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Abstract: In this work, we present some techniques applicable to Initial Value Problems when solving
a System of Ordinary Differential Equations (ODE). Such techniques should be used when applying
adaptive step-size numerical methods. In our case, a Runge-Kutta-Fehlberg algorithm (RKF45) has
been employed, but the procedure presented here can also be applied to other adaptive methods,
such as N-body problems, as AP3M or similar ones. By doing so, catastrophic cancellations were
eliminated. A mathematical optimization was carried out by introducing the objective function in the
ODE System (ODES). Resizing of local errors was also utilised in order to adress the problem. This
resize implies the use of certain variables to adjust the integration step while the other variables are
used as parameters to determine the coefficients of the ODE system. This resize was executed by using
the asymptotic solution of this system. The change of variables is necessary to guarantee the stability
of the integration. Therefore, the linearization of the ODES is possible and can be used as a powerful
control test. All these tools are applied to a physical problem. The example we present here is the
effective numerical resolution of Lemaitre-Tolman-Bondi space-time solutions of Einstein Equations.

Keywords: numerical; initial value problem; ordinary differential equations systems; exact solutions
of einstein equations

1. Introduction

In mathematics, a dynamical system is a system in which a function describes the
time-dependence of a point in a geometrical space. Numerous examples can be found
in the literature, applied to a wide variety of fields in science and technology. In order
to make a prediction about the system’s future behaviour, an analytical solution of such
equations or their integration over time through computer simulations must be carried out.
When modelling such a dynamical system to be able to investigate certain aspects of its
behaviour, we end up generating a system of ordinary differential equations (ODES), partial
differential equations (PDE), and algebraic equations (AE), whose analogous solution is
unknown to us in the vast majority of cases. We need to resort to numerical methods for
ODES which allow us to evaluate approximate solutions with a certain tolerance after
fixing the indeterminate constants of the system, either by initial values (IVP or initial
value problem) or boundary conditions (boundary Cauchy problem). In any case, we will
find a large number of numerical methods at our disposal that can be divided into two
large groups:

(i) The predictor-corrector type (also called Adams), either implicit or explicit. These
are usually multistep methods which we can use when we want to increase the order of the
method (that is, their precision), and usually require uniform pitch spacing xi+1 = xi + h
(prior discretization of the interval [x0, xNh]). These are more effective methods in the sense
that they usually require fewer evaluations from the ODES, but it is clear that if the value
in x0 + h depends on the previous values of k, xk−1, . . . , x0, it will be necessary to generate

Mathematics 2022, 10, 593. https://doi.org/10.3390/math10040593 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040593
https://doi.org/10.3390/math10040593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0196-7876
https://doi.org/10.3390/math10040593
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040593?type=check_update&version=2


Mathematics 2022, 10, 593 2 of 27

or impose more initial conditions, and it is not very clear whether we can consider the
integration of the ODES as an IVP.

(ii) Runge–Kutta (RK)-type [1] are also explicit or implicit, but they are one-step and
manage to increase their order by calculating in more intermediate points of the interval
[xi, xi + h]. In this way, we can say that the value in xi + h depends only on the value in
xi, so we are talking about the IVP in each subinterval. This feature of the RK methods
allows us to use a variable h (different in each step) and adapt them to the particular ODES
to achieve the same estimated error order in each step. See the Ref. [2].

Consequently, our first choice was between an Adams or an RK. We opted for the
RKF45 or explicit Runge-Kutta-Felberg45 [3], which is one of the most widely used among
the adaptive step RKF45. However, as we intended to also address more realistic simula-
tions with density defects compensated by a wall at a certain distance, we implemented
the Cash–Karp variant [4], which allowed us to choose between an RKF45 of order O(h5)
or one of variable order. In such a case, rapid changes in the gradient of some functions
must be expected, and must therefore be taken into account so as to be prepared for such
an eventuality.

Once our dynamical system is modelled, we must proceed to establish the objective
function that models the particular aspect that we want to simulate for investigating its evo-
lution and be in a position to predict future values (meteorology, evolution of the pandemic,
volcanology, behaviour of a structure in the face of earthquakes, and so forth.). The fields
of application are multiple, and the accuracy of the predictions depends on the accuracy of
the model and the rigour of the tests required for the applied integration method.

Nowadays, there are applications of all kinds that include sophisticated solve, odeint,
or similar commands, such as MAPLE [5], MATLAB [6], Mathematica [7] or Python [8],
among others. These methods require writing our system in a certain way and assigning
values to certain parameters that configure the method to be applied. After a while, it prints
results and/or graphs which should be interpreted without clearly knowing what has been
done, why the method has changed in certain cases, and so forth, and it is therefore difficult
to make modifications to the integrating algorithm. At most, we can change our dynamic
system or try to vary its parameters in a series of tests and errors that we hope will provide
us with a more or less stable response. Then, we calculate means, variances, and other
statistical properties which are published. Of course they make our work easier, but we
must always keep in mind that those applications or commands are quite generic, and they
have not been written for our specific problem. They will be very sophisticated, but it is
very difficult for them to be optimal to give us control of the process. What is very fast
is usually not very reliable. If we aim to take control over the evolution of our numerical
simulation, some tools of Numerical Analysis must be taken into account whenever we
face the resolution of a Dynamical System. Such tools are described in Section 2. When
solving Dynamical Systems, the convergence and stability analysis of the problem must
also be considered; see, for instance [9,10]. In the example we present here, such study was
also undertaken.

In this paper, we solve the ODE (Initial Value Problem) associated with the gravita-
tional effect of a pressureless, spherically symmetric perturbation on free photons described
within the General Relativity Theory (GRT) and follow null geodesics. These null geodesics
describe the Cosmic Microwave Background (CMB) Radiation. We numerically compute
the anisotropies on CMB caused by a great inhomogeneity in the universe [11–18]. A
detailed explanation of the main physical results and where they were published are pre-
sented in Section 8. Some important definitions related with our problem are presented in
Appendix A.

Examples of modern physical problems where analytic solutions of differential equa-
tions are not possible, such as the problem we present in the present paper, is found
in quantum systems. Many body quantum systems appear and have to be solved by
applying advanced algorithms [19–21]. The ODEs are the Schroedinger and Dirac equa-
tions [20,22,23]. In such kinds of problems, the consideration of the finite size of nucleons
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and nuclei needs the use of advantageous numerical techniques [20,21,23]. Nowadays,
there exists an increasing interest in dealing with numerical solutions of wave functions for
N-body problems using the field of machine learning methods [24–27].

Other kinds of problems which also deal with the development of numerical integra-
tion schemes for physical systems are based on the theory of variations. The integration
methods, known as discrete variational integrators, which treat the discretization of the
Hamilton’s principle, can be found in the said theory. It is worth noting that the preserva-
tion of the geometric features of the dynamical system makes these methods appropriate
for both conservative and nearly dissipative systems [28–31]. Systems that present highly
oscillatory behaviour [28] are one of the most difficult challenges to solve ODEs. Here,
standard numerical methods require a huge number of (time) steps to trace the oscilla-
tions, while geometric integrators are advantageous tools [32]. Geometric integrators
face highly qualified simulations for long-term integration processes avoiding spurious
effects [32–37]. It is interesting to derive numerical integration schemes that respect the
geometric characteristics of such systems [38,39].

In a totally different field such as image processing, the Ref. [40] deals with the blind
deconvolution of an image looking for the convolution kernel using fractional powers
of the Laplacian (see e.g., [41,42] and references therein), which turns the method into a
dynamic assimilable regularization system to our rescaled variables, although ODES are
replaced by successive FFTs (Fast Fourier Transform). Likewise, the Ref. [43] deals with the
restoration of images by means of non-linear Gaussian approximations on the Luminance
of the image.

The example we present here is the effective numerical resolution of Lemaître-Tolman-
Bondi (LTB) space-time solutions of Einstein Equations (EE); see [44]. These techniques can
also be used in other LTB applications, so knowing them is of great interest. In the near
future, we plan to explain similar techniques that we have applied to N-body algorithms in
the cosmological treatment of large-scale structure, such as in the Hydra project (see [45,46]).
All in all, we also intend to share some of the important features of the algorithms we have
designed in relativistic positioning systems (see [47]), which we are currently working on.
All of these and similar techniques are powerful tools for other astrophysics, physics, and
engineering issues in general. We find it appropriate to present them so that they may be
used, where appropriate, in the improvement of numerical methods for solving systems of
equations both in our field and in science and technology in general.

