rn that is E-thick but not uniform (see ([10], Remark 3.7)).
Note that if Ω is E-thick, then ∂Ω is a d-set with d ∈ [n− 1, n) (see ([10], Proposition 3.18)).

We also need the following Hardy condition.
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(H)s,p,q-condition. Let 1 ≤ p, q < ∞, s ∈ (0, 1) and Ω ⊂ Rn be a domain satisfying Ω 6= Rn.
Ω is said to satisfy the (H)s,p,q-condition if

∫
Rn

∣∣∣∣ f (x)
d(x, ∂Ω)s

∣∣∣∣p dx < ∞

holds for all f ∈ Fs
p,q(Ω) as in (I).

The main result of the paper is as follows.

Theorem 1. Let p, q ∈ [1, ∞) and s ∈ (n( 1
p −

1
q )+, 1). Assume that Ω is a bounded E-thick

uniform domain satisfying the (H)s,p,q-condition. Then it holds that

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω) (6)

with equivalent norms.

We make some remarks on Theorem 1.

Remark 1. (i) Theorem 1 gives an affirmative answer to the main question. It extends by necessity
the identities (2) for parameter s from the range s ∈ (max{ 1

p − 1, n( 1
p − 1)}, 1

p ) as in (5) to

s ∈ (n( 1
p −

1
q )+, 1) and for domain Ω from bounded Lipschitz to bounded uniform, E-thick and

supporting the (H)s,p,q-condition. Moreover, in the proof of Theorem 1, we establish the following
two identities:

(A”) Fs
p,q(Ω) = F̊s

p,q(Ω), if 1 ≤ p, q < ∞, n( 1
p −

1
q )+ < s < 1 and Ω is bounded uniform;

(C”) Fs
p,q(Ω) = F̃s

p,q(Ω), if 1 ≤ p, q < ∞, n( 1
p −

1
q )+ < s < 1 and Ω is bounded E-thick,

which extends by necessity the corresponding identities (A’) and (C’).
(ii) As in the Sobolev case (see, e.g., [15,16]), the proof of Theorem 1 relies on an intrinsic

norm characterization of the restriction space Fs
p,q(Ω) as in (I). This characterization is established

in [17] under the condition s ∈ (n( 1
p −

1
q )+, 1), which is shown to be sharp therein. It seems a

new method is needed if one considers the case s ≤ n( 1
p −

1
q )+; see Proposition 1, where a density

property is established for a variant of Triebel–Lizorkin space in the full range s ∈ (0, 1). Note that
if 1 ≤ q ≤ p < ∞, then n( 1

p −
1
q )+ = 0. In this case, Theorem 1 gives identities (2) for the full

range s ∈ (0, 1). We also point out that it is possible to consider the case s ≥ 1 by using higher
order difference. We do not pursue this in the present paper.

We point out that the most technical part of the proof of Theorem 1 is to prove the
first identity

Fs
p,q(Ω) = F̊s

p,q(Ω), (7)

which is also called the density property of Fs
p,q(Ω) and has close relations with other

properties, such as zero trace characterization and regularity of the Dirichlet energy integral
minimizer (see [18]). As far as we know, if Ω is a non-smooth domain, this density property
is only known for some Sobolev spaces, or the case when s is small (see [9,11,15,16,19]).
In this paper, we show that the density property (7) holds for bounded uniform domains
without the assumption of E-thickness. More precisely, the following result is true.

Theorem 2. Let p, q ∈ [1, ∞) and s ∈
(

n( 1
p −

1
q )+, 1

)
. Assume Ω is a bounded uniform domain

satisfying the (H)s,p,q-condition. Then the density property (7) holds.

A few remarks on Theorem 2 are in order.
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Remark 2. (i) Theorem 2 extends by necessity the corresponding density property of Fs
p,q(Ω) by

relaxing the restriction s < (n− D)/p as in (A’). In particular, if 1 ≤ p = q < ∞ and s ∈ (0, 1),
since in this case Fs

p,p = Ws,p becomes the fractional Sobolev space, Theorem 2 implies the the
following zero trace characterization of fractional Sobolev space: for any p ∈ [1, ∞) and s ∈ (0, 1),
if Ω is a bounded uniform domain supporting the (H)s,p,p-condition, then

Ws,p(Ω) = W̊s,p(Ω).

Recall that the corresponding characterization at the endpoint case s = 1 is a well-known
result (see, e.g., [15,16]; see also [19] for a very recent result on the fractional case reached using a
different method).

(ii) The proofs of Theorems 1 and 2 are based on a localization technique of Whitney decom-
position (see Section 2 below). Since this technique has been extended to the more general setting
of volume doubling metric measure space (see, e.g., [20]), it is straightforward to establish our
results to this setting, once the corresponding intrinsic norm characterization of the restriction space
Fs

p,q(Ω) is established.

Finally, we present further discussion on the Hardy (H)s,p,q-condition appearing in
Theorems 1 and 2. As announced earlier, we prove Theorems 1 and 2 by using a localization
technique of Whitney decomposition, together with a smooth partition of unity. This allows
us to decompose each f ∈ Fs

p,q(Ω) into two parts: the interior part vε and boundary part
wε. It is the estimates of the latter part that need the Hardy (H)s,p,q-condition. Note that
the (H)s,p,q-condition is satisfied once we prove the following Hardy’s inequality:∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω)

. ‖ f ‖Fs
p,q(Ω), (8)

for any f ∈ Cc(Ω). Unfortunately, it is known that (8) may not hold in the uniform
domains (see [21]). Thus, a characterization of (8) in this setting is necessary. In this paper,
we establish a characterization of (8) in terms of capacities, under the additional condition
1 ≤ q ≤ p < ∞. To be precise, for any 1 ≤ q ≤ p < ∞ and s ∈ (0, 1), let Ω be a uniform
domain on Rn and K ⊂ Ω be its compact subset. Define the capacity caps,p,q(K, Ω) of K
by setting

caps,p,q(K, Ω) := inf | f |pF s
p,q(Ω)

, (9)

where the infimum is taken over all real-valued functions f ∈ Cc(Ω) such that f ≥ 1 on
K and

| f |F s
p,q(Ω) :=

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

. (10)

The following result gives the capacity characterization of (8) in the setting of a
uniform domain.

Theorem 3. Let 1 ≤ q ≤ p < ∞ and s ∈ (0, 1). Assume that Ω is a uniform domain. The
following are equiavalent.

(i) There is a constant C1 > 0 such that∥∥∥∥ f
d(·, ∂Ω)s

∥∥∥∥
LP(Ω)

≤ C1| f |F s
p,q(Ω),

for any f ∈ Cc(Ω).
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(ii) There is a constant C2 > 0 such that∫
K

1
d(x, ∂Ω)sp dx ≤ C2caps,p,q(K, Ω), (Cap)s,p,q

for every compact K ⊂ Ω.

Based on Theorems 1–3, we immediately obtain the following corollary.

Corollary 1. Let 1 ≤ p ≤ q < ∞ and s ∈ (n( 1
p −

1
q )+, 1). Assume that Ω is a bounded uniform

domain satisfying the capacity condition (Cap)s,p,q. Then the following two assertions hold.

(i) Fs
p,q(Ω) = F̊s

p,q(Ω) with equivalent norms.
(ii) If, in addition, Ω is E-thick, then Fs

p,q(Ω) = F̊s
p,q(Ω) = F̃s

p,q(Ω) with equivalent norms.

We now make some remarks on Theorem 3 and Corollary 1.

