# Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Weight-Allocation Methods and Aggregation Based on Inducing Variable

**Definition**

**1.**

**Definition**

**2.**

## 3. Generating Relative Importance from Given Importance Information

#### 3.1. Weight Allocation for VCWV—Method 1

#### 3.2. Weight Allocation for VCWV—Method 2

**Example**

**1.**

## 4. Generating Relative Importance from Inputs of BUI

#### 4.1. Method 1 Value Induced Approach

#### 4.2. Method 2 Certainty Induced Approach

#### 4.3. Method 3 Value and Certainty Induced Approach

#### 4.4. Method 3.1 Combination-Inducing

#### 4.5. Method 3.2 Inducing-Combination

#### 4.6. Method 3.3 Aggregation-Function-Induced Method

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Agnew, N.M.; Brown, J.L. Bounded rationality: Fallible decisions in unbounded decision space. Behav. Sci.
**1986**, 31, 148–161. [Google Scholar] [CrossRef] - Chen, S.M.; Hong, J.A. Fuzzy multiple attributes group decision making based on ranking interval type-2 fuzzy sets and the TOPSIS method. IEEE Trans. Syst. Man Cybern. Syst.
**2014**, 44, 1665–1673. [Google Scholar] [CrossRef] - Chen, Z.S.; Yu, C.; Chin, K.S.; Martínez, L. An enhanced ordered weighted averaging operators generation algorithm with applications for multicriteria decision making. Appl. Math. Model.
**2019**, 71, 467–490. [Google Scholar] [CrossRef] - Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making; Springer: Heidelberg, Germany, 1981. [Google Scholar]
- Jin, L.; Mesiar, R.; Qian, G. Weighting models to generate weights and capacities in multi-criteria group decision making. IEEE Trans. Fuzzy Syst.
**2018**, 26, 2225–2236. [Google Scholar] [CrossRef] - Mesiar, R.; Borkotokey, S.; Jin, L.; Kalina, M. Aggregation Functions and Capacities. Fuzzy Sets Syst.
**2018**, 346, 138–146. [Google Scholar] [CrossRef] - Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Papoulis, A. Probability, Random Variables, and Stochastic Processes, 3th ed.; McGraw-Hill: New York, NY, USA, 1991; ISBN 0-07-048477-5. [Google Scholar]
- Pedrycz, W.; Chen, S.M. Granular Computing and Decision-Making: Interactive and Iterative Approaches; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Saaty, T.L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci.
**1986**, 32, 841–855. [Google Scholar] [CrossRef] - Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Syst. Appl.
**2019**, 116, 21–30. [Google Scholar] [CrossRef] - Gündoğdu, F.; Duleba, S.; Moslem, S.; Aydın, S. Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Appl. Soft Comput.
**2021**, 100, 106920. [Google Scholar] [CrossRef] - Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern.
**1988**, 18, 183–190. [Google Scholar] [CrossRef] - Jin, L.; Mesiar, R.; Yager, R.R. The properties of crescent preference vectors and its usage in decision making with risk and preference. Fuzzy Sets Syst.
**2021**, 409, 114–127. [Google Scholar] [CrossRef] - Yager, R.R. Induced aggregation operators. Fuzzy Sets Syst.
**2003**, 137, 59–69. [Google Scholar] [CrossRef] - Yager, R.R. Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst.
**1996**, 11, 49–73. [Google Scholar] [CrossRef] - Yager, R.R.; Kacprzyk, J.; Beliakov, G. Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Bodjanova, S.; Kalina, M. Approximate evaluations based on aggregation functions. Fuzzy Sets Syst.
**2013**, 220, 34–52. [Google Scholar] [CrossRef] - Liu, X.W.; Da, Q.L. A decision tree solution considering the decision maker’s attitude. Fuzzy Sets Syst.
**2005**, 152, 437–454. [Google Scholar] [CrossRef] - Yang, R.; Jin, L.; Paternain, D.; Yager, R.R.; Mesiar, R.; Bustince, H. Some preference involved aggregation models for Basic Uncertain Information using uncertainty transformation. J. Intell. Fuzzy Syst.
**2020**, 39, 325–332. [Google Scholar] [CrossRef] - Zhu, C.; Zhang, E.Z.; Wang, Z.; Yager, R.R.; Chen, Z.S.; Chen, Z.S. An uncertain and preference evaluation model with basic uncertain information in educational management. Int. J. Comput. Intell. Syst.
**2021**, 14, 168–173. [Google Scholar] [CrossRef] - Meng, F.; Cheng, H.; Zhang, Q. Induced Atanassov′s interval-valued intuitionistic fuzzy hybrid Choquet integral operators and their application in decision making. Int. J. Comput. Intell. Syst.
**2014**, 7, 524–542. [Google Scholar] [CrossRef] [Green Version] - Jin, L.; Kalina, M.; Mesiar, R.; Borkotokey, S. Certainty aggregation and the certainty fuzzy measures. Int. J. Intell. Syst.
**2018**, 33, 759–770. [Google Scholar] [CrossRef] - Mesiar, R.; Borkotokey, S.; Jin, L.; Kalina, M. Aggregation under uncertainty. IEEE Trans. Fuzzy Syst.