The paper is organized in the following sections. Section 2 describes some previous
considerations about the techniques we apply. Section 3 introduces the main features of the
physical problem that is solved with our numerical and computational techniques. Section 4
gives details of the EE solutions used in the cosmological problem solved. In Section 5,
the numerical algorithm CS is described. Section 6 deals with other applications of the CS
algorithm. Section 7 introduces the numerical resolution of the null geodesic equations that
describe the CMB anisotropies in a LTB universe. In this section, our particular application
of the RKF algorithm is also described. Some words about the convergence and stability of
the algorithms are also presented in Section 7. Section 8 presents the main results and a brief
discussion of them, in conjunction with other papers of the current literature. Section 9 has a
summary of our paper and the main conclusions. This section includes: (i) a short summary
of the paper’s novelties and its scientific contribution, (ii) the conclusions extracted by the
present study, and (iii) future extensions and outlook. At the end of the paper, we included
two appendices which try to add more information about some of the aspects we consider
relevant in our work.

2. Numerical Analysis Tools

In this section, we specify certain tools of Numerical Analysis that must be considered
to solve a Dynamical System. These tools allow us to take control of the evolution of our
numerical simulation. Sometimes, this process uses more CPU time, and in some cases,
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also RAM memory. Nevertheless, following it, we have a guarantee that the solution will
fit the problem to be solved.

The aspects that should be considered the most in these integrations are:

(1) Working with computers that use finite precision mathematics, the first question to
keep in mind is that in computational models, you have to try to avoid, whenever
possible, the subtraction of functions that can have values of the same order. Such
a subtraction produces a smaller result than that of the operands and it can lead
to the loss of the most significant digits of the given value and produce the named
catastrophic cancellation; see [48] (chapter 1). This operation is especially disastrous
in numerical derivation processes as well as in recursive algorithms which are quite
fashionable for their beauty and the simplicity of their implementation, as checked
in the Ref. [48] (problem 2, chapter 1). It is also dangerous when a derivative (total
or partial) is expected to change signs (detection of extremals in the corresponding
function) because if it changes signs, it means that it has had to reach zero and lost
all its significant digits. Therefore, we must always look for alternative formulas to
those that appear in books and manuals (see Appendix B for the IEEE standards) for
floating point computation, for intrinsic functions of programming languages, and for
numerical derivatives.

(2) The next step is to try to base our model on another with an analytical solution that
is the limit of ours when a certain parameter tends to zero, for example (asymptotic
model). If the asymptotic model has an analytical solution that provides us with
certain AE to obtain values of some variables near those of our model, such values
eventually serve to rescale or renormalize the variables of our model. This technique
is very common in the N-body processes of physics (renormalization of sources),
and even in the numerical solution of hyperbolic ODE and PDE which requires
reconstruction of the axes at each step to avoid distortions if the coefficients vary
with time.

(3) At this point we need to verify that the functions we are going to use are evaluable
with a precision greater than the tolerance we impose (standard IEEE). This analysis
shows to what extent it is feasible to solve our model and which problems require
modifications of the integrating algorithm.

(4) A very important tool in simulations is to make variable changes, such as passing an
affine parameter λ to the t variable that focuses more on knowing how much we have
advanced and how much we still have to. We can also rely on the easy asymptotic
solution to be calculated in order to define new variables that are quotients of the
same variable in each system. These ratios have a very small range of variation, and
we reduce the impact of noise (local error) on the objective function. Sometimes it is
even possible to decouple some ODEs, as in the case discussed in the present paper.

(5) We enter the phase of incorporating our objective function into the dynamical system
that we have modelled through its analytical derivation (if it is an AE) so that it can
evolve with the global model. If the values that this function take are very small
compared to those obtained from the integration from other ODEs, we have to rescale
the estimated values of the relative errors of each ODE in each step to avoid situations
where the big ones dominate the small ones.

(6) The decisive step is to modify the integrating method so that it only takes into ac-
count the relative error of the principal variables for the purpose of re-evaluating the
integration step.

(7) Extremal detection is also very important in order to modify the step. Usually, some of
these extremals (zeros of the derivatives) indicate the areas of greatest effect and should
not be ignored. In our RKF45ng algorithm, we indicate a way to achieve this, which
has given us very good results in the past, although it is probably very improvable.

(8) Finally, any modification we introduce must be intensively tested. The most accu-
rate test is to get the algorithm of our nonlinear dynamical system to obtain the
values of the asymptotic system when we make the corresponding parameter zero
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(background test), at least within the precision of the machine used for the defined
variables. If the final algorithm passes this test, we can be sure that it will pass any
other reasonable test.

3. The Physical Problem to Solve

In the present paper, we show the numerical algorithm built to solve the equations
that compute the gravitational effect of a pressureless spherically symmetric perturbation
on free photons radiation. Those photons are described in the General Relativity Theory
(GRT) and follow null geodesics. Moreover, they account for Cosmic Background Radiation
(CBR). For some important definitions related with our problem, see Appendix A.

Now, the applied cosmological theory is presented. A spherically symmetric pressure-
less perturbation may be described in Cosmology using the following exact solutions of
Einstein Equations:

(a) Friedmann-Lemaître-Robertson-Walker solution (FLRW) which represents a homo-
geneous and isotropic space-time (with constant energy density ρB). This is the
background Universe.

(b) Lemaître-Tolman-Bondi solution (LTB) which accounts for a Universe with a unique
great perturbation (an excess or a defect of energy density ρ over the mean) which
is a pressureless spherically symmetric solution and which asymptotically tends to
a FLRW metric (background). This is a parametric solution and requires numerical
methods to determine the necessary functions in every space-time point. See ([44,49]).

If an observer O is placed in an arbitrary point of LTB, photons reaching from different
directions will be affected in a different way by the perturbation. Given a direction ψ at t0,
we call T(ψ) to the photon temperature received by O evolving in LTB and TB(ψ) that is
one received by the same observer but evolving in the asymptotic FLRW. We are interested
in computing; see [50]

δB =
T(ψ)− TB(ψ)

TB(ψ)
.

This temperature contrast is so far named the gravitational anisotropy produced by
the perturbation, and it is supposed to have values of the order of 10−5. Notice that the
spherical symmetry and the absence of external fields allows us to ensure that all planes
with ϕ = constant are equivalent, and for this reason only, the case ϕ = 0 will be studied.
This fact can be seen in Figure 1.

O
Cs

M
O

γ

Figure 1. LTB plane with t = constant and ϕ = 0. The slices MO, observer, and another arbitrary
slice are plotted, as well as the symmetry centre Cs. The discontinuous line γ represents the null
geodesic of a photon arriving at the observer, O, at time t0.
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The procedure to solve the problem is as follows:

1. Build a suitable algorithm (we will name it CS) to numerically solve the parametric
LTB metric with sufficient precision.

2. Generate a second numerical algorithm (we will call it RKF45ng) that allows the
integration of the null geodesics equations (or paths of free photons) in LTB with
appropriate initial conditions.

3. Compute the gravitational anisotropy.
4. Design suitable controls and tests to check the consistency of the obtained values. In

order to do that, the following data are considered:

4.1. If the LTB perturbation, while photons are crossing it, stays with small density
contrasts ρ− ρB ≤ 0.01ρB, it is admissible to make a first-order analytical approx-
imation, both in the Einstein Equations and in the null geodesics. Then one can
integrate this linear analytical approximation. A linear code has been built for
such a case. This code supplies a method to compare with the case when ρ 6= ρB.

4.2. If one integrates the null geodesics of LTB generated with a null perturbation
(ρ = ρB), one should obtain a FLRW Universe and, therefore, null values of
the anisotropy. This is a good test to detect systematic errors and loss of preci-
sion. Moreover, it will be the main tool to guarantee that the RKFng is stable.
(Background test).

That means our LTB null geodesics integration algorithm is nonlinear in the sense that
no analytical approximations of the equations to integrate are done, although it should also
be useful for the first studied linear case. Such a requirement should originate in additional
problems in the error control and in the numerical stability of the system to integrate in
these two assumptions: (1) When LTB is very close to the FLRW limit (points far away from
the symmetry centre); and (2) When the null geodesic is very near to the symmetry centre.
The main goal of our research is the detection and solution of such kinds of problems.

4. Solutions of EE Used
4.1. LTB Solution of EE

The spherically symmetric conditions imposed to the LTB universe, as well as the use
of comoving coordinates and null pression, make most of the components of Einstein’s
tensor null. Thus, their evolution equations are reduced to:

G11 = 0; G14 = 0; G44 = −8πGρ(M, t).