Remark 3.

(i) Theorem 3 is the extension of the corresponding result in [22], where the authors considered
the capacity characterization of Hardy’s inequalities in the fractional order Sobolev space.
Recall that if Ω is domain with ∂Ω being a d-set satisfying n− 1 < d < n, then it is proved
in [12] that Hardy’s inequalities (8) hold for any f ∈ Cc(Ω) with p ∈ [1, ∞), q ∈ [1, ∞] and
s > ( n−d

p , 1). Note that the proof of [12] uses the technique of restriction-extension, whereas
the proof of Theorem 3 depends only on the intrinsic norm characterization of Fs

p,q(Ω) defined
as in (10).

(ii) The restriction p ≤ q seems technical, which is needed in the proof of Theorem 3 in order
to give a dual representation of the capacity in (9). Moreover, since the capacity condition
(Cap)s,p,q is difficult to verify, it would be interesting to characterize it in terms of some
geometric conditions, which is left for a further study.

This paper is organized as follows. In Section 2, we collect some necessary technical
properties of the Whitney decomposition of the domain Ω that are used out throughout
this paper. Section 3.1 is devoted to the proof of Theorem 2. We prove Theorems 1 and 3 in
Sections 3.2 and 3.3, respectively.

Notation. Let N := {1, 2, . . .} and Z+ := N ∪ {0}. For any s ∈ R, let s+ := max{s, 0}.
For any subset E ⊂ Rn, 1E denotes its characteristic function. We use C to denote a positive
constant that is independent of the main parameters involved, whose value may differ from
line to line. Constants with subscripts, such as C1, do not change in different occurrences.
For any qualities f , g and h, if f ≤ Cg, we write f . g, and if f . g . f , we then write
f ∼ g. We also use the following convention: if f ≤ Cg and g = h or g ≤ h, we write
f . g ∼ h or f . g . h, rather than f . g = h or f . g ≤ h. Throughout this article,
we denote Q = Q(x, l) be the cube with center x and sidelength l whose side parallel to
coordinate axes.

2. Preliminaries on Whitney Decomposition

In this section, we collect some basic properties of the Whitney decomposition of
domain Ω, with emphasis on those Whitney cubes that are close to the boundary. These
properties play an important role in the proofs of our main results. To begin with, we recall
the classical form of Whitney decomposition from [23].

Lemma 1 ([23]). Let Ω ( Rn be a domain. There exists a family of cubes {Qj}∞
j=1 with sides

parallel to the coordinate axes and satisfying

(i) Qo
j
⋂

Qo
k = ∅, if j 6= k, where Qo

j denotes the interior of Qj;
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(ii) For any j ∈ N, diam Qj ≤ d(Qj, ∂Ω) ≤ 4 diam Qj, where diam Qj denotes the diameter
of Qj;

(iii) Ω =
∞⋃

j=1
Q∗j , where Q∗j = (1 + µ)Qj is the concentric cube of Qj with sidelength (1 + µ)lj

and µ ∈ [0, 1
4 );

(iv) Each x ∈ Ω is contained in at most 12n cubes Q∗j ;
(v) If Qi and Qj touch, namely, Qi ∩Qj 6= ∅ and Qo

i
⋂

Qo
j = ∅, then

1
4

diam Qi ≤ diam Qj ≤ 4 diam Qi.

Throughout this section, for any δ > 0, let Ωδ be the boundary layer in Ω with length
δ defined by setting

Ωδ := {x ∈ Ω : d(x, ∂Ω) < δ}. (11)

Let ε > 0 and {Qj}∞
j=1 be the Whitney decomposition of Ω as in Lemma 1. The

following classes of index sets represent three subgroups of {Qj}∞
j=1 that are closely related

to the boundary layer in Ω.

Λ1 :=
{

j ∈ N : d(Qj, ∂Ω) ≥ ε
}

, Λ2 :=
{

j ∈ N : d(Qj, ∂Ω) < ε
}

and

Λ3 :=
{

j ∈ N : Qj ∩ (Ω \Ω14ε) 6= ∅
}

(12)

with Ω14ε as in (11).
The following lemma says that a small dilation of the first subgroup {Qj}j∈Λ1 of

Whitney cubes is contained in the interior of Ω with a positive distance to the boundary ∂Ω.

Lemma 2. Let ε > 0 and Λ1 be the index set as in (12). For any j ∈ Λ1, let Q∗j := (1 + µ̃)Qj be

the concentric cube of Qj with sidelength (1 + µ̃)lj and µ̃ ∈ (0, 1
16 ). Then it holds that

⋃
j∈Λ1

Q∗j ⊆
{

x ∈ Ω : d(x, ∂Ω) >
3µ̃ε

8
√

n

}
. (13)

Proof. For any x ∈ ⋃
j∈Λ1

Q∗j , there exists j ∈ Λ1 such that x ∈ Q∗j ⊆ Ω. By Lemma 1(iii)

and the assumption 0 < µ̃ < 1
16 , we obtain Q∗j ⊆ (1 + 4µ̃)Qj ⊆ Ω. This, together with

Lemma 1(ii) and the definition of Λ1, implies

d(x, ∂Ω) ≥ d
(

Q∗j , ∂Ω
)
≥ d

(
Q∗j , (1 + 4µ̃)Qj

)
=

3
2

µ̃lj ≥
3µ̃ε

8
√

n
,

which proves (13).

Our next lemma shows that a small dilation of the second subgroup {Qj}j∈Λ2 of
Whitney cubes is contained in a boundary layer of Ω.

Lemma 3. Let ε > 0 and Λ2 be the index set as in (12). For any j ∈ Λ2, let Q∗∗j := (1 + 2µ̃)Qj

be the concentric cube of Qj with sidelength (1 + 2µ̃)lj and µ̃ ∈ (0, 1
16 ). Then it holds that⋃

j∈Λ2

Q∗∗j ⊆ Ω3ε (14)

with Ω3ε as in (11).
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Proof. Let x ∈ ⋃
j∈Λ2

Q∗∗j . By (12), Lemma 1(ii), the assumption 0 < µ̃ < 1
16 and the

definition of Λ2, we have

d(x, ∂Ω) ≤ d(Qj, ∂Ω) + (1 + 2µ̃)lj
√

n ≤ (2 + 2µ̃)d(Qj, ∂Ω) < 3ε,

which implies (14).

The following lemma gives a few interesting properties of the third subgroup {Qj}j∈Λ3
of Whitney cubes.

Lemma 4. Let ε > 0 and Λ3 be the index set as in (12). Then the following assertions hold.

(i) Ω \Ω14ε ⊆
⋃

j∈Λ3

Q∗j ;

(ii) For any j ∈ Λ3, it holds Qj ∩Ω7ε = ∅ and d(Qj, ∂Ω) ≥ 7ε;
(iii) For any k ∈ Λ2, let Q∗∗k := (1 + 2µ̃)Qk be the concentric cube of Qk with sidelength

(1 + 2µ̃)lk and µ̃ ∈ (0, 1
16 ). Then for any j ∈ Λ3 and any x ∈ Q∗∗k , and y ∈ Qj, it holds that

|x− y| ∼ D(Qj, Qk), (15)

where D(Qj, Qk) := d(Qj, Qk) + lj + lk and the implicit constants are independent of ε, j, k,
x and y.

Proof. The assertion (i) follows immediately from the definition of the index set Λ3. To
prove (ii), we first show Qj ∩Ω7ε = ∅ for any j ∈ Λ3. If not, namely, Qj ∩Ω7ε 6= ∅, then
by Lemma 1(ii), we have

diam Qj ≤ d(Qj, ∂Ω) < 7ε.

