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1. Introduction

Regarded as stationary solutions to the Ricci flow [1], Ricci solitons have been inten-
sively studied in various frameworks and from different points of view. Properties of Ricci
solitons deal with aspects concerning the curvature of the manifold on which they are
defined as well as provide information on the behavior of the flow. Recently, generaliza-
tions of this notion have been used and soliton-type equations have been studied. Such
a generalization was considered in [2]. Indeed, a generalized gradient Ricci soliton on a
smooth manifold M is given by the data (g,∇ f , α, β) fulfilling

Hess( f ) + α Ric = βg, (1)

where g and Ric are the Riemannian metric and the Ricci curvature with respect to g and
f , α and β are smooth functions on M. If (α, β) =

(
− f ,− 1

n−1 (1 + r f )
)

, then the metric is
said to satisfy the Miao–Tam equation [3], and if (α, β) = (− f , ∆( f )), then g is said to satisfy
the Fischer–Marsden equation [4], where r denotes the scalar curvature of (M, g).

It is interesting to note that an n-sphere Sn(c) is a generalized gradient Ricci soliton
(g,∇ f , α, β), where g is the canonical metric on Sn(c), f is an eigenfunction of the Laplace
operator corresponding to the first nonzero eigenvalue and α = − f and β = −n f c. This
example initiates the question of finding conditions under which a generalized gradient
Ricci soliton (g,∇ f , α, β) on an n-dimensional compact smooth manifold M is isometric to
Sn(c).

In the present paper, we treat this kind of soliton, finding necessary and sufficient
conditions for the manifold to be isometric to a sphere and also characterizing the so-called
trivial solitons, i.e., solitons with Killing potential vector fields.

2. Generalized Gradient Ricci Solitons

Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional smooth
manifold M. From the soliton in Equation (1), we have

H f + αQ = βI, (2)
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where H f is the Hessian operator defined by g
(

H f X, Y
)

:= Hess( f )(X, Y) and Q is the
Ricci operator defined by g(QX, Y) := Ric(X, Y). Taking the trace in Equation (2), we have

∆( f ) = nβ− rα. (3)

On taking the inner product with H f in (2) and using (3), one obtains

‖H f ‖2 + α〈H f , Q〉 = β∆( f ) = β(nβ− rα)

and taking the inner product with Q, we have

〈H f , Q〉+ α‖Q‖2 = rβ.

Comparing the above relations, we obtain

‖H f ‖2 = α2‖Q‖2 + β(nβ− 2rα) = α2
(
‖Q‖2 − r2

n

)
+

1
n
(nβ− rα)2 (4)

and we can state:

Proposition 1. If (g,∇ f , α, β) is a generalized gradient Ricci soliton on an n-dimensional smooth
manifold M and ‖H f ‖2 ≤ α2

(
‖Q‖2 − r2

n

)
, then f is a harmonic function; hence, β = rα

n .

Proof. The hypothesis implies (nβ− rα)2 ≤ 0; therefore, β = rα
n .

As a consequence, we obtain:

Corollary 1. Let f be a smooth non-constant function on an n-dimensional Riemannian manifold
(M, g) and assume that ‖H f ‖2 ≤ f 2

(
‖Q‖2 − r2

n

)
. If the Riemannian metric g satisfies the

Fischer–Marsden equation, then the scalar curvature is zero and H f = 0; hence, M is a Ricci flat
manifold.

Next, we prove the following lemmas, which will be useful for our main results.

Lemma 1. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional smooth
manifold M. Then

Q(∇ f +∇α) = −(n− 1)∇β + r∇α +
1
2

α∇r.

Proof. We have
H f X = βX− αQX,

and differentiating the above equation, we obtain(
∇X H f

)
Y = X(β)Y− X(α)QY− α(∇XQ)Y.

Now, using the above equation in

R(X, Y)∇ f =
(
∇X H f

)
Y−

(
∇Y H f

)
X,

we conclude

R(X, Y)∇ f = X(β)Y−Y(β)X− X(α)QY + Y(α)QX− α((∇XQ)Y− (∇YQ)X).
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Taking the trace in the above equation, while using the symmetry of the Ricci operator
Q and the formula

1
2
∇r =

n

∑
i=1

(∇ei Q)ei,

we obtain

Ric(Y,∇ f ) = −(n− 1)Y(β)− Ric(∇α, Y) + rY(α)− 1
2

αY(r) + αY(r),

that is,

Ric(∇ f +∇α, Y) = −(n− 1)Y(β) + rY(α) +
1
2

αY(r),

which implies the conclusion.