The G44 = −8πGρ(M, t) equation becomes in a relation between M and R(M, t)
through ρ(M, t). This relation may be expressed through one of the two following equiva-
lent equations:

M = 4π
∫ R

0
x2ρ(x, t)dx, ρ =

(
4πR2 ∂R

∂M

)−1
, (1)

and the second one allows us to obtain ∂R/∂M; then, this partial derivative can be obtained
with the same relative precision as that obtained in R and ρ.

The equations G11 = 0 and G14 = 0 are analytically integrable and lead to the paramet-
ric solution of LTB with both arbitrary functions f (M) and t1(M) to be determined with
the initial conditions. This solution is:

f > 0
non connected

shell


R =

(
GM

f

)
( Ch η − 1)

t + t1(M) =

(
GM
f 3/2

)
( Sh η − η)

(2)
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f < 0
connected

shell


R =

(
GM
− f

)
(1− cos η)

t + t1(M) =

(
GM

(− f )3/2

)
(η − sin η)

(3)

f = 0
limiting

shell
R =

(
9GM

2

)1/3
(t + t1(M))2/3 (4)

On the one hand, the spherically symmetric LTB metric stands for:

ds2 =
1

Φ2

(
∂R
∂M

)2
dM2 + R2(dθ2 + sin2 θ dϕ2)− dt2, (5)

where:

Φ2 = 1 + f (M) = 1 +
(

∂R
∂t

)2
− 2GM

R
. (6)

Function f (M) is subjected to the restriction f (M) > −1 so that the metric has no
problems. Furthermore, once f (M) is known, ∂R/∂t can be computed. Then, this function
establishes the variation profile of the radial coordinate with respect to t. On the other hand,
f (M) plays the role of the difference between kinetic and potential energies of the M shell.
Its sign allows to distinguish the connected and non-connected shells of the gravitational
field. As f (M) does not depend on time, the connexion of the shell is determined by the
initial conditions.

Once this equation has been solved, the next step is to compute the Christoffel symbols
which appear in the null geodesics equations, and read:

Γ4
11 =

∂R
∂M

∂2R
∂t∂M

1
Φ2 ; Γ4

22 = R
∂R
∂t

; Γ2
24 =

1
R

∂R
∂M

; (7)

Γ1
11 = − 1

Φ
∂Φ
∂M

+
∂2R
∂M2

∂M
∂R

; Γ2
12 =

1
R

∂R
∂t

; (8)

Γ1
14 =

∂2R
∂t∂M

∂M
∂R

; Γ1
22 = −RΦ2 ∂M

∂R
. (9)

Such functions will appear as coefficients of a coupled differential equations system
when integrating the null geodesics. Therefore, maximum precision is required. As a
matter of fact, the Γ1

11 symbol is the only one which is the sum of two functions and can
have precision problems in the case where it becomes very small.

4.2. FLRW Solution of EE

For a FLRW universe, one has:

ds2 =
a2

1± r2 dr2 + a2r2(dθ2 + sin2 θdϕ2)− dt2, (10)

and that is why if one takes:

Φ2 = 1± r2, R = a(t)r, M = 4πρBR3/3, (11)

then FLRW becomes a LTB with constant ρ = ρB for every t and r as a comoving radial
coordinate (independent of t) and of a(t) as the scale factor. The computations to complete,
in this case, are evident. Note that these equations are AE, not ODE or PDE.

5. CS Algorithm

In order to complete the effective numerical computation of the parametric LTB
solution, one has to perform the following steps:
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5.1. Initial Functions

To determine the two arbitrary functions of the parametric solution, one has to proceed
in the following way:

The function t1(M) usually becomes zero at tD, although it could not be so.
To determine the function f (M) through the density profile defined at tD (see Equa-

tion (A1) at Appendix A), one has to proceed this way:

(i) Computation of R(M,t): From Equation (1) and the density profile, one has

M =
4πρR3

v
3

([
R
Rv

]3
+ 3ε

[
R
Rv
− Arctg

(
R
Rv

)])
. (12)

This equation has a unique positive solution of x = R/Rv for each M ≥ 0. Once M is
known, it can be written in the following way:

x3 + 3ε(x− Arctg x)− d = 0, d =
3M

4πρR3
v

and it can be applied to any method of roots computation as the solution is unique
and simple. As in the FLRW, one has MB = 4πρBR3

B/3, and x0 = RB/Rv can be taken
as an initial value for the Newton method. It still has to be determined whether the
error tolerance is admissible for R. Therefore, a method to obtain the radial coordinate
R(M, tD) associated to each shell is achieved with a prefixed relative error bound.
That is, the profile R(M, tD) is obtained.

(ii) Computation of f(M): By taking z = (R f )/(GM) in Equations (2) and (3), one has:

z > 0;
(

GM
R3

)1/2
tD =

√
z2 + 2z− ArgCh (z + 1)

z3/2 , (13)

z < 0;
(

GM
R3

)1/2
tD =

Arccos (z + 1)−
√
−z(z + 2)

(−z)3/2 . (14)

If z 6= 0, one of these equations has a solution (see Figure 2), from which z is obtained
through a roots calculus and, afterwards, f (M) with the same precision when numeri-
cally solved for an arbitrary M and its corresponding R(M, tD). If no equations have
a solution, that means that in the shell, the following is accomplished:

R =

(
9GM

2

)1/3
(tD)

2/3

and then, f (M) = 0 (limiting shell).

5.2. The Other Functions at tD

In order to determine the rest of the necessary functions, one should proceed this way:

1. As ρ is known at tD (initial profile), in the Equation (1), one can directly compute
the value

∂R
∂M

=
1

4πρR2

with the same relative error bound as R.
2. Furthermore, once f (M) and R(M, tD) are known, one can also obtain∣∣∣∣∂R

∂t

∣∣∣∣ =
√

f (M) +
2GM

R

with the same relative error bound. So as to know the sign of this derivative, one
needs to know whether, at a later time, R(M, t) increases or decreases for the same
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shell. The advantage of this procedure is that the derivative value is precise and no
significant digits are lost (see Appendix B).

3. The other functions appearing in the Christoffel symbols such as ∂2R/∂t∂M, ∂2R/∂M2

y ∂Φ/∂M need derivation numerical techniques (a t = constant) of the known func-
tions ∂R/∂t, ∂R/∂M and Φ = 1 + f (M), although one cannot now guarantee a fixed
relative error bound, as the catastrophic cancellation phenomenon can appear through
the loss of significative digits with the subtraction of similar numbers. The logarithmic
derivative is crucial here.

We tried to choose ∆M so that the possible maximum between the truncation and the
rounding errors was the smaller one (see Appendix B).

Figure 2. Plot of the right-hand side of Equations (13) and (14) for z ∈ [−2, 2]. The plot of nega-
tive values of z corresponds to Equation (14) and the plot of positive values of z corresponds to
Equation (13).

5.3. Functions for t > tD

As f (M) is now known, given a value of M, one can directly choose among the
Equations (2)–(4) to determine which is suitable for this shell. By substituting tD by the
desired t and, with the same change z = (R f )/(GM), one has:

f > 0;
f 3/2

GM
t =

√
z2 + 2z− ArgCh (z + 1), (15)

−1 < f < 0;
(− f )3/2

GM
t = Arccos (z + 1)−

√
−z(z + 2), (16)

f = 0; R =

(
9GM

2

)1/3
(t)2/3.

Let us now compute the approximated root for z (if necessary) and let us obtain the
corresponding R(M, t). From now on, easy computations allow us to obtain the rest of the
necessary functions at each point (M, t).

For example, for known R(M, t) and f (M), Equation (6) gives the value of |∂R/∂t|,
and a numerical derivation at a constant t value gives ∂R/∂M. Then Equation (1) gives the
value of ρ(M, t). The rest of the procedure is as in the former case.

Once all the commented functions are obtained, one can compute the Christoffel
symbols at any shell M and at any time t.
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6. Additional Utility of the CS Algorithm

A variation of this algorithm allows to obtain, with different FLRW background
universes, the ε and Rv parameters at tD, and this lets us “simulate” the present profiles of
certain realistic structures, such as the Boötes Void, the Great Attractor, the Virgo Cluster,
and so forth. To do so, one proceeds as follows:

1. Choose an Ω ∈ [0.2, 1[ and, together with the critical density value ρc(t0), determine
ρB(t0) = Ωρc(t0) for the asymptotic FLRW.