This implies Qj ∩ (Ω \Ω14ε) = ∅, which contradicts the definition of Λ3. Thus, for
any j ∈ Λ3, Qj ∩Ω7ε = ∅, namely, d(Qj, ∂Ω) ≥ 7ε, which implies (ii).

We now prove (iii). For any k ∈ Λ2, by Lemma 3, we have Q∗∗k ⊆ Ω3ε. Let

Γ3ε := {x ∈ Ω : d(x, ∂Ω) = 3ε}.

From (ii), it follows that for each j ∈ Λ3, it holds that Qj ∩ Γ3ε = ∅ and

d(Qj, Q∗∗k ) ≥ 4ε.

Now let xj ∈ Qj and xk ∈ Q∗∗k such that

d(Qj, Q∗∗k ) = d(xj, xk).

Let xk̃ be the intersection point of the segment xjxk and Γ3ε. Denote by Qk̃ the Whitney
cube that contains xk̃. It is easy to see that

d(Qj, Q∗∗k ) > d(Qj, Qk̃). (16)

By the definitions of Λ1, Λ2 and Lemma 1(iii), it is clear that k̃ ∈ Λ1. This, together
with Lemma 1(iii) implies that

ε

4
≤ diam Qk̃ ≤ 3ε. (17)
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Moreover, since Qk̃ ∩Ω3ε 6= ∅, by Lemma 1(ii) again, it follows that Qk̃ ⊆ Ω6ε; from
(ii), it follows that Qj ∩ Ω7ε = ∅. This means that Qj and Qk̃ are not touched, and by
Lemma 1(v), it holds that

d(Qj, Qk̃) ≥
1
4

lj. (18)

Thus, for any x ∈ Q∗∗k and y ∈ Qj, we have

|x− y| ≤ diam (Q∗∗k ) + d(Qj, Qk) + diam Qj

. lk + d(Qj, Qk) + lj ∼ D(Qj, Qk). (19)

On the other hand, by lk ≤ ε . lj, (16) and (18), it follows that

|x− y| ≥ d(Qj, Q∗∗k ) ≥ d(Qj, Qk̃) ≥
1
4

lj & lj + lk

and by (17), we know that

d(Qj, Qk) ≤ d(Qj, Q∗∗k ) + diam (Q∗∗k ) . |x− y|. (20)

By combing (19) and (20), we obtain (iii), which completes the proof of Lemma 4.

The following lemma on the summation of D as in (15) needs the assumption that Ω
is bounded and uniform.

Lemma 5 ([17]). Let Ω be a bounded uniform domain and {Qj}∞
j=1 be the Whitney decomposition

of Ω as in Lemma 1. Then there exists a positive constant C such that for any η > 0 and j0 ∈ N,
it holds that

∞

∑
j=1

l(Qj)
n

D(Qj, Qj0)
n+η ≤

C
l(Qj0)

η

We end this section by giving properties of two subgroups of Whitney cubes from Λ2
as in (12). To this end, for any i ∈ Λ2, we make a subdivision of Λ2 by setting

Λ21(i) := {k ∈ Λ2 : Q∗∗k ∩Q∗i 6= ∅} and Λ22(i) := {k ∈ Λ2 : Q∗∗k ∩Q∗i = ∅}, (21)

where Q∗i = (1 + µ̃)Qi and Q∗∗k = (1 + 2µ̃)Qk with µ̃ ∈ (0, 1/16). For any i ∈ Λ2 and
k ∈ Λ21(i), let

Λ23(i, k) :=
{

j ∈ Λ2 : Q∗j ∩Q∗i 6= ∅ or Q∗j ∩Q∗∗k 6= ∅
}

. (22)

Lemma 6. Let Ω be a bounded domain, ε > 0 and Λ2 be as in (12). Then the following two
assertions hold.

(i) For any i ∈ Λ2, let Λ21(i) be the index set as in (21). Then it holds that for any x ∈ Q∗i ,⋃
k∈Λ21(i)

Q∗∗k ⊆ B(x, 7ε),

where Q∗∗k = (1 + 2µ̃)Qk with µ̃ ∈ (0, 1/(16
√

n));
(ii) For any i ∈ Λ2 and k ∈ Λ21(i), let Λ23(i, k) be the index set as in (22). It holds that there

exists a number N ∈ N, independs of i and k, such that

Card (Λ23(i, k)) ≤ N. (23)
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Moreover, for any j ∈ Λ23(i, k), the sidelengths lj and li of Qj and Qi are comparable, namely,

li ∼ lj (24)

with implicit constants are independent on i and j.

Proof. We first prove (i). For any x ∈ Q∗i and y ∈ ⋃
k∈Λ21(i)

Q∗∗k , there exists k ∈ Λ21(i) such

that y ∈ Q∗∗k and

|x− y| ≤ (1 + µ̃)
√

nli + (1 + 2µ̃)
√

nlk.

By Lemma 3, it holds that d(x, ∂Ω) < 3ε and d(y, ∂Ω) < 3ε, which combined with Lemma
1(ii) show that li, lk < 3ε√

n . Thus, using the assumption 0 < µ̃ < 1
16
√

n , we know

|x− y| ≤ 6(1 + 2µ̃)ε ≤ 7ε.

This implies
⋃

k∈Λ21(i)
Q∗∗k ⊆ B(x, 7ε) and hence verifies (i).

We now prove (ii). To this end, we first claim that for any two Whitney cubes Qj and
Qk, Q∗∗j ∩Q∗∗k 6= ∅ if and only if Qj and Qk touch. Indeed, it suffices to show that Qj and
Qk touch when Q∗∗j ∩Q∗∗k 6= ∅. Otherwise, if Q∗∗j ∩Q∗∗k 6= ∅ and Qj and Qk do not touch,
then by Lemma 1(v), we have

d(Qj, Qk) ≥
1
4

max{lj, lk}.

This, together with the assumption µ̃ ∈ (0, 1/(16
√

n)), implies that

d(Q∗∗j , Q∗∗k ) ≥ d(Qj, Qk)− µ̃
√

n(lj + lk) ≥
1
8

max{lj, lk} > 0,

which contradicts the assumption Q∗∗j ∩Q∗∗k 6= ∅ and hence verifies the claim. By this and
Lemma 1(iv), we know (23) holds with N = 2(12)n. Moreover, the above claim implies
that for each i ∈ Λ2, k ∈ Λ21(i) and j ∈ Λ23(i, k), it holds that either Qj and Qi touch; or Qj
and Qk, and Qi and Qk, touch. By Lemma 1(v), we conclude that (24) holds true, which
completes the proof of (ii) and hence Lemma 6.

3. Proofs of Main Results

This section is devoted to the proofs of main results of this paper. We first prove
Theorem 2 in Section 3.1; then we prove Theorem 1 in Section 3.2. Finally, Section 3.3 is
devoted to the proof of Theorem 3.

3.1. Proof of Theorem 2

In this subsection, we prove the density property of Triebel–Lizorkin space Fs
p,q(Ω)

(see Theorem 2) via the intrinsic characterization of Fs
p,q(Ω). To this end, we recall the

following definitions of intrinsic Triebel–Lizorkin space F s
p,q(Ω) from [17].