For α = − f , we obtain

(n− 1)∇β = −r∇ f − 1
2

f∇r,

from Lemma 1. Now, for the Miao–Tam equation, we obtain

f∇r = 0,

by means of (3). Thus, we have the following:

Corollary 2. If f is a non-trivial solution of the Miao–Tam equation on a complete Riemannian
manifold (M, g), then the scalar curvature r is a constant.

In order to give an estimation for the first nonzero eigenvalue of the Laplace operator,
we prove the following result.

Lemma 2. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional smooth
manifold M. If ∇ f +∇α is an eigenvector of the Ricci operator Q corresponding to the eigenvalue
r
n , then

∇
(

∆( f ) +
r

n− 1
f
)
=

1
n− 1

(
f −

(
n− 2

2

)
α

)
∇r.

Proof. Assume Q(∇ f +∇α) = r
n (∇ f +∇α). Using Lemma 1, we have

r
n
(∇ f +∇α) = −(n− 1)∇β + r∇α +

1
2

α∇r,

that is,

r
n
∇ f = −(n− 1)∇β +

n− 1
n

r∇α +
1
2

α∇r

= −(n− 1)∇β +
n− 1

n
∇(rα)− n− 1

n
α∇r +

1
2

α∇r

= −n− 1
n
∇(nβ− rα)− n− 2

2n
α∇r.

Now, using Equation (3), we obtain

n− 1
n
∇(∆( f )) +

1
n
∇(r f )− 1

n
f∇r = −n− 2

2n
α∇r,

which gives
n− 1

n
∇
(

∆( f ) +
r

n− 1
f
)
=

1
n

(
f − n− 2

2
α

)
∇r,
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and implies the conclusion.

As a consequence, we have the following result, which gives an estimate of the first
nonzero eigenvalue of the Laplace operator.

Proposition 2. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional
smooth compact and connected manifold M of constant scalar curvature r. If ∇ f +∇α is an
eigenvector of the Ricci operator Q corresponding to the eigenvalue r

n , then the first nonzero
eigenvalue λ1 of the Laplace operator satisfies λ1 ≤ r

n−1 .

Proof. Since the scalar curvature is constant, Lemma 2 implies

∇
(

∆( f ) +
r

n− 1
f
)
= 0,

that is, ∆( f ) + r
n−1 f is a constant and we have

∆( f ) = − r
n− 1

( f − c)

for a constant c. Denoting f := f − c, the above equation becomes

∆( f ) = − r
n− 1

f . (5)

Note that as f is non-constant, the function f is also non-constant and it is an eigen-
function of the Laplace operator corresponding to the eigenvalue r

n−1 . Since M is compact,
we conclude

λ1 ≤
r

n− 1
.

3. Characterization of Spheres

We prove the following result for further use.

Lemma 3. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional smooth
compact manifold M. Then

∫
M

α2
(
‖Q‖2 − r2

n

)
=
∫

M

(∥∥∥H f

∥∥∥2
− 1

n

(
∆( f )

)2
)

,

for f = f − c, with c a constant.

Proof. Using Equation (2) and the fact that H f = H f , we have

∥∥∥H f

∥∥∥2
= nβ2 + α2‖Q‖2 − 2αβr (6)

which gives

α2
(
‖Q‖2 − r2

n

)
=
∥∥∥H f

∥∥∥2
− 1

n

(
n2β2 − 2nαβr + α2r2

)
=
∥∥∥H f

∥∥∥2
− 1

n
(nβ− rα)2.

Integrating the above equation and using Equation (3), we obtain

∫
M

α2
(
‖Q‖2 − r2

n

)
=
∫

M

(∥∥∥H f

∥∥∥2
− 1

n

(
∆( f )

)2
)

.
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Next, we see that the tools developed above give us the following characterization of
a sphere Sn(c).