2. With the core “radius” Rv(t0), choose Rv1(tD) ≈ a(tD)Rv(t0)/a(t0) (application of the
scale factor). Additionally choose a value of the contrast for tD ε1 and compute the
ρB(tD) value of the FLRW.

3. Simplify the CS algorithm to obtain only the R(M, t) and ρ(M, t) values. Apply it
only at tD and t0 for a predetermined sample of shells Mi and obtain R(Mi, t0) and
ρ(Mi, t0).

4. Compute ρ0 = ρ(0, t0) by extrapolation and ε̂(t0) = (ρ0 − ρB)/ρB (maximum present
density contrast).

5. Additionally compute R̂v or the present core radius by interpolation, first search-

ing the value of the core shell, Mv, such that ρ(Mv, t0) − ρB = ρB ε̂(t0)/2 and the
corresponding value of R(Mv, t0).

6. In this way, a function of two variables has been defined:

[ε̂(t0), R̂v] = PARAM (ε1, Rv1)

evaluable for each pair of initial data.
7. Now the numerical secant method for systems of equations allows to perform itera-

tions, starting with two initial values (ε1, Rv1) y (ε2, Rv2), until it is able to find the
desired present maximum contrast and core radius (in the case where it converges,
of course).

This process is able to simulate perturbations with positive contrast (overdensities),
with the same present linear contrast (as shown in Figure 3) and for universes with different
values of Ω. Initial parameters of each overdensity are shown in Table 1b. For these cases,
high precision is not required in the PARAM algorithm as the present contrast is obtained
from observational low-precision data. The initial Rv are all of the order of 180/51 h−1

Mpc, and that is the reason why they are not written in Table 1b.

Figure 3. Present linear density contrast as a function of R, for the perturbations O1–O7, with
Rv(t0) = 180 h−1 Mpc and ε(t0) = 0.0108. The initial values at tD that generate each overdensity
appear in Table 1b.

So as to generate initial values that lead to nonlinear negative present contrasts (un-
derdensities), a negative present profile was chosen (see Figure 4) and the data found are
written in Table 1a. The relation Rv1 ≈ 22.5/51 h−1 Mpc is accomplished here as well, but
is not included in Table 1a, as it is the same one for all underdensities.
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Figure 4. Present nonlinear negative density contrast as a function of R, for the perturbations
U1 −U10, with Rv(t0) = 22.5 h−1 Mpc and ε(t0) = −0.74. The initial values at tD that generate each
underdensity appear in Table 1a.

Table 1. Initial parameters, for universes with different Ω, with the same present energy density
contrast, δ.

(a) Nonlinear Underdensities

Case Ω ε(tD)

U1 0.2 −1.10× 10−1

U2 0.3 −8.42 × 10−2

U3 0.4 −7.00 × 10−2

U4 0.5 −6.09 × 10−2

U5 0.6 −5.45 × 10−2

U6 0.7 −4.97 × 10−2

U7 0.8 −4.60 × 10−2

U8 0.9 −4.30 × 10−2

U9 0.95 −4.18 × 10−2

U10 0.999 −4.06 × 10−2

(b) Overdensities

Case Ω ε(tD)

O1 0.2 5.985 × 10−4

O2 0.3 4.496 × 10−4

O3 0.4 3.700 × 10−4

O4 0.5 3.200 × 10−4

O5 0.6 2.870 × 10−4

O6 0.7 2.550 × 10−4

O7 0.8 2.400 × 10−4

The data of Table 1b have been used to generate overdensities. The effects of these
overdensities in the CMB anisotropies have been used to compare the results of our non-
linear algorithm with the linear algorithm stated before. Meanwhile, the underdensities
created with the data of Table 1a have been used to test the nonlinear results.

7. Resolution of the Null Geodesics EDOS

From Equation (5) and the fact that ϕ = constant for spherical symmetry reasons,
along any null geodesic, one has: ds2 = 0 = g11dM2 + g22dθ2 − dt2, where

g11 =
1

Φ2

(
∂R
∂M

)2
, g22 = R2.
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On the other hand, if one defines λ as the affine parameter of the geodesic and the tan-
gent components in a point of the geodesic as (K1, K2, K3, K4), the following relations stand:

K1 =
dM
dλ

, K2 =
dθ

dλ
, K3 = 0, K4 =

dt
dλ

.

Finally, the free photons evolution in GRT must accomplish the following condition
dKα/dλ = −Γα

βγKβKγ. In LTB, that means the resolution of the following system:

System A:


K1 = dM/dλ, K2 = dθ/dλ, K4 = dt/dλ

dK1/dλ = −2Γ1
14K1K4 − Γ1

11K1K1 − Γ1
22K2K2

dK2/dλ = −2K2(Γ2
24K4 + Γ2

12K1)
dK4/dλ = −Γ4

11K1K1 − Γ4
22K2K2

Control Eq.: (K4)2 = g11(K1)2 + g22(K2)2

Objective: δB = a(t0)K4
0/a(tD)K4

D − 1

(17)

where the Christoffel symbols we must compute with the CS algorithm appear. The inde-
pendent variable is the affine parameter λ and the dependent variables are M, θ, t, K1, K2, K4.

These equations form a system of six coupled differential first-order equations that
have to be integrated with the suitable initial conditions. As when one gives conditions
in tD, one has many problems to ensure that the photon arrives at the observer at t0, and
the best procedure is to do it in the inverse way. It is supposed that the observer is looking
in the direction that forms an angle Ψ0 with the OCs axis, and then the initial conditions
should be:

λ0 = 0, K1
0 = − cos Ψ0√

g11(MO, t0)
, K2

0 = − sin Ψ0√
g22(MO, t0)

, K4
0 = −1,

where the 0 subscript stands for the initial value while MO is the M coordinate of the
observer shell.

Let us also suppose that CMB is homogeneous in the hypersurface t = tD and that
the temperature of all the photons that start from that hypersurface is constant. In these
conditions, it is well-known that the gravitational anisotropy to be computed verifies:

δB =
a(t0)K4

0

a(tD)K4
D
− 1, (18)

where a(t) is the scale factor.
Theoretically, one only has to compute K4

D by integrating (backwards in time) the
system of equations. In any way, it can be supposed that problems with the stability
of the system will appear in the case where you need to obtain δB of the order of 10−5

with Equation (18), which should be the precision required in K4
D to obtain at least seven

correct decimals in the quotient and to be able to guarantee that δB has at least three correct
significative digits. If what one tries to do is to obtain quasi null anisotropy (FLRW limit),
the precision requirements should be even greater.

As it can be noticed, the problem is not only the election of an appropriate integration
method. One will also need for the integration step to also adapt to a precision that one
elects, as for great values of M, LTB tends to FLRW. A very small step is only valid to
increase the global round error and the CPU cost. Moreover, in these conditions, the
gravitational anisotropy will change very little. (b) For small values of M, the density
contrast increases in one direction and decreases in the opposite one, so one has to be very
precise in the chosen step, as in this case, the greater changes of the gravitational anisotropy
are present.
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We have chosen a Runge-Kutta-Fehlberg of order 4(5) with a variable step requiring, at
first, a local truncation relative error of the order of 10−10 in every variable. Of course, this
forces us to demand that the roots x and z of the equations solved with the CS algorithm
also have the same relative precision, although the functions determined through numerical
derivation may not have it.

7.1. Numerical Instability of the Initial System

When system A was tried to be integrated for ε = 0 (FLRW test) with the VAX
(From the IFIC, of València) computer, it was found that, in some directions Ψ0, this
integration stopped without reaching tD because it found negative values of M, despite
the quadruple precision required to minimize the rounding errors. This absurd result
indicated uncontrolled oscillations in the system coefficients (numerical instability). When
Γα

βγ implied values where plotted amplified oscillations were detected in the Γ1
11, as it was

predictable for, it was the only term with sum/subtraction of functions.

7.2. First Numerically Stable System

Problem 1. In order to avoid the problems with the Γ1
11 term, it must not appear in the system

to integrate.

Solution 1: Substitute the equation where the Γ1
11 term appears by the control equation.

At the same time, the independent variable is also changed considering now the t variable
instead of the affine parameter λ. In this way, a greater control is achieved on the time that
the integration must be stopped.