**2017**, 26, 2475–2478. [Google Scholar] [CrossRef] - Jin, L.; Mesiar, R.; Yager, R.R. On WA expressions of Induced OWA operators and inducing function based orness with application in evaluation. IEEE Trans. Fuzzy Syst.
**2021**, 29, 1695–1700. [Google Scholar] [CrossRef] - Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer: Kluwer, Dordrecht, 2000. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control.
**1965**, 8, 338–357. [Google Scholar] [CrossRef] [Green Version] - Almahasneh, R.; Tüű-Szabó, B.; Kóczy, L.T.; Földesi, P. Optimization of the time-dependent traveling salesman problem using interval-valued intuitionistic fuzzy sets. Axioms
**2020**, 9, 53. [Google Scholar] [CrossRef] - Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst.
**1986**, 20, 87–96. [Google Scholar] [CrossRef] - Atanassov, K.T. Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst.
**1994**, 64, 159–174. [Google Scholar] [CrossRef] - Bustince, H. A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst.
**2016**, 24, 179–194. [Google Scholar] [CrossRef] [Green Version] - Chen, S.M.; Hong, J.A. Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets. Inf. Sci.
**2014**, 286, 63–74. [Google Scholar] [CrossRef] - Chen, Z.S.; Chin, K.S.; Martínez, L.; Tsui, K.L. Customizing semantics for individuals with attitudinal HFLTS possibility distributions. IEEE Trans. Fuzzy Syst.
**2018**, 26, 3452–3466. [Google Scholar] [CrossRef] - Chen, Z.S.; Yang, Y.; Wang, X.J.; Chin, K.S.; Tsui, K.L. Fostering linguistic decision-making under uncertainty: A proportional interval type-2 hesitant fuzzy TOPSIS approach Based on Hamacher aggregation operators and andness optimization models. Inf. Sci.
**2019**, 500, 229–258. [Google Scholar] [CrossRef] - Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst.
**2010**, 25, 529–539. [Google Scholar] [CrossRef] - Dubois, D.; Prade, H. Possibility Theory: An Approach to Computerized Processing of Uncertainty; Plenum: New York, NY, USA, 1988. [Google Scholar]
- Chen, Z.S. Sustainable building material selection: An integrated multi-criteria large group decision making framework. Appl. Soft Comput.
**2021**, 113, 107903. [Google Scholar] [CrossRef] - Tao, Z.; Shao, Z.; Liu, J.; Zhou, L.; Chen, H. Basic uncertain information soft set and its application to multi-criteria group decision making. Eng. Appl. Artif. Intell.
**2020**, 95, 103871. [Google Scholar] [CrossRef] - Chen, Z.S.; Martinez, L.; Chang, J.P.; Wang, X.J.; Xiong, S.H.; Chin, K.S. Sustainable building material selection: A QFD-and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Eng. Appl. Artif. Intell.
**2019**, 85, 783–807. [Google Scholar] [CrossRef] - Chen, Z.S.; Wang, X.J.; Chin, K.S.; Tsui, K.L.; Martinez, L. Individual semantics building for HFLTS possibility distribution with applications in domain-specific collaborative decision making. IEEE Access
**2018**, 6, 78803–78828. [Google Scholar] [CrossRef] - Borkotokey, S.; Mesiar, R.; Li, J.; Kouchakinejad, F.; Siposova, A. Event-based transformations of capacities and invariantness. Soft Comput.
**2018**, 22, 6291–6297. [Google Scholar] [CrossRef] - Tao, Z.; Liu, X.; Zhou, L.; Chen, H. Rank aggregation based multi-attribute decision making with hybrid Z-information and its application. J. Intell. Fuzzy Syst.
**2019**, 37, 4231–4239. [Google Scholar] [CrossRef] - Liu, Z.; Xiao, F. An interval-valued exceedance method in MCDM with uncertain satisfactions. Int. J. Intell. Syst.
**2019**, 34, 2676–2691. [Google Scholar] [CrossRef] - Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, UK, 2009; ISBN 1107013429. [Google Scholar]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier
**1954**, 5, 131–295. [Google Scholar] [CrossRef] [Green Version] - Sugeno, M. Theory of Fuzzy Integrals and its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, Y.-Q.; Jin, L.-S.; Chen, Z.-S.; Yager, R.R.; Špirková, J.; Kalina, M.; Borkotokey, S.
Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information. *Mathematics* **2022**, *10*, 572.
https://doi.org/10.3390/math10040572

**AMA Style**

Xu Y-Q, Jin L-S, Chen Z-S, Yager RR, Špirková J, Kalina M, Borkotokey S.
Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information. *Mathematics*. 2022; 10(4):572.
https://doi.org/10.3390/math10040572

**Chicago/Turabian Style**

Xu, Ya-Qiang, Le-Sheng Jin, Zhen-Song Chen, Ronald R. Yager, Jana Špirková, Martin Kalina, and Surajit Borkotokey.
2022. "Weight Vector Generation in Multi-Criteria Decision-Making with Basic Uncertain Information" *Mathematics* 10, no. 4: 572.
https://doi.org/10.3390/math10040572