Theorem 1. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional smooth
compact and connected manifold M of constant scalar curvature r. If ∇ f +∇α is an eigenvector of
the Ricci operator Q corresponding to the eigenvalue r

n , then

Ric(∇ f ,∇ f ) ≥ r
n
‖∇ f ‖2

if and only if r > 0 and M is isometric to the sphere Sn(c) with r = n(n− 1)c.

Proof. Assume that the conditions in the statement hold. Then using Equation (5), we have

f ∆( f ) = − r
n− 1

f
2
,

where f = f − c. Integrating the above equation yields∫
M

∥∥∥∇ f
∥∥∥2

=
r

n− 1

∫
M

f
2
,

that is, ∫
M
‖∇ f ‖2 =

r
n− 1

∫
M

f
2
, (7)

and as f is non-constant, it implies that r > 0. Note that ∇ f = ∇ f , H f = H f and

∆( f ) = ∆( f ). Thus, from Bochner’s formula [5]∫
M

(
Ric
(
∇ f ,∇ f

)
+
∥∥∥H f

∥∥∥2
−
(

∆( f )
)2
)
= 0

we have ∫
M

(
Ric(∇ f ,∇ f ) + nβ2 + α2‖Q‖2 − 2αβr− r2

(n− 1)2 f
2
)
= 0,

by means of (6). Using nβ2 − 2αβr = 1
n

[
(nβ− rα)2 − α2r2

]
and Equation (3), from the

above relation, we obtain∫
M

(
Ric(∇ f ,∇ f ) +

1
n
(∆( f ))2 + α2

(
‖Q‖2 − r2

n

)
− r2

(n− 1)2 f
2
)
= 0.

By Equation (5), we have

∫
M

(
Ric(∇ f ,∇ f ) +

r2

n(n− 1)2 f
2
+ α2

(
‖Q‖2 − r2

n

)
− r2

(n− 1)2 f
2
)
= 0,

that is, ∫
M

(
Ric(∇ f ,∇ f )− r2

n(n− 1)
f

2
+ α2

(
‖Q‖2 − r2

n

))
= 0.

Now, using Equation (7), we have

∫
M

((
Ric(∇ f ,∇ f )− r

n
‖∇ f ‖2

)
+ α2

(
‖Q‖2 − r2

n

))
= 0.

From the hypothesis Ric(∇ f ,∇ f ) ≥ r
n‖∇ f ‖2 and Schwartz’s inequality ‖Q‖2 ≥ r2

n ,
the above equation implies

α2
(
‖Q‖2 − r2

n

)
= 0.
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Inserting the above equation into Lemma 3, we have∫
M

(∥∥∥H f

∥∥∥2
− 1

n

(
∆( f )

)2
)
= 0.

Using Schwartz’s inequality, we obtain that the equality
∥∥∥H f

∥∥∥2
= 1

n

(
∆( f )

)2
holds if

and only if H f =
∆( f )

n I. Now, from Equation (5), we arrive at

H f = −
r

n(n− 1)
f I = −c f I,

where c is a positive constant. Hence, by the Theorem of Obata, M is isometric to Sn(c).
Conversely, for the sphere Sn(c), its Ricci tensor and scalar curvature are given by

Ric = (n− 1)cg, r = n(n− 1)c.

Moreover, there exists a smooth function f (the eigenfunction corresponding to the
first nonzero eigenvalue λ1 = nc) on Sn(c) that satisfies

H f = −c f I, ∆( f ) = −nc f .

Thus, we see that
Hess( f ) + (− f )Ric = (−nc f )g,

that is, (g,∇ f , α, β) is a generalized gradient Ricci soliton on Sn(c), with α = − f and
β = −nc f . We see that all the conditions in the hypothesis are satisfied by this generalized
gradient Ricci soliton on the sphere Sn(c).

Finally, we prove the following characterization of the sphere Sn(c).

Theorem 2. A generalized gradient Ricci soliton (g,∇ f , α, β) on an n-dimensional smooth com-
pact and connected manifold M is isometric to the sphere Sn(c) if and only if the positive constant
c satisfies

Ric(∇ f ,∇ f ) ≥ (n− 1)c‖∇ f ‖2

and ∫
M
(nβ− rα + c f )(nβ− rα + nc f ) ≤ 0.