Once these changes are made, the new system to solve is the following one:

System B:


K1/K4 = dM/dt, K2/K4 = dθ/dt

1 = g11(dM/dt)2 + g22(dθ/dt)2

dK2/dt = −2(K2/K4)(Γ2
24K4 + Γ2

12K1)
dK4/dt = (−Γ4

11K1K1 − Γ4
22K2K2)/K4

Control Eq.: K4dK1/dt = −2Γ1
14K1K4 − Γ1

11K1K1 − Γ1
22K2K2

Objetive: δB = a(t0)K4
0/a(tD)K4

D − 1

(19)

where the dλ = dt/K4 equation is unnecessary because the value of this parameter is
not interesting and the equation eliminated is now used as the control equation with the
purpose of controlling the Γ1

11 oscillations (by comparing the obtained value when clearing
the unknown in this equation, with the value obtained in the CS algorithm).

The integration of System B with ε = 0 (FLRW test) allows to arrive at tD if |Ψ0| ≥ 0.1
grades. Then, the numerical instability of the system has disappeared, and the diagnosis
of Problem 1 has been confirmed. Nevertheless, the final values of δB are of the order of
10−5, depending on the initial value of Ψ0, although they should be close to 0. This fact
indicates that, either (1) there are systematic errors in the integration or (2) the step fit of
the integration is not suitable. As a matter of fact, both cases appear when the observation
angle Ψ0 is small.

In the case that Ψ0 is small, the trajectory of the photon which comes from tD is each
time nearer to Cs, and therefore travels through shells with decreasing M until it starts
to go far away from Cs. This indicates that dM/dt changes its sign at some point of the
photon trajectory defining a minimum at M < MO. This minimum should be detected
by the integration method or else systematic errors might appear. Moreover, the objective
function does not help in the adjustment of the integration step, and this is dangerous as if
significative digits should be lost, then:
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7.3. Inclusion of the Objective Function

In the previous section, (Section 7.2), some troubles have been presented. They should
be summarized this way:

Problem 2. (2a) The possible change in the sign of dM/dt must be detected.
(2b) The objective function must be included in the system of equations.

Solution 2.
(2a) The second line of system B suggests that dM/dt could be cleared as a function of

dθ/dt or vice versa, but then the sign will not be well-defined. This equation is of the type
1 = cos2 α + sin2 α as both g11 and g22 are positive, and therefore, an angle α must exist,
such as one that can define these derivatives through trigonometric functions.

As a matter of fact, let (K1, K2, 0, 0) be the spatial projection of the tangent vector to
the null geodesic and (

√
g11(M, t), 0, 0, 0) be the radial direction which joins Cs with the

photon. The cosine of the angle formed by these two vectors is given by the quotient of the
dot product of both vectors and their norms, that is:

cos(α) =
K1√g11√

K1K1g11 + K2K2g22
,

which when using the first and second equations of system B, the following is obtained:

dM
dt

=
cos α
√

g11
,

dθ

dt
=

sin α
√

g22
,

and allows for rewriting of the other equations in terms of α. Now the sign of dM/dt
is perfectly defined, and this derivative changes its sign when α = π/2± nπ with n as
an integer.

On the other hand, the initial value of α at t0 is, evidently, Ψ0 (see Figure 5), and the
following can be written:

dα

dt
= sin α

[
(Γ1

14 − Γ2
24) cos α−

Γ2
12√
g11

]
.

Figure 5. Plane of the LTB with t = constant and ϕ = 0. The angle α(t) and the observation direction
Ψ0 are plotted.

Now the integration from t0 to tD is done in two parts when cos α changes its sign,
both of them with constant signs. In this way, it is definite that no “jumps” in the extremal
point are produced because this is in a great step-interval of integration. This modifies
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the RKF45ng in the following way (if |Ψ0| < π/2): (i) While |α| ≤ π/2 both in t and in
t− h, the RKF45ng controls the change of the step. (ii) The first time that a change of sign
between t and t− h appears, the increase of the step h is forbidden until indicated, the
values in t− h are not accepted, and the step is divided by 10. The integration follows with
such a restriction and every time that |α| > π/2 is overcome, the new value is not accepted
and a division by 10 is made in h. (iii) When |h| < tolh or π/2− |α| < tolα, the control of
the step is returned to the RKF45ng so that the integration is completed by increasing or
decreasing the step.

As our goal is to be near the extremal point with a desired precision and it is also
known that the extremal point is unique (if it exists), no more changes are needed, except
by the obvious ones that must be done when the integration is from tD to t0 in the double
integration test proposed further on.

(2b) With the aim that the integration algorithm also controls the error of the objective
function, the auxiliary function is defined as follows:

δ(t) =
a(t0)K4

0
a(t)K4(t)

− 1,

that verifies the relation δB = δ(tD). The total derivative with respect to the time of this
equation,

dδ

dt
= (1 + δ)

[
(Γ1

14 − Γ2
24) cos2 α + Γ2

24 −
1
a

da
dt

]
,

gives a new differential equation for δ with initial value δ(t0) = 0 and that leads to the
following system:

System C:



dM
dt

=
cos α
√

g11
dδ

dt
= (δ + 1)

[
(Γ1

14 − Γ2
24) cos2 α + Γ2

24 −
1
a

da
dt

]
dα

dt
= sin α

[
(Γ1

14 − Γ2
24) cos α−

Γ2
12√
g11

]
with the variables α, δ and M decoupled from the other ones, although the integration of
system C with ε = 0 does not substantially improve the results from System B.

Our conclusion is that the true problem with this test is in the different value ranges
that the variables and their total derivatives with respect to t have. Thus one has that: (i)
M has a very great range of positive values that depends on the observation direction Ψ0,
but dM/dt has a constant sign in some directions and changes in other ones. (ii) α always
has values in ]0, π] (if the observation direction is positive) and has monotonous behaviour
when travelling along the null geodesic. (iii) δ achieves a maximum (As M achieves a
minimum) whether |Ψ0|mod π is small but, in any case, its variation range is very small.

7.4. Rescaling of the Variables. RKF45ng Algorithm

Therefore, rescaling the truncation error in each variable or the integration method
is necessary, which will adjust the step according to the truncation error of the domi-
nant variable.

The question here is that we are building an general algorithm, and there is no “perfect
rescaling” that allows us to consider all the possible combinations of LTB, linear or not,
with success guarantees. Moreover, the scaling of errors will depend on the observation
direction, and this cannot be achieved with the classical method of defining a “relative
weights” vector for the variables.

The only way to make all the integration variables have a similar truncation error is to
make a change in the variables M and α to another y1 and y2, that represents small changes
in their values and their derivatives values. Such a change of variable must be considered
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as variable rescaling, at every integration step, that helps the RKF45ng to control the local
truncation error according to the physical conditions of the problem.

Given the Ψ0 direction and the null geodesic of the LTB γ that arrives to O in this
direction, let γB be a fictitious null geodesic of FLRW that arrives to O in the same direction.
(a) Associate point of both geodesics with the same coordinate t. The point (M, α, t) ∈ γ
is made corresponding with the point (MB, αB, t) ∈ γB. (b) Use MB and αB to define
the integration variables, y1 = MB/M, y2 = αB/α. Now, the variables y1, y2, δ will be
the ones that control the step and the two first variables have the range reduced in the
neighbourhood of 1.

In terms of the variables δ, y1 and y2, the system to solve is formed by the following
equations:

Final
System:

}



dδ

dt
= (1 + δ)

[
(Γ1

14 − Γ2
24) cos2 α + Γ2

24 −
1
a

da
dt

]
,

dy1

dt
=

1
M

(
dMB

dt
− y1

dM
dt

)
,

dy2

dt
=

1
α

(
dαB
dt
− y2

dα

dt

)
,

dα

dt
= sin α

[
(Γ1

14 − Γ2
24) cos α−

Γ2
12√
g11

]
,

dαB
dt

= sin αB

(√
1 + r2

ar

)
,

dMB
dt

= −3MB

(
dαB
dt

)
ctg αB,

with MB = 4πρBa3r3/3, being MB = M, αB = α at t0. Now the two last equations allow us
to obtain some acceptable values of MB and αB, based in the FLRW background, to rescale
the variables M and α at y1 and y2.

If the order of the variables chosen is: δ, y1, y2, α, αB, MB, the rescaling vector can be
defined as scale = ( f acδ, 1, 1, 0, 0, 0) that multiplies the truncation error of each variable.
This definition implies that the RKF45ng will not consider the variables α, αB, MB to adjust
the step. For y1 and y2 will simply consider their truncation error, while for δ it will consider
its truncation error multiplied times f acδ. Such an election first allows the integration with
f acδ = 1 and, if the results are not satisfactory with the new suitable tests, f acδ may
progressively be increased and force the RKF45ng to make smaller steps.