Definition 1. Let Ω be a bounded domain in Rn. For any p, q ∈ [1, ∞) and s ∈ (0, 1). The
intrinsic Triebel–Lizorkin space is defined by

F s
p,q(Ω) := { f ∈ Lp(Ω) : ‖ f ‖F s

p,q(Ω) < ∞},
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where

‖ f ‖F s
p,q(Ω) := ‖ f ‖LP(Ω) +

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

(25)

=: ‖ f ‖LP(Ω) + | f |F s
p,q(Ω) < ∞.

Let F̊ s
p,q(Ω) be the completion of D(Ω) in F s

p,q(Ω) with respect to the norm ‖ · ‖F s
p,q(Ω) as in (25).

Remark 4. For any p, q ∈ [1, ∞) and s ∈ (n( 1
p −

1
q )+, 1), let Fs

p,q(Ω) be the Triebel–Lizorkin
space defined as in (I) of Introduction. If, in addition, Ω is a bounded uniform domain, then it is
proved in ([17], Corollary 3.11) that

F s
p,q(Ω) = Fs

p,q(Ω) (26)

with equivalent norms.
On the other hand, let F̊s

p,q(Ω) be the Triebel–Lizorkin space defined as in (II) of Introduction.
By (26), we know that for any p, q ∈ [1, ∞) and s ∈ (n( 1

p −
1
q )+, 1), it holds that

F̊ s
p,q(Ω) = F̊s

p,q(Ω)

with equivalent norms.

Note that Theorem 2 is an immediate consequence of Remark 4 and the following
density property fo intrinsic Triebel–Lizorkin spaces F s

p,q(Ω).

Proposition 1. Let p, q ∈ [1, ∞) and s ∈ (0, 1). Assume Ω is a bounded uniform domain
satisfying the (H)s,p,q-condition for all f ∈ F s

p,q(Ω). Then it holds that

F s
p,q(Ω) = F̊ s

p,q(Ω)

with equivalent norms, where F s
p,q(Ω) and F̊ s

p,q(Ω) are defined as in Definition 1.

Proof. Since Ω is bounded, by an elementary calculation, we know D(Ω) ⊆ F s
p,q(Ω).

This immediately implies F̊ s
p,q(Ω) ⊂ F s

p,q(Ω). Thus, we only need to prove the converse
inclusion F s

p,q(Ω) ⊂ F̊ s
p,q(Ω). Since the proof is quite long, we divide it into several steps.

Step 1. Let {Qj}∞
j=1 be the Whitney decomposition of Ω as in Lemma 1 and {ψj}∞

j=1 ⊂
C∞

0 (Rn) the corresponding partition of unity satisfying the following properties:

(i) ψj ≡ 1 on Qj and supp ψj ⊂ Q∗j , where Q∗j := (1 + 2µ̃)Q is the concentric cube of Qj

with sidelength (1 + 2µ̃)lj and µ̃ ∈ (0, 1/(16n));
(ii) For any x ∈ Ω, it holds that

∞

∑
j=1

ψj(x) = 1 (27)

(iii) There exists a positive constant C such that for all x ∈ Rn and j ∈ N,

|∇ψj(x)| ≤ C
diam Qj

. (28)

Now let f ∈ F s
p,q(Ω). For any ε > 0 and x ∈ Ω, by (27) and the definitions of the

index sets Λ1, Λ2 as in (12), we write
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f (x) = ∑
d(Qj ,∂Ω)≥ε

ψj(x) f (x) + ∑
d(Qj ,∂Ω)<ε

ψj(x) f (x) = ∑
j∈Λ1

ψj(x) f (x) + ∑
j∈Λ2

ψj(x) f (x) (29)

=: vε(x) + wε(x)

with vε and wε being the interior and boundary parts, respectively.
Step 2. We first consider the interior part vε by claiming

vε ∈ F s
p,q(Ω). (30)

Indeed, let ψ := ∑j∈Λ1
ψj(x). By the property (i) and (13), it holds that ψ ∈ C∞

0 (Ω), which
together with the fact that vε = ψ f implies

‖νε‖Lp(Ω) = ‖ψ f ‖Lp(Ω) ≤ ‖ψ‖L∞(Ω)‖ f ‖Lp(Ω) < ∞, (31)

which implies vε ∈ Lp(Ω). On the other hand, by (25), we have

|ψ f |F s
p,q(Ω) =

[∫
Ω

(∫
Ω

|ψ(x) f (x)− ψ(y) f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

=: A.

Write

A ≤
[∫

Ω

(∫
Ω

| f (x)|q|ψ(x)− ψ(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

+

[∫
Ω

(∫
Ω

| f (x)− f (y)|q|ψ(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

=: A1 + A2.

We first estimate A1. Since ψ ∈ C∞
0 (Ω), it follows that

A1 ≤
[∫

Ω
| f (x)|p

(∫
Ω
‖∇ψ(x)‖q

L∞(Ω)
|x− y|q(1−s)−n dy

) p
q

dx

] 1
p

.

Moreover, by the assumption that Ω is bounded, we have

A1 .

[∫
Ω
| f (x)|p

(∫ diam Ω

0
ρq(1−s)−1 dρ

) p
q

dx

] 1
p

. ‖ f ‖Lp(Ω) < ∞.

To bound A2, it is easy to see that

A2 ≤
[∫

Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

‖ψ‖L∞(Ω) . | f |F s
p,q(Ω) < ∞.

Combining the estimates of A1 and A2, we conclude that A < ∞. This, together with
vε ∈ Lp(Ω), implies vε ∈ F s

p,q(Ω), and hence verifies the claim (30).
Step 3. Next we prove vε ∈ F̊ s

p,q(Ω). Let η ∈ C∞
0 (Rn) satisfying η ≥ 0 in Rn,

supp η ⊆ B(0, 1) and
∫

B(0,1) η(x) dx = 1. Let 0 < δ < 3µ̃ε

16
√

n and η(δ) be the mollifier
defined by

η(δ)(x) := δ−nη(x/δ)
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for any x ∈ Rn. It is easy to see η(δ) ∗ vε ∈ D(Ω), and by the property of the approximations
of identity, we have ∥∥∥(η(δ) ∗ vε

)
− vε

∥∥∥
Lp(Ω)

→ 0

as δ → 0. Then to prove vε ∈ F̊ s
p,q(Ω), it suffices to show

∣∣∣(η(δ) ∗ vε

)
− vε

∣∣∣
F s

p,q(Ω)
→ 0 as

δ→ 0. From (25), we deduce∣∣∣(η(δ) ∗ vε

)
− vε

∣∣∣
F s

p,q(Ω)
(32)

=

∫Ω

∫
Ω

∣∣∣(η(δ) ∗ vε

)
(x)− vε(x)−

(
η(δ) ∗ vε

)
(y) + vε(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

=

∫Ω

∫
Ω

∣∣∣δ−n ∫
B(0,δ)[vε(x− z)− vε(y− z)]η(z/δ) dz− vε(x) + vε(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

=

∫
Ω

(∫
Ω

∫
B(0,1)|[vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)]η(z̃) dz̃|q

|x− y|n+sq dy

) p
q

dx


1
p

≤
∫

B(0,1)

∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)|q

|x− y|n+sq dy
) p

q

dx

 1
p

η(z̃) dz̃.

Now, let

G(x, y) :=
vε(x)− vε(y)

|x− y|
n
q +s

.

It is easy to see

G(x− δz̃, y− δz̃)− G(x, y) =
vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)

|x− y|
n
q +s

.