Proof. Using Equation (3), we have

∫
M
(nβ− rα + c f )(nβ− rα + nc f ) =

∫
M

(
(∆( f ))2 + (n + 1)c f ∆( f ) + nc2 f 2

)
=

∫
M

(
Ric(∇ f ,∇ f ) +

∥∥∥H f

∥∥∥2
+ (n + 1)c f ∆( f ) + nc2 f 2

)
.

Now, using Ric(∇ f ,∇ f ) ≥ (n− 1)c‖∇ f ‖2 and
∫

M(nβ− rα + c f )(nβ− rα + nc f ) ≤
0 in the above equation, we conclude∫

M

(
(n− 1)c‖∇ f ‖2 +

∥∥∥H f

∥∥∥2
+ (n + 1)c f ∆( f ) + nc2 f 2

)
≤ 0.

Inserting
∫

M f ∆( f ) = −
∫

M‖∇ f ‖2 into the above inequality, we have

∫
M

(
−(n− 1)c f ∆( f ) +

∥∥∥H f

∥∥∥2
+ (n + 1)c f ∆( f ) + nc2 f 2

)
≤ 0,
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that is, ∫
M

(∥∥∥H f

∥∥∥2
+ 2c f ∆( f ) + nc2 f 2

)
≤ 0

and we conclude ∫
M

∥∥∥H f + c f I
∥∥∥2
≤ 0.

This proves that H f = −c f I, that is, M is isometric to the sphere Sn(c).
Conversely, as seen in the proof of Theorem 1, we know that (g,∇ f , α, β) is a general-

ized gradient Ricci soliton on the sphere Sn(c), where f is the eigenfunction of the Laplace
operator ∆ corresponding to the first nonzero eigenvalue nc and α = − f and β = −nc f . In
addition, we have∫

M
(nβ− rα + c f )(nβ− rα + nc f ) =

∫
M
(−nc f + c f )(−nc f + nc f ) = 0.

Hence, all the conditions in the hypothesis are satisfied.

4. Trivial Solitons

Following the ideas from [2,6,7], we shall further provide some characterizations for
trivial generalized gradient Ricci solitons (g,∇ f , α, β) with unit geodesic potential vector
fields, i.e., ∇∇ f∇ f = 0. Note that it is not a unit vector field, but to distinguish between
a geodesic vector field (whose integral curves are conformal geodesics) and those whose
integral curves are geodesics, we use the term unit geodesic vector field.

Theorem 3. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional compact
and connected smooth manifold M (n > 2) with a unit geodesic potential vector field and nonzero
scalar curvature. Assume that α and β are constant, α 6= 0. Then ∇ f is an eigenvector of the Ricci
operator with constant eigenvalue β

α satisfying (nβ− rα)rα ≥ 0 if and only if the soliton is trivial.

Proof. The proof follows the same steps as [6,7]. The converse implication is trivial. For the
direct implication, if we assume that Q(∇ f ) = σ∇ f , σ ∈ R∗, then taking the inner product
with ∇ f implies σ = β

α , so
(

g,∇( f
α ),

β
α

)
is a gradient Ricci soliton. Then from (1), (3) and

Lemma 1, we obtain

∇r =
2β

α2∇ f ,

Hess(r) =
2β

α2 Hess( f ) =
2β

α2 (βg− α Ric),

∆(r) =
2β

α2 ∆( f ) =
2β

α2 (nβ− rα),

Ric(∇r,∇r) =
β

α
‖∇r‖2.

In this case, Bochner’s formula∫
M

(
Ric(∇r,∇r) + ‖Hess(r)‖2 − (∆(r))2

)
= 0

becomes ∫
M

α2
(
‖Q‖2 − r2

n

)
=
∫

M

(
n− 1

n
(nβ− rα)2 − α3

4β
‖∇r‖2

)
.

However, ∆(r) = 2β

α2 (nβ− rα) and div(r∇r) = r∆(r) + ‖∇r‖2 imply

∫
M
(nβ− rα) = 0,

∫
M
‖∇r‖2 = −2β

α2

∫
M
(nβ− rα)r,
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which, replaced in the previous relation, gives

∫
M

(
‖Q‖2 − r2

n

)
= −n− 2

2nα

∫
M
(nβ− rα)r.