More concisely, define: (a) A ∆i = (yn+1)i − (y∗n+1)i for each integration variable
(see [4]). (b) Now the vector reesci = ∆i ∗ scalei. (c) Finally, ∆ = ‖reesc‖1 (the maximum
modulus component). Then the RKF45ng is now prepared so that it only considers the
truncation errors of the first three variables to adjust the step.

Theoretically, there is no limit for f acδ. Thus, with f acδ = 105, the condition ∆ ≈ 10−10

reads 105 ∗ ∆1 ≤ 10−10. The local truncation error in δ is required to be of the order of
10−15! and the relative error in the final step of the order of 10−12 in 1000 steps. This must
be avoided as the greater f acδ is, the greater the CPU cost is, more integration steps are
done, and the global rounding error increases.

The variables y1, y2 should oscillate around the unity, so that the f acδ = 1 and the
condition of absolute error of local truncation is ≈ 10−10, and leads to us asking whether 9
or 10 are correct decimal digits in y1, y2 and δ. If δ reaches values of the order of 10−5, at
least two or three correct digits are expected in 1000 integration steps. Such precision is
acceptable to determine the order of the gravitational anisotropy, and it makes no sense to
demand more precision given the CPU cost and the problem conditions.

7.5. Convergence and Stability. FLRW Test for RKF45ng with ε = 0

Once the final system is integrated with ε = 0, tolr = 10−10, f acδ = 1, with local
truncation of the order of tolr and quadruple precision in the VAX computer of the IFIC:



Mathematics 2022, 10, 593 17 of 27

(a) The RKF45ng arrives at tD if |Ψ0| ≥ 0.001 grades in a number of steps between 800 and
1200, according the direction. (b) The |δB| values obtained are in the interval [10−26, 10−24]
≤ tolr2 × 10−4. As some of the computed functions by derivation should have a relative
error greater than the local truncation error, it must be concluded that the final system is
numerically stable for the FLRW limit.

7.6. Convergence and Stability. New Tests for the RKF45ng When ε 6= 0

Once the stability of the system for the FLRW limit has been checked, the guarantee
that the final system is working properly for great values of M is achieved, and therefore,
one can be confident that the process of integration does not “contaminate” the δ variable at
tD. A check of the final results obtained for LTB is lacking. In order to do this, the following
test was designed.

7.6.1. Double-Integration Test

Let us call rk f 45ng the algorithm of integration of the Final System of the null geodesics.
If valini stands for the initial set of values and val f in for the final set of values, with the
notation [val f in] = rk f 45ng(valini,±1), where the + sign indicates integration from tD to
t0 and vice versa. If:
1. [val f in] = rk f 45ng(valini,−1),
2. [valini1] = rk f 45ng(val f in,+1),
the difference |valini − valini1| allows to “estimate” the recovered digits of each initial
variable.

7.6.2. Direction Test

Integrate the final system with Ψ0, where −Ψ0 and Ψ0 ± 2π allows us to detect the
possible disarrangements in the rescaling vector when the modulus of α or its sign are
changed.

7.6.3. Extrapolation Test

The final plots of δB as a function of Ψ0 analysis allows us to determine the smoothness
of this curve and the appropriate working of the extrapolation to Ψ0 = 0.

7.6.4. Linear Test

If some of the inhomogeneities that are in a linear regime at present are generated, one
can obtain δB with the linear code and with the rk f 45ng, and compare their results.

For the case of ε 6= 0, tolr = 10−10, f acδ = 1, with local truncation of the order of
rescaled tolr and quadruple precision in the VAX of the IFIC.

For the linear test, the following steps are given:

1. With both codes, linear and rk f 45ng, the present temperature contrast δB is computed
for values of Ψ0 = 1, 2, · · · , 180. In Ψ0 = 0 the result is obtained by extrapolation.
This way, the values of δB are known in 181 evenly spaced points.

2. By taking into account that T(t0)/TD = (1 + δB)/(1 + ZD), the T0(Ψ0) temperatures
in each direction and their mean are computed:

< T0 >=
1
2

∫ π

0
T0(Ψ0) sin(Ψ0)dΨ0.

3. Now the new contrast is computed:

δT(Ψ0) =
T(Ψ0)− < T0 >

< T0 >
.

As a consequence of this definition, the monopole of δT is null.
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4. The dipolar contribution to δT is related with the Observer–Symmetry Centre relative
velocity (Doppler Effect). The other contributions to δT are named δR or nondipolar
anisotropy contribution, and are computed by subtracting the dipolar part from δT .

5. Given any inhomogeneity O3–O7 of Table 1b, δT plots of the linear solution and of the
rk f 45ng solution are indistinguishable.

6. For the case O4, the plots δR(Ψ0) are shown in Figure 6a. The continuous plot cor-
responds to the linear computations, while the discontinuous plot corresponds to
the non-linear ones (rk f 45ng algorithm). The figure shows that both results are very
similar. This means there is very simultaneous effectiveness in both schemes. For
the other inhomogeneities of Table 1b, we also obtained very similar results for both
algorithms (linear and non-linear). Figure 6b plots the non-linear computations of
δR(Ψ0) for the cases O3–O7 of Table 1b. In Figure 6b, we can appreciate that the
CMB anistropy grows as the values of Ω decrease. Therefore, these kinds of CMB
anisotropies, δR(Ψ0) values, are greater as the model of universe is more open.

(a) (b)
Figure 6. Plot of δR × 106 as a function of the observational angle, Ψ0, in degrees. (a) Inhomogeneity
O4. The continuous plot is the result of the linear computation. The discontinuous plot is the result of
rk f 45ng computation. (b) Anistopies of overdensities in universes with different Ω values.

8. Results and Discussion

Next, some of the most important physical results of the numerical work presented in
this paper are discussed, as well as an indication of where they have been published. The
detailed numerical and computational techniques that were not presented in such papers
are presented here. The value of the results presented here and their original features have
been analysed throughout our present paper.

The first results of the physical application presented in this paper can be found
in the Ref. [11]. This was the first time our method was presented. Linear tests and
preliminary results with non-linear structures were demonstrated. The first conclusion was
that, in linear structures, both our non-linear and linear algorithms produced graphically
indistinguishable results. The results had to be expanded down to the quadrupole to
appreciate the difference. As a side-effect, we found that our non-linear algorithm produced
higher levels of precision in δB than expected. The reason for this was that even the
octupole (with values between 10−7 and 10−9) “appeared” to behave properly, although
only tolr = 10−10 was required as the local error bound in each step and between 800
and 1200 steps were performed in the cases treated there. A less robust code would have
presented octupole noise contamination in all likelihood.

Concrete simulated experiments with the non-linear version (part) of the algorithm
were performed on the clearly non-linear structures of the Great Attractor and the Virgo
cluster [12]. These calculations referred to the computation of the quadrupole. This was
separated into two parts: (a) QD or relativistic quadrupole and (b) QR or the remainder.
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Comparisons with results of COBE satellite data were made, which revealed that QR ≈ 10−7

was too small to be detected with the technology of the epoch (nineties of the past century).
At the same time, the robustness of our code in [11] was confirmed, which reinforced
our results. The effect of a Great Attractor-like structure located at Z0 was also studied
between redshifts 2 and 30 [13]. If the density parameter Ω0 was varied between 0.15 and
0.4, the conclusion was that the pure gravitational effect of these structures was sufficient
to explain a significant part of the large-scale anisotropy of the Universe. Such a conclusion
meant that it might be necessary to review the concept of large-scale angular anisotropic
generation. The results presented in the Ref. [13] were published as a rapid Letter due to
the importance of their findings.

More results were obtained after the previous papers. In the Ref. [14], a modification
of the density profile at tD was presented. This modification included two contrast values
ε1 < 0 and ε2 > 0 and two radii of the core Rv1 >> Rv2, that is, two superimposed
disturbances with the same centre of symmetry. These values should be adjusted so that
at a certain R >> Rv1, in tD, the density contrast would be null (compensated structures
at a predetermined distance). To do this, the PARAM algorithm was modified in a non-
trivial way. Many graphs and tables which helped clarify the analysis were generated,
and important conclusions, for instance, the compatibility with observational data, were
obtained. The most interesting findings were produced for very open universes and objects
very far away from the observer. A deeper study of the structures presented in the Ref. [13]
can be found in [15]. A more in-depth study of great underdensities was also performed.
in the Ref. [16], the study of the Boötes void with a similar technique to that of paper [14]
was carried out; that is, simulating a density vacuum surrounded by a “wall” with excess
density which compensated the internal void.