Since

‖G(x, y)‖Lp
x(Lq

y)(Ω×Ω) :=

[∫
Ω

(∫
Ω
|G(x, y)|q dy

) p
q

dx

] 1
p

is a mixed Lebegue norm. By the continuity of translation (see ([24], Theorem 2)), we get

lim
δ→0
‖G(x− δz̃, y− δz̃)− G(x, y)‖Lp

x(Lq
y)(Ω×Ω) = 0 (33)

for any z̃ ∈ B(0, 1). Now let

ψε,δ(z̃) :=

∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)|q

|x− y|n+sq dy
) p

q

dx

 1
p

η(z̃),
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for any z̃ ∈ B(0, 1). By (13), the assumption 0 < δ < 3µ̃ε

16
√

n and the change of variables,
we obtain

ψε,δ(z̃) .

[∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)|q
|x− y|n+sq dy +

∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

η(z̃)

.

(∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)|q
|x− y|n+sq dy

) p
q
dx

) 1
p

+

(∫
Ω

(∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q
dx

) 1
p

η(z̃)

.

(∫
Ω

(∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q

dx

) 1
p

η(z̃).

This, together with (25) and (30), shows ψε,δ ∈ L∞(B(0, 1)). Now, using (32), (33) and the
dominated convergence theorem, we get

lim
δ→0

∣∣∣(η(δ) ∗ vε)− vε

∣∣∣
F s

p,q(Ω)
= lim

δ→0

∫
B(0,1)

‖G(x− δz̃, y− δz̃)− G(x, y)‖Lp
x(Lq

y)(Ω×Ω)η(z̃) dz̃ (34)

=
∫

B(0,1)
lim
δ→0

ψε,δ(z̃) dz̃ = 0,

which implies vε ∈ F̊ s
p,q(Ω).

Step 4. We still need to verify the boundary part wε ∈ F̊ s
p,q(Ω). To this end, it suffices

to prove that

lim
ε→0
‖wε‖Lp(Ω) = 0 (35)

and

lim
ε→0
|wε|F s

p,q(Ω) = 0. (36)

By Lemma 3, we obtain∫
Ω
|wε(x)|p dx =

∫
Ω3ε

|wε(x)|p dx

≤
∫

Ω3ε

∣∣∣∣∣ f (x)
∞

∑
j=1

ψj(x)

∣∣∣∣∣
p

dx =
∫

Ω3ε

| f (x)|p dx,

which tends to 0 as ε→ 0 and hence implies (35).
Step 5. We now prove (36). By (29) and the fact that supp ψj ⊆ Q∗j , we write
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|wε|F s
p,q(Ω) =

∫Ω

∫
Ω

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

(37)

=


∫ ⋃

i∈Λ2
Q∗i

+
∫

Ω14ε\
⋃

i∈Λ2
Q∗i

+
∫

Ω\Ω14ε

(∫
Ω

. . . dy
) p

q
dx


1
p

=


∫
⋃

i∈Λ2
Q∗i


∫ ⋃

k∈Λ2
Q∗∗k

+
∫

Ω\Ω14ε

 . . . dy


p
q

dx +
∫

Ω14ε\
⋃

i∈Λ2
Q∗i

∫ ⋃
k∈Λ2

Q∗k
. . . dy


p
q

dx

+
∫

Ω\Ω14ε

∫ ⋃
k∈Λ2

Q∗k
. . . dy


p
q

dx


1
p

.

∫ ⋃
i∈Λ2

Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

+

∫ ⋃
i∈Λ2

Q∗i

∫
Ω\ ⋃

k∈Λ2
Q∗∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

+

∫Ω14ε\
⋃

i∈Λ2
Q∗i

∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

+

∫Ω\Ω14ε

∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (y)∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

=: I1 + I2 + II + III.

Step 6. We estimate the above terms in the order of I2, III, I1 and II. To estimate I2, we
first write

I2 ≤

 ∑
i∈Λ2

∫
Q∗i
| f (x)|p

∫
Ω\ ⋃

k∈Λ2
Q∗∗k

1
|x− y|n+sq dy


p
q

dx


1
p

.

From the definitions of Q∗i and Q∗∗i , it follows that for any x ∈ Q∗i and y ∈ Ω \ ⋃
i∈Λ2

Q∗∗i ,

|x− y| ≥ µ̃li
2 , where li denotes the sidelength of Qi. Thus, we have

I2 .

[
∑

i∈Λ2

∫
Q∗i
| f (x)|p

(∫ ∞

µ̃li
2

ρ−sq−1 dρ

) p
q

dx

] 1
p

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|p

(
µ̃li
2

)−sp
dx

] 1
p

.
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Using the properties (ii) and (iv) of Lemma 1, (14) and the (H)s,p,q-condition, we obtain

I2 .

[
∑

i∈Λ2

∫
Q∗i

| f (x)|p

d(x, ∂Ω)sp dx

] 1
p

.

∫ ⋃
i∈Λ2

Q∗i

| f (x)|p

d(x, ∂Ω)sp dx


1
p

.

∥∥∥∥ f
d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0 (38)

as ε→ 0, which is desired. That is

lim
ε→0

I2 = 0. (39)

Step 7. To bound III, it is easy to see that

III .

∫Ω\Ω14ε

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
|x− y|n+sq dy


p
q

dx


1
p

+

∫Ω\Ω14ε

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)|q
|x− y|n+sq dy


p
q

dx


1
p

=: III1 + III2.

Using the fact that f ∈ F s
p,q(Ω), (14) and (25), we have

III1 ≤
[∫

Ω

(∫
Ω14ε

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

→ 0 (40)

as ε→ 0.
Now we estimate III2. For any x, y ∈ Ω, let

F(x, y) :=
f (x)

|x− y|
n
q +s

1 ⋃
k∈Λ2

Q∗∗k
(y)1Ω\Ω14ε

(x). (41)

It is obvious that

III2 =

[∫
Ω

(∫
Ω
|F(x, y)|q dy

) p
q

dx

] 1
p

= ‖F(x, y)‖Lp
x(Lq

y)(Ω×Ω)

≤ sup
‖V‖

Lp′
x (Lq′

y )(Ω×Ω)
≤1

[∫
Ω

(∫
Ω

F(x, y)V(x, y) dy
)

dx
]

.

Let

B(F, V) :=
[∫

Ω

(∫
Ω

F(x, y)V(x, y) dy
)

dx
]

.

By the definition of F in (41), it holds

B(F, V) ≤

∫
Ω\Ω14ε

| f (x)|

∫ ⋃
k∈Λ2

Q∗∗k

|V(x, y)|
|x− y|

n
q +s

dy

 dx

. (42)



Mathematics 2022, 10, 637 17 of 25

Moreover, since ‖V‖
Lp′

x (Lq′
y )(Ω×Ω)

≤ 1, we deduce

lim
ε→0

∫
Ω

(∫
Ω3ε

|V(x, y)|q′ dy
) p′

q′
dx


1
p′

= 0. (43)

Using (42), Lemma 3 and Hölder’s inequality, we obtain

B(F, V) . ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗k
|V(x, y)|q′ dy

) 1
q′
(

∑
k∈Λ2

∫
Q∗k

(
1

|x− y|n+sq dy
) 1

q
)

dx

. ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗k
|V(x, y)|q′ dy

) 1
q′
(

∑
k∈Λ2

l(Qk)
n

D(Qi, Qk)
n+sq

) 1
q

dx,

which, together with Lemmas 4(iv) and 5, implies

B(F, V) . ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗k
|V(x, y)|q′ dy

) 1
q′ 1

l(Qi)s dx

. ∑
i∈Λ3

∫
Qi

| f (x)|
d(x, ∂Ω)s

(∫
Ω3ε

|V(x, y)|q′ dy
) 1

q′
dx

∼
∫

Ω

| f (x)|
d(x, ∂Ω)s

(∫
Ω3ε

|V(x, y)|q′ dy
) 1

q′
dx

.
(∫

Ω

| f (x)|p
d(x, ∂Ω)sp

) 1
p

∫
Ω

(∫
Ω3ε

|V(x, y)|q′ dy
) p′

q′
dx

 1
p′

.