Using Schwartz’s inequality, we deduce that ‖Q‖2 = r2

n ; hence, Q = r
n I. Moreover,

since r is nonzero, we obtain nβ = rα; therefore, Hess( f ) = 0 by (4), i.e., the soliton
is trivial.

Theorem 4. Let (g,∇ f , α, β) be a generalized gradient Ricci soliton on an n-dimensional compact
and connected smooth manifold M (n > 2) with a unit geodesic potential vector field. Then

Ric(∇ f ,∇ f ) ≥ n− 1
n

(nβ− rα)2

if and only if the soliton is trivial.

Proof. The converse implication is trivial. For the direct implication, from (2), we obtain

‖Hess( f )‖2 = α2
(
‖Q‖2 − r2

n

)
+

(nβ− rα)2

n
.

Using (3) and Bochner’s formula∫
M

(
Ric(∇ f ,∇ f ) + ‖Hess( f )‖2 − (∆( f ))2

)
= 0

we obtain ∫
M

α2
(
‖Q‖2 − r2

n

)
=
∫

M

(
n− 1

n
(nβ− rα)2 − Ric(∇ f ,∇ f )

)
.

By using Schwartz’s inequality, we deduce ‖Q‖2 = r2

n ; hence, Q = r
n I. Therefore,

r
n
∇ f = Q(∇ f ) =

β

α
∇ f − 1

α
∇∇ f∇ f =

β

α
∇ f

which implies nβ = rα, and we deduce that Hess( f ) = 0, i.e., the soliton is trivial.

For particular cases, we can state:

Corollary 3. Let (M, g) be an n-dimensional compact and connected Riemannian manifold M
(n > 2) and ∇ f a unit geodesic vector field.

(i) If g satisfies the Miao–Tam equation and Ric(∇ f ,∇ f ) ≥ 1
n(n−1) (n + r f )2, then M is an

Einstein manifold.
(ii) If g satisfies the Fischer–Marsden equation and Ric(∇ f ,∇ f ) ≥ 1

n(n−1) (r f )2, then M is
a Ricci flat manifold.

If α is nowhere zero and ∇ f is a conformal vector field with £∇ f g = 2βg, then
Hess( f ) = βg and M is an Einstein manifold, provided n ≥ 3. If α = 0, Equation (1)
becomes

Hess( f ) = βg, (8)

hence, ‖Hess( f )‖2 = nβ2 and ∆( f ) = nβ, which implies the equality case in Schwartz’s
inequality. Note that in [8–12], the authors proved that a non-constant function f on a
complete n-dimensional Riemannian manifold (M, g) satisfies Equation (8) for β a negative
constant if and only if M is isometric to the n-dimensional Euclidean space. In [13], the



Mathematics 2022, 10, 633 9 of 10

authors proved that if Equation (8) holds with β a function, then (M, g) is locally a warped
product (a, b)×h Nn−1. If β is a non-constant function on M, we prove the following result.

Proposition 3. Let (M, g) be an n-dimensional compact Riemannian manifold and let f be a
smooth function on M satisfying Equation (8). If Ric(∇ f ,∇ f ) ≤ 0, then ∇ f ∈ ker Q and
Hess( f ) = 0.

Proof. From (8), we obtain ∆( f ) = nβ. Hence,

dβ = div(Hess( f )) = d(∆( f )) + iQ(∇ f )g = ndβ + iQ(∇ f )g

which implies

∇β = − 1
n− 1

Q(∇ f ).

However, ∇β = 1
n∇(∆( f )). Therefore,

∇(∆( f )) = − n
n− 1

Q(∇ f ).

Replacing these relations in Bochner’s formula

1
2

∆(‖∇ f ‖2) = Ric(∇ f ,∇ f ) + ‖Hess( f )‖2 + g(∇(∆( f )),∇ f )

we obtain

1
2

∆(‖∇ f ‖2) = − 1
n− 1

Ric(∇ f ,∇ f ) + nβ2 = − 1
n− 1

Ric(∇ f ,∇ f ) +
1
n
(∆( f ))2,

which, by integration, in the compact case, gives∫
M

Ric(∇ f ,∇ f ) =
n− 1

n

∫
M
(∆( f ))2

and using the hypothesis, we deduce that Ric(∇ f ,∇ f ) = 0, ∆( f ) = 0, β = 0, Q(∇ f ) = 0
and Hess( f ) = 0.
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