Moreover, we have the following papers about CMB anisotropies in LTB universes: [51–56].
The reader may find comprehensive explanations, including important consequences of
previous applications performed with our algorithm, in the book [17] and in the review
paper of the Ref. [18]. The latter paper also outlines an overview of CMB and CMB
anisotropies research so far.

At this stage, we would like to say some words about the results and the convergence
and stability of our algorithms. They are written in the next three paragraphs.

With the example we were trying to solve, we have proven that with the expected
signal of our objective function, the temperature contrast, or anisotropy of the CMB in an
LTB universe, was persistently polluted by the integration method. If ε = 0, the density
contrast was null and our objective function should be 0 for any value of t, in particular for
t = tD, since we would be integrating in a FLRW universe or asymptotic limit. It could be
argued that the EDOS of the LTB is inadequate for the FLRW, but it was clear that at a great
distance from the centre of the disturbance in both universes they almost coincided in any
direction of observation and the integration method was contaminating the signal we were
studying. Our integration method was one of the most widely used among Runge–Kutta
ones—the Kasp–Carl version of the RKF45. However, since we did not need to resort to the
coefficients which provide methods of order h3, h2 and h1, we had actually used an RKF45.
The convergence and theoretical stability of such a method is sufficiently analysed in the
bibliography (see, for instance, [3,4]).

Our tools are now successively presented to show which specific problems improve,
and to make a normalized analysis of the value of each tool, and with that aim, specific
parameters of precision requirements are given. These were: (i) tolr = 10−10 as the bound
of the local truncation error and of the relative precision of the root calculation when it was
performed, (ii) ε = 0 so that our objective function gave us the order of the polluting noise
and (iii) calculation in quadruple precision to minimize the effect of rounding error (see
Appendix B). With this we intended to estimate the impact of the noise in our objective
function. We assumed that the initial system could not reach tD in some directions because
it obtained M < 0 in some layers, which was absurd. We rewrote our ODES to avoid
this problem. Thus, we managed to get tD up to 0.1 degree observation angles in a first
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correction. It was only after applying all the mentioned tools and getting the final system,
that we verified that our objective function was less than tolr2/1002. This was a resounding
zero given the tolerance, tolr, required for each function and its derivatives. It must be
noted that if the local truncation error was of the order of tolr, when performing about 1000
integration steps, the theory told us that the global truncation error could be of the order of
1000× tolr, that is, it could become of the order of 10−7. On the other hand, we checked that
the overall noise was of an order less than 10−24 when working with quadruple precision,
that is, about 38 decimal places. These findings ensure that our algorithms are robust,
sufficiently converge, and are very stable.

Our algorithms have been used in a series of papers that are described above. They
have been applied both in linear and non-linear structures. Some interesting results about
stability and convergence can be summarized as follows: (i) The double integration test
gives values in the rang |valini − valini1| ∈ [10−8, 10−7] for δB. As the initial value of
δB = 0 and the final value is δB ≈ 10−5, it is deduced that the final value should have at
least 8–9 correct decimal digits, which is enough. As a matter of fact, it is highly possible
that it has more correct digits due to the fact that the way to “force” the approximation to
α = π/2 is not equivalent for both integrations. (ii) The other initial variables give similar
relative error results, i.e., |valini− valini1|/|valini| ∈ [10−8, 10−7] . (iii) All the published
plots are smooth enough to allow extrapolation at Ψ0 = 0.

There are recent examples of optimization of numerical methods similar to ours. For
instance, the numerical resolution of the Dirac equations (see [19] where the DiracSolver
is introduced. See also references therein). Another technique which improves numerical
algorithms following a procedure that has some similarities with our work is that presented
in the Ref. [38], in which the author extended methods of deriving variational integrators
to provide solutions of systems having oscillatory behaviour. His techniques are applied
to problems of discrete Lagrangian functions, discrete Euler-Lagrange equations and the
definition of a weighted sum of ”continuous intermediate Lagrangians” each of them
evaluated at an intermediate time node. Additionally, the author introduced different
numbers of intermediate points. He assessed the accuracy, convergence and computational
time of the proposed technique by testing and comparing them with well-known standards.
This work has points of connection with our research as the tests have similarities in the
standards used (see also references therein in the Ref. [38]). There is a recent numerically
research in Astrophysics which could be connected to ours too. in the Ref. [57] the
authors numerically worked with the McVittie’s metric and the Mathisson–Papapetrou
(MP) equations in the post-Newtonian approach [58]. They analytically and numerically
investigated the orbits of spinning particles around black holes in the post-Newtonian limit
and in the presence of cosmic expansion. On the one hand, we could connect the study
with LTB and LFRW metrics with McVittie’s one. On the other hand, the spinning particle
orbits could be compared with our numerical Relativistic Positioning Systems techniques
used in the Refs. [47,59].

9. Summary and Conclusions

We have presented here the resolution of an ODES applied to a cosmological problem.
We chose a RKF45 instead of an Adams. Here, we describe all the adaptations we have
made to solve our physical problem. The objective function has been defined. The originality
of our work is that the numerical tools used in our algorithms, which are particular to our
problem, should be extended to other problems in the fields of physics and engineering as
we remark in the text. The accuracy of the predictions depends on the accuracy of the model
and the rigour of the tests. This is also discussed along the text. The numerical algorithms
built to solve the physical problem have been described for the use of adaptive step-size
numerical methods. In their application, some general properties have been used, and
can be extrapolated to other problems. Catastrophic cancellations have been suppressed,
and such kinds of suppression can be considered in similar problems. Additionally, the
introduction of the objective function helps the optimization of the resolution of the ODES.
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Moreover, local error resizing is applied, and its usefulness is explained in our paper. This
resizing is performed by the use of the asymptotic solution of the ODES. This technique
can also be applied to similar problems. The change of variables guarantees the stability of
the solution. The linearization of the problem is used as a powerful control test. What we
state here is that this kind of tool should solve a wide range of problems that are unstable
or do not have a proper solution with the modern numerical tools. These results represent
one of the main novelties of our paper and their scientific contribution.

Some conclusions can be extracted by our present study. The IVP techniques used in
our research can be applied to solve ODES. Such techniques should be used when applying
adaptive step-size numerical methods with variables in a wide range of values and that
seek an almost residual objective function value. In order to consider these Dynamical
Systems as a disturbance of the asymptotic system, it is necessary to find an asymptotic
solution on which to rely. In this case, the Dynamical System is remodeled in order to study
the evolution of this disturbance. This is the meaning of our change to the variables y1,
y2 and the rescaling of the errors. The RKF45 algorithm used and its adaptive methods
can be applied to other similar problems, such as N-body problems, like AP3M, or similar.
The way that catastrophic cancellations are eliminated should be used in problems where
ODES have to be solved. Mathematical optimization was carried out by introducing the
objective function in the ODES. We encourage the use of this procedure when an ODES
has similar treatment. Local error resizing was also executed to solve the problem. This
resize implies the use of certain variables to adjust the integration step, while the other
variables are used as parameters to determine the coefficients of the ODES. This resize is
made by using the asymptotic solution of this system. This approach has demonstrated
to be very useful and should be applicable to other similar problems as ours. The change
of variables is necessary to guarantee the stability of the integration. The linearization of
the ODES, when possible, should work as a powerful control test. All the skills named
in these paragraphs are powerful tactics to be applied to physical problems where ODES
are needed.

We will now say a few words about future extensions of our research and an outlook.
The case we have treated here is the effective numerical resolution of LTB space-time
solutions of EE. These tools can also be applied to other LTB problems which make them
relevant. In addition, our procedures may be used with other metrics, such as McVitte’s
one [57]. As a matter of fact, we have used them in N-body algorithms when studying
the large-scale structure of the universe in Cosmology, as well as the CMB anisotropies,
both in the framework of the Hydra project (see [45,46]) or similar (see [60]). The Hydra
code is based on AP3M (Adaptive Particle-Particle, Particle-Mesh) and is adapted with
our routines to the evolution of Dark Matter (with and without gas) in Cosmology. At
present, some of our techniques are also being applied in Relativistic Positioning Systems
in the Solar System (see [47,59]). We solved an ODES of 36 equations of which initial
values were obtained from ephemeris and evolved with EE using an asymptotic system of
Schwarzschild’s metric. Our rescaling approach is crucial as the differences from satellites’
and celestial objects’ semi-axes in the solar system must be solved. In the near future, we
want to present the progress of our skills and the new algorithms built so far in another
paper. All of these and similar techniques are powerful tools for other astrophysics, physics
and engineering issues in general. We hope all the procedures presented here and in other
publications will be useful in the resolution of ODES, both in our specific field and in
science and technology in general.
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Appendix A. Some Important Definitions