Combining the former with (43), we get

B(F, V)→ 0

as ε→ 0. By this and (40), we conclude that

lim
ε→0

III = 0. (44)

Step 8. Next we consider I1. Next,

I1 ≤

∫ ⋃
i∈Λ2

Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

+
∫
⋃

k∈Λ2

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

.

∫ ⋃
i∈Λ2

Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

+

∫ ⋃
i∈Λ2

Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

=: I11 + I12.
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For I11, by (25) and Lemma 3, we know that

I12 ≤

∫ ⋃
i∈Λ2

Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
|x− y|n+sq dy


p
q

dx


1
p

(45)

≤
[∫

Ω3ε

(∫
Ω3ε

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

,

which turns to 0 as ε→ 0.
To bound I12, by the definitions of the index sets Λ21(i) and Λ22(i) as in (21), we have

I12 ≤

 ∑
i∈Λ2

∫
Q∗i

∫ ⋃
k∈Λ2

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

(46)

.

 ∑
i∈Λ2

∫
Q∗i

∫ ⋃
k∈Λ21

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

+

 ∑
i∈Λ2

∫
Q∗i

∫ ⋃
k∈Λ22

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

=: I1
12 + I2

12.

By (28); the definition of the index set Λ23 as in (22); Lemmas 5 and 6; and an argument
similar to that used in the proof of (38), we obtain

I1
12 ≤

 ∑
i∈Λ2

∫
Q∗i
| f (x)|p

 ∑
k∈Λ21

∫
Q∗∗k

∣∣∣∑j∈Λ23
ψj(x)−∑j∈Λ23

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

(47)

.

 ∑
i∈Λ2

∫
Q∗i
| f (x)|p

(
∑

k∈Λ21

∫
Q∗∗k

(
sup
j∈Λ23

‖∇ψj‖
)q

L∞

|x− y|q(1−s)−n dy

) p
q

dx


1
p

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|p

(∫ 7ε

0
l−q
i ρq(1−s)−1 dρ

) p
q

dx

] 1
p

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|p

(∫ 7ε

0
d(x, ∂Ω)−qρq(1−s)−1 dρ

) p
q

dx

] 1
p

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|pd(x, ∂Ω)−pεp(1−s) dx

] 1
p

.

∫ ⋃
i∈Λ2

Q∗i

| f (x)|p
d(x, ∂Ω)sp dx


1
p

≤
∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0

as ε→ 0.
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On the other hand, by (21), we know that if k ∈ Λ22(i), then Q∗∗k
⋂

Q∗i = ∅. For any
x ∈ Q∗i and y ∈ Q∗∗k , there exists a positive constant c such that |x − y| ≥ cli—that is,⋃
k∈Λ22

Q∗∗k ⊆ [B(x, Cli)]{. This yields that

I2
12 .

 ∑
i∈Λ2

∫
Q∗i

∫ ⋃
k∈Λ22

Q∗∗k

| f (x)|q
|x− y|n+sq dy


p
q

dx


1
p

(48)

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|p

(∫ +∞

cli
ρ−sq−1 dρ

) p
q

dx

] 1
p

.

[
∑

i∈Λ2

∫
Q∗i
| f (x)|pl−sp

i dx

] 1
p

.

∫ ⋃
i∈Λ2

Q∗i

| f (x)|p
d(x, ∂Ω)sp dx


1
p

.

∥∥∥∥ f
d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0

as ε→ 0.
Combing (45), (47) and (48), we conclude that

lim
ε→0

I1 = 0. (49)

Step 9. Finally, we estimate II. Write

II ≤

∫Ω14ε

∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

.

∫Ω14ε

∫ ⋃
k∈Λ2

Q∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy


p
q

dx


1
p

+

∫Ω14ε

∫ ⋃
k∈Λ2

Q∗k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy


p
q

dx


1
p

=: II1 + II2.

By an argument similar to that of I1, it is easy to see that

lim
ε→0

II = 0. (50)

Combining (37), (39), (44), (49) and (50), we obtain lim
ε→0
|wε|F s

p,q(Ω) = 0, which proves (36).

This, together with (34) and (35) shows f ∈ F̊ s
p,q(Ω) and hence finishes the proof of

Proposition 1.

3.2. Proof of Theorem 1

In this subsection, we prove Theorem 1. To this end, we first recall the following defi-
nition of refined localisation Triebel–Lizorkin spaces Fs,rloc

p,q (Ω) from ([10], Definition 2.14).
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Definition 2 ([10]). Let Ω be a bounded domain in Rn. Let {Qj}∞
j=1 be the Whitney decomposition

of Ω as in Lemma 1, and {ψj}∞
j=1 be the corresponding partition of unity as in (27) and (28). For

any p, q ∈ [1, ∞] and s ∈ (0, ∞), the refined localisation Triebel–Lizorkin space Fs,rloc
p,q (Ω) is

defined by setting

Fs,rloc
p,q (Ω) :=

 f ∈ D′(Ω) : ‖ f ‖Fs,rloc
p,q (Ω)

:=

(
∞

∑
j=0

∥∥ψj f
∥∥p

Fs
p,q(Rn)

) 1
p

< ∞

,

where ‖·‖Fs
p,q(Rn) denotes the classical Triebel–Lizorkin norm on Rn.

Remark 5.

(i) Let Ω be a bounded domain. For any p, q ∈ [1, ∞] and s ∈ (0, ∞), it is well-known that the
space Fs,rloc

p,q (Ω) is independent of the choice of the partition of unity {ψ}∞
j=1

(see ([10], Theorem 2.16)).
(ii) Let Ω be a bounded domain. For any p, q ∈ [1, ∞] and s ∈ (0, 1), it is proved in

([10], Theorem 2.18) (see also ([8], Corollary 5.15)) that Fs,rloc
p,q (Ω) can be characterized by the

following intrinsic norm:∥∥∥∥ f
d(·, ∂Ω)

∥∥∥∥
Lp(Ω)

+

∥∥∥∥∥
[∫ cd(·,∂Ω)

0
t−sq(dt,u f )q dt

t

]1/q
∥∥∥∥∥

Lp(Ω)

(51)

for some c ∈ (0, 1), where for any u ∈ (0, 1), t ∈ (0, ∞) and x ∈ Rn,

dt,u f (x) :=
[

1
tn

∫
|h|≤t
| f (x + h)− f (x)|u dh

]1/u
.

(iii) Suppose that Ω is a bounded E-thick domain. Let F̃s
p,q(Ω) be the Triebel–Lizorkin space defined

as in (III) of Introduction. It is known (see ([10], Proposition 3.10)) that for any p, q ∈ [1, ∞]
and s ∈ (0, ∞),

F̃s
p,q(Ω) = Fs,rloc

p,q (Ω)

with equivalent norms.

With the help of Remark 5 and Theorem 2, we now turn to the proof of Theorem 1.