1. Comoving coordinates. These coordinates assign constant spatial coordinate values
to observers who measure the universe as isotropic. As such observers move along
with the Hubble flow, they are called comoving observers. CMB is also perceived to
be isotropic. It is useful, for our purposes, to assign comoving coordinates to every
point of the universe because LFRW and LTB universes are in expansion. Moreover,
due to the spherical symmetry of such universes we choose coordinates P(M, θ, ϕ, t),
with the origin in the symmetry centre Cs of the perfect fluid which is their source.
Furthermore, we take the coordinates O(MO, π, 0, t) (beeing O the observer), as the
ϕ coordinate becomes useless in our study. Additionally, for symmetry reasons, it is
sufficient to study the spatial half-plane that contains the OCs axis (see Figure 1).
The M coordinate is a label associated to every spatial spherical surface with centre in
Cs, named shell, and is related to the mass-energy contained in the surface defined
by the shell. The radial coordinate R(M, t) of such a shell depends on the time and is
related with M and ρ(M, t) through the EE.
In FLRW, we choose an arbitrary point as the origin of coordinates and an arbitrary
direction as the axis (at constant t, all the axes are equivalent) and the coordinates
Q(r, θ, ϕ, t) are also defined, where r is a radial coordinate, which is also comoving.
The shells in this universe are a mere auxiliar definition which depends on the origin
of coordinates.

2. Decoupling time. This is defined as the time tD, where it can be considered that the
dominant effect over the free photons is gravitational. This moment is as far as it
is measured by the spectral lines Redshift ZD. Decoupling time should be taken at
ZD ≈ 1100. From this moment, photons freely propagate in the gravitational field of
the Universe and its structures. As we are interested in computing the gravitational
effect produced by nonlinear structures, we can take initial values at some suitable
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ZD < 1100. In our work, we take initial values at ZD = 50 ≈ 103 Mpc (1 Mpc ≈ 3.2
106 lightyear).

3. Scale factor. This is the time function a = a(t) included in the FLRW metric. The
distances among galaxies are proportional to the scale factor and the following relation
stands a(t) = a(t0)/(1+ Z), where t0 is the present time and Z is the redshift at time t.

4. Critical density This is the mass density value ρc such that, when it exceeds, the effect
of gravity in the universe is great enough to stop its expansion in finite time. In our
work, we used it to define different values of ρB as background FLRW universes for
our model of LTB. This definition is made through the density parameter Ω = ρB/ρc.
Thus, values such that Ω < 1 originate FLRW open universes, while Ω > 1 values
originate closed FLRW universes. The Ω = 1 case corresponds to a flat FLRW.

5. Density profile. This is an initial condition to determine the LTB metric. At the initial
time tD we take, in this work, a density profile given by:

ρ(M, tD) = ρB

1 +
ε

1 +
(

R
Rv

)2

, (A1)

where ε gives the maximum density contrast (ρ− ρB)/ρB and Rv indicates the radial
coordinate at which this contrast is reduced to a half (we call it core). As t varies, ρ(M, t)
changes. The new profile in t may change its shape if the perturbation is nonlinear.
Nevertheless, with linear perturbations it is acceptable that the shape of the profile
remains the same.
Both Rv and ε besides Ω, are initial values, for the searched algorithm. Ω ∈ [0.2, 1[
have been taken in the present work. With this initial profile, the spherical symmetry
is guaranteed and the asymptotic FLRW limit with ρB = cte.

Appendix B. Numerical Aspects to Take into Account

Appendix B.1. IEEE Norm

The standard representation of numbers in floating point arithmetic (scientific calculus)
is of the type y = ±(.d1d2 . . . dt)β × βe, and is defined by four integer values. The base β,
the precision or word length t, and the range of exponents emin ≤ e ≤ emax. The mantissa
m = ±(.d1d2 . . . dt) accomplishes 0 ≤ m < 1 and 0 ≤ di < β. In order to ensure unique
representation, d1 6= 0, and, in this case, the representation is said to be normalized; if the
base is also 2, the d1 = 1, so it is not necessary to save it as the decimal point.

The word length t is chosen for each variable by assigning a type such as float, double,
quadruple, and so forth, and here comes the concept of precision and rounding error for
each variable. The IEEE standard specifies three basic formats, among others. In order not
to extend ourselves too much, we limit ourselves to binary machines (see Table A1).

Table A1. Storage of variables in the IEEE standard in binary machines. Rounding units and range of
variables according to the declared type.

Type Long Mantissa Expo Rounding Unit Rank

Float 32 bits 24 bits 8 bits 2−24 ≈ 5.96× 10−8 10±38

Double 64 bits 53 bits 11 bits 2−53 ≈ 1.11× 10−16 10±308

Quad 128 bits 113 bits 15 bits 2−113 ≈ 9.63× 10−35 10±4932

The IEEE standard also specifies that if w is an elementary operation on the operands
(x, y), the result of z = (x w y) must be given as if the operation (x w y) was performed
exactly and, when obtaining the result, it was rounded. This standard allows us to guarantee
that the relative rounding error of the elemental operations is of the order of the values
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given in column 5 of the table above. Naturally, the loss of significant digits has nothing to
do with rounding, but with the negligence of the programmer.

Appendix B.2. Intrinsic Functions

We refer in this section to the functions that compilers incorporate as elementary
functions exp, log, sqrt, all hyperbolic and trigonometric functions and their inverses, and
so forth. Such functions are optimized not only in CPU time, but also choose the most
suitable method to the value of the input variable to ensure that the error in the output is of
the order of the rounding unit. Such functions should be used whenever possible in order
to have an estimate of rounding.

Appendix B.3. Numerical Derivation

In numerical analysis, it is well-known that given g(x) ∈ C2 and ∀h, Taylor’s develop-
ment allows us to write

g(x + h) = g(x) + g′(x)h +
1
2

g′′(ξ)h2, ξ ∈]min(x + h, x), max(x + h, x)[,

so it is very common to calculate the numerical derivative of the function g(x) using the
Mean Value Theorem

g′(x) =
g(x + h)− g(x)

h
, E(g′) ≤ 1

2
max

ξ
| g′′(ξ) || h | (A2)

where E(g′) designates a bound of the truncation error for the derivative, error because we
have truncated the Taylor expansion in the linear approximation.

With the relative error of g′ we are already presented with the first problem because
we should calculate E(g′)/ | g′(x) | and that can give problems in an environment of
the extremals of g(x) where the derivative is close to 0. It is true that if the derivative
vanishes it should be g(x + h) = g(x), but in finite precision arithmetic finding, strict
equality is a lottery and we cannot subject our algorithms to such chance. Additionally,
E(g′) can lose significant digits if h is too small, making our attempt to control the error
even more disastrous.

We refer to this problem when we say that the truncation of the derivative is of order O(h)
while rounding is of orderO(1/h). We are actually talking improperly and we should say that
rounding is in the order of the rounding unit mentioned in the IEEE standard, divided by
| h |. If h is small, we are losing precision in the derivative, as if our variable double became
float in a single calculation when h ≈ 10−8. Due to this circumstance, it is essential to
implement ways to detect the extremals by means of geometric or trigonometric formulas
that allow us to avoid these problems.

While it does not seem feasible to avoid amplification by h of any errors in the eval-
uation of g(x), we can protect ourselves against the possible catastrophic cancellation in
∆g = g(x + h)− g(x) when both evaluations have the same sign since otherwise, there
is no problem. The solution is so simple as to use the Taylor expansion of the function
log(| g(x + h) |). Suppose g(x + h), g(x) > 0, and we will have:

log(g(x + h)) = log(g(x)) +
g′(x)
g(x)

h +
1
2

(
g′′(ν)
g(ν)

−
[

g′(ν)
g(ν)

]2
)

h2, (A3)

with the same conditions for ν that ξ had before. If now we are left with the linear
approximation and we solve g′(x), we are left with:

g′(x) = g(x)
log(g(x + h))− log(g(x))

h
=

g(x)
h

log
(

g(x + h)
g(x)

)
. (A4)
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Now the quotient of the evaluations of g is an elementary operation and log is an
intrinsic function so all operations are within the scope of the rounding unit corresponding
to the type of declared variable. The h can be very small and will only affect the value of
g′, but since both values g(x + h) and g(x) will be very close, the quotient will be close
to 1 and its logarithm tends to zero. It does not solve all the problems, but it helps to a
high degree in our case to calculate the three partial derivatives with respect to M in the
CS algorithm.
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