Proof of Theorem 1. Let p, q ∈ [1, ∞) and s ∈
(

n( 1
p −

1
q )+, 1

)
. Since Ω is bounded and

uniform, it follows from Remark 4 that

F s
p,q(Ω) = Fs

p,q(Ω) and F̊ s
p,q(Ω) = F̊s

p,q(Ω) (52)

with equivalent norms. Moreover, by (H)s,p,q-condition and Proposition 1, we know

F s
p,q(Ω) = F̊ s

p,q(Ω).

This together with (52) implies that

Fs
p,q(Ω) = F̊s

p,q(Ω) (53)

holds for any p, q ∈ [1, ∞) and s ∈
(

n( 1
p −

1
q )+, 1

)
.
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On the other hand, since Ω is an E-thick domain, we deduce from Remark 5(iii) that
for any p, q ∈ [1, ∞] and s ∈ (0, 1),

F̃s
p,q(Ω) = Fs,rloc

p,q (Ω). (54)

Moreover, it is proved in ([25], Theorem 3) that the Triebel–Lizorkin space Fs
p,q(Ω), as

in (I) of Introduction, can also be characterized by the same intrinsic norm of (51). This,
combined with Remark 5(ii), implies that for any p, q ∈ [1, ∞] and s ∈ (0, 1),

Fs,rloc
p,q (Ω) = Fs

p,q(Ω). (55)

Taking (53)–(55) together, we conclude that for any p, q ∈ [1, ∞) and s ∈
(

n( 1
p −

1
q )+, 1

)
,

it holds

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω),

which completes the proof of Theorem 1.

3.3. Proof of Theorem 3

In this subsection, we prove Theorem 3.

Proof of Theorem 3. We first prove the implication (i) ⇒ (ii). Assume (i) holds. Let
f ∈ Cc(Ω) satisfy f (x) ≥ 1 for any x ∈ K. By (i), we know

∫
K

1
d(x, ∂Ω)sp dx ≤

∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ Cp

1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

]
.

Taking the infinum over all such functions f and using (9), we obtain∫
K

1
d(x, ∂Ω)sp dx ≤ Cp

1 caps,p,q(K, Ω),

which implies (ii) with C2 = Cp
1 .

Now we prove the converse implication that (ii)⇒ (i). Suppose (ii) holds. Then, for
any k ∈ Z, let

Ek := {x ∈ Ω : | f (x)| > 2k} and Ak := Ek \ Ek+1.

Observe

Ω = {x ∈ Ω : 0 ≤ | f (x)| < ∞} = F ∪
⋃

k∈Z
Ak (56)

with

F := {x ∈ Ω : f (x) = 0}. (57)

Hence, by (ii) we obtain∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ ∑

k∈Z
2(k+2)p

∫
Ak+1

1
d(x, ∂Ω)sp dx ≤ C222p ∑

k∈Z
2kpcaps,p,q(Āk+1, Ω). (58)
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Define the function fk : Ω→ [0, 1] by

fk(x) :=


1, | f (x)| ≥ 2k+1,
| f (x)|

2k − 1, 2k < | f (x)| < 2k+1,
0, | f (x)| ≤ 2k.

(59)

It is easy to see fk ∈ Cc(Ω), and it satisfies fk = 1 on Ēk+1 ⊃ Āk+1. Hence, we can take fk
as a test function for the capacity. By (9), we have

caps,p,q(Āk+1, Ω) ≤
∫

Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

) p
q

dx (60)

≤ sup
‖h‖

L(p/q)′ (Ω)
≤1

[∫
Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

)
h(x) dx

] p
q
.

Using (56) and (57), we get

∫
Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

)
h(x) dx (61)

=
∫

F∪ ⋃
i∈Z

Ai

∫
F∪ ⋃

j∈Z
Aj

| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

=

∫ ⋃
i∈Z

Ai

∫
⋃

j∈Z
Aj

+
∫

F

∫
⋃

j∈Z
Aj

+
∫
⋃

i∈Z
Ai

∫
F

 | fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

=

(
∑
i≥k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i≥k

∑
j<k

∫
Ai

∫
Aj

+ ∑
i<k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i<k

∑
j<k

∫
Ai

∫
Aj

+ ∑
j<k

∫
F

∫
Aj

+ ∑
i<k

∫
Ai

∫
F
+ ∑

j≥k

∫
F

∫
Aj

+ ∑
i≥k

∫
Ai

∫
F

)
| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx.

Now for any x ∈ Ai = Ei \ Ei+1, by the fact that 2i < | f (x)| ≤ 2i+1 and the definition of fk
as in (59), we claim that the following assertions hold true.

(i) If i < k, then | f (x)| ≤ 2i+1 ≤ 2k, this implies fk(x) = 0;

(ii) If i = k, then fk(x) = | f (x)|
2k − 1;

(iii) If i > k, then | f (x)| > 2i ≥ 2k+1, which implies fk(x) = 1;
(iv) If i ≤ k ≤ j, for any x ∈ Ai and y ∈ Aj, it holds that

| fk(x)− fk(y)| ≤ 2 · 2−j| f (x)− f (y)|. (62)

We only need to verify (iv). Indeed, let i ≤ k ≤ j, x ∈ Ai and y ∈ Aj. We consider four
cases based on the sizes of i, j and k.

If i = j, then by (ii), it is easy to see that

| fk(x)− fk(y)| = 0. (63)

If j = i + 1 and k = i, then by (ii), (iii) and the assumptions x ∈ Ai, y ∈ Aj, we have

| fk(x)− fk(y)| =
∣∣∣∣1−( | f (x)|

2k − 1
)∣∣∣∣ = ∣∣∣∣2− | f (x)|

2k

∣∣∣∣ = 2−k
∣∣∣2k+1 − | f (x)|

∣∣∣.
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Moreover, by the assumption y ∈ Ak+1, we know | f (y)| > 2k+1. This implies that the
above term is bound by

2−k|| f (y)| − | f (x)|| ≤ 2−k| f (x)− f (y)| = 2 · 2−j| f (x)− f (y)| (64)

If j = i + 1 and k = j, then by a similar argument, we know

| fk(x)− fk(y)| =
∣∣∣∣ | f (y)|2k − 1

∣∣∣∣ = 2−k
∣∣∣| f (y)| − 2k

∣∣∣.
By the assumption y ∈ Ak−1, it holds that | f (y)| ≤ 2k, so we obtain

2−k|| f (y)| − | f (x)|| ≤ 2−k| f (x)− f (y)| = 2−j| f (x)− f (y)|. (65)

Finally, if j ≥ i + 2, it holds that

| f (x)− f (y)| ≥ | f (x)| − | f (y)| ≥ 2j−1.

By the definition of fk, we have

| fk(x)− fk(y)| ≤ 1 ≤ 2 · 2−j| f (x)− f (y)|. (66)

Combining the estimates (63)–(66), we conclude that (62) holds true and hence verifies the
claim (iv).

Now by and (i) through (iv), we know that some of the sums in (61) vanish. This,
together with (60), implies that

caps,p,q(Āk+1, Ω) ≤ sup
‖h‖

L(p/q)′≤1

[(
∑
i≤k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i≥k

∑
j≤k

∫
Ai

∫
Aj

+ ∑
j≥k

∫
F

∫
Aj

+ ∑
i≥k

∫
Ai

∫
F

)
| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

] p
q

=: sup
‖h‖

L(p/q)′≤1
(I1 + I2 + I3 + I4)

p
q .

By this and (58), we know that∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ CC2 ∑

k∈Z
2kpcaps,p,q(Āk+1, Ω)

≤ CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′≤1

(
I1

p
q + I2

p
q + I3

p
q + I4

p
q
)

.
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We first estimate the sum corresponding to I1. By the properties (i)–(iv) again, we can
show that

CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′≤1
I1

p
q

≤ CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′≤1

[
2q ∑

i≤k
∑
j≥k

∫
Ai

∫
Aj

2−jq | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

= CC2 sup
‖h‖

L(p/q)′≤1

[
∑
k∈Z

2kq ∑
i≤k

∑
j≥k

∫
Ai

∫
Aj

2−jq | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

= CC2 sup
‖h‖

L(p/q)′≤1

[
∑
i∈Z

∑
j≥i

j

∑
k=i

∫
Ai

∫
Aj

2(k−j)q | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

Since
j

∑
k=i

2(k−j)q <
j

∑
k=−∞

2(k−j)q ≤ 1
1−2−q and by q ≥ 1, it is obvious that 1

1−2−q ≤ 2. Thus,

CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′≤1
I1

p
q

≤ CC2

(
1

1− 2−q

) p
q

sup
‖h‖

L(p/q)′≤1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

)
h(x) dx

] p
q

≤ CC2 sup
‖h‖

L(p/q)′≤1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

][∫
Ω

h(x)(p/q)′ dx
] p/q

(p/q)′

≤ CC2| f |
p
F s

p,q
(Ω),

which is desired. The estimates corresponding to I2, I3 and I4 are similar, the details being
omitted. Thus, we conclude that∫

Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ CC2| f |

p
F s

p,q
(Ω),

which implies (i) by letting C1 = CC2 and hence completes the proof of Theorem 3.

Author Contributions: Conceptualization, J.C., Y.J., Y.L. and Q.Z.; methodology, J.C., Y.J., Y.L. and
Q.Z.; software, J.C. and Y.L.; validation, J.C. and Y.L.; formal analysis, J.C., Y.J., Y.L. and Q.Z.;
investigation, J.C., Y.J., Y.L. and Q.Z.; resources, Y.J. and Q.Z.; data curation, J.C., Y.J., Y.L. and
Q.Z.; writing—original draft preparation, Y.L.; writing—review and editing, J.C., Y.J., Y.L. and Q.Z.;
visualization, J.C., Y.J., Y.L. and Q.Z.; supervision, J.C. and Y.J.; project administration, J.C., Y.J.,
Y.L. and Q.Z.; funding acquisition, J.C., Y.J., Y.L. and Q.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 12071431 and 11771395) and the Zhejiang Provincial Natural Science Foundation of China
(grant number LR22A010006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 637 25 of 25

References
1. Lizorkin, P.I. Operators connected with fractional differentiation, and classes of differentiable functions. Trudy Mat. Inst. Steklov.

1972, 117, 212–243.
2. Lizorkin, P.I. Properties of functions in the spaces Λr

p,θ . Trudy Mat. Inst. Steklov. 1974, 131, 158–181.
3. Triebel, H. Spaces of distributions of Besov type on Euclidean n-space, duality, interpolation. Ark. Mat. 1973, 11, 13–64. [CrossRef]
4. Triebel, H. Theory of Function Spaces; Modern Birkhäuser Classics; Birkhäuser/Springer: Basel, Switzerland, 2010.
5. Triebel, H. Theory of Function Spaces II; Monographs in Mathematics, 84; Birkhäuser Verlag: Basel, Switzerland, 1992.
6. Triebel, H. Theory of Function Spaces III; Monographs in Mathematics, 100; Birkhäuser Verlag: Basel, Switzerland, 2006.
7. Triebel, H. Fractals and Spectra, Related to Fourier Analysis and Function Spaces; l Monographs in Mathematics, 91; Birkhäuser Verlag:

Basel, Switzerland, 1997.
8. Triebel, H. The Structure of Functions; Monographs in Mathematics, 97; Birkhäuser Verlag: Basel, Switzerland, 2001.
9. Triebel, H. Function paces in Lipschitz domains and on Lipschitz manifolds Characteristic functions as pointwise multipliers. Rev.

Mat. Complut. 2002, 15, 475–524. [CrossRef]
10. Triebel, H. Function Spaces and Wavelets on Domains; EMS Tracts in Mathematics, 7; European Mathematical Society (EMS): Zürich,

Switzerland, 2008.
11. Caetano, A.M. Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains. Stud.

Math. 2000, 142, 47–63. [CrossRef]
12. Ihnatsyeva, L.; Vähäkangas, A. Hardy inequalities in Triebel-Lizorkin spaces I Aikawa dimension. Annali di Matematica Pura ed

Applicata 2015, 194, 479–493. [CrossRef]
13. Gehring, F.W. Uniform domains and the ubiquitous quasidisk. Math. Sci. Res. Inst. 1987, 89, 88–103.
14. Gehring, F.W.; Osgood, B.G. Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 1979, 36, 50–74. [CrossRef]
15. Edmunds, D.E.; Evans, W.D. Spectral Theory and Differential Operators; Oxford University Press: New York, NY, USA, 1987.
16. Edmunds, D.E.; Nekvinda, A. Characterisation of zero trace functions in variable exponent Sobolev spaces. Math. Nachr. 2017,

290, 2247–2258. [CrossRef]
17. Prats, M.; Saksman, E. A T(1) theorem for fractional Sobolev spaces on domains. J. Geom. Anal. 2017, 27, 2490–2538. [CrossRef]
18. Hästö, P.A. Counter-examples of regularity in variable exponent Sobolev spaces. Contemp. Math. 2005, 370, 133–144.
19. Dyda, B.; Kijaczko, M. On density of compactly supported smooth functions in fractional Sobolev spaces. Annali di Matematica

2021, 337. [CrossRef]
20. Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, J. Sobolev Spaces on Metric Measure Spaces; An Approach Based on Upper

Gradients; New Mathematical Monographs, 27; Cambridge University Press: Cambridge, UK, 2015.
21. Koskela, P.; Lehrbäck, J. Weighted pointwise Hardy inequalities. J. Lond. Math. Soc. 2009, 79, 757–779. [CrossRef]
22. Dyda, B.; Vähäkangas, A.V. Characterizations for fractional Hardy inequality. Adv. Calc. Var. 2015, 8, 173–182. [CrossRef]
23. Stein, E.M. Singular Integrals and Differentiability Properties of Functions; Princeton Mathematical Series; Princeton University Press:

Princeton, NJ, USA, 1970.
24. Benedek, A.; Panzone, R. The space Lp with mixed norm. Duke Math. J. 1961, 28, 301–324. [CrossRef]
25. Seeger, A. A Note on Triebel-Lizorkin Spaces; Banach Center Publications: Warsaw, Poland, 1989; pp. 391–400.

http://doi.org/10.1007/BF02388506
http://dx.doi.org/10.5209/rev_REMA.2002.v15.n2.16910
http://dx.doi.org/10.4064/sm-142-1-47-63
http://dx.doi.org/10.1007/s10231-013-0385-z
http://dx.doi.org/10.1007/BF02798768
http://dx.doi.org/10.1002/mana.201600102
http://dx.doi.org/10.1007/s12220-017-9770-y
http://dx.doi.org/10.1007/s10231-021-01181-8
http://dx.doi.org/10.1112/jlms/jdp013
http://dx.doi.org/10.1515/acv-2013-0019
http://dx.doi.org/10.1215/S0012-7094-61-02828-9

	Introduction
	Preliminaries on Whitney Decomposition
	Proofs of Main Results
	Proof of Theorem 2
	Proof of Theorem 1
	Proof of Theorem 3

	References

