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Abstract: A quasi-3D refined theory is used to investigate the buckling response of functionally
graded (FG) porous plates. The present theory takes into consideration the effect of thickness stretch-
ing. Three models of FG porous plates are presented: an isotropic FG porous plate, FG skins with a
homogenous core, and an FG core with homogenous skins. The FG porous material properties vary
along with the thickness of the FG layer based on modified polynomial law. By using the principle of
total potential energy, the equilibrium equations are obtained. The buckling response is determined
for simply supported FG porous plates. Analytical investigations are verified to present the accuracy
of the current quasi-3D refined theory in predicting the buckling response of FG porous plates.
The effect of thickness stretching and several parameters such as porosity coefficients, mechanical
loadings, geometric parameters, gradient indexes, and layer thickness ratios are discussed. It is
observed that the current theory shows more accurate results for the buckling response of FG plates
compared with other shear deformation theories.

Keywords: FG; porous plates; quasi-3D refined theory; buckling

1. Introduction

Functionally graded materials (FGMs) are microstructure characteristic materials that
involve a spatial variance in the internal structure tailored for a desirable performance
or function. A compositionally graded technique gives FGMs superior wear resistance
and relatively low density, avoids stress singularities, and interfaces cracking between
dissimilar materials. FGMs have received wide applications in biomedical, aerospace,
structural, optical, chemistry, and electronic gadgets. An isotropic FG plate has drawn
special interest among researchers. A simple refined theory was applied to examine the
buckling of FG plates by Daouadji and Adim [1]. Shariat and Eslami [2] reported the FG
plates’ mechanical and thermal buckling according to the third-order shear deformation
theory. Based on refined plate theory and isogeometric analysis, Liu et al. [3] studied FG
plate bending and buckling behavior. Bellifa et al. [4] applied a refined four unknowns
theory to obtain the buckling behavior of FG plates. Parida and Mohanty [5] investigated FG
plate buckling and free vibration response with a Winkler–Pasternak elastic base. Zenkour
and Aljadani [6] reported the buckling of FG plates by considering the thickness stretching
effect. Sharifan and Jabbari [7] examined the buckling analysis of an FG porous elliptical
plate resting on an elastic base.

Sandwich structures with designed face sheets address at least three-layered forms,
with a center layer combined with top and bottom designed face sheets. The sandwich
structural form is widely used in the automotive, marine engineering, spacecraft, and trans-
portation industries. The vast, growing demands of various sectors for the utilization of
low weight-to-strength ratio structures motivated researchers to investigate FG structures
with the potential of fulfilling the needs of low-weight and high-strength structures [8].
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Therefore, various studies have been conducted to analyze the buckling response of FG
sandwich structures. Zenkour [9] used a sinusoidal shear deformation plate theory to report
the buckling and free vibration of the FG sandwich plate. Using the meshless method,
Neves et al. [10] analyzed the bending, free vibration, and buckling of FG isotropic and
sandwich plates. According to the first-order shear deformation theory (FDT), an improved
transverse shear stiffness is used to calculate the buckling and vibration responses of FG
sandwich plates by Nguyen et al. [11]. Mantari and Monge [12] performed the bending,
free vibration, and linear buckling responses of FG sandwich plates. Sobhy [11] presented
the vibration and buckling of exponentially graded (EG) sandwich plates laying on an
elastic base based on an exponential law distribution and various boundary conditions.
Nguyen et al. [13] reported the buckling, bending, and vibration of FG sandwich plates
through a refined four-unknown theory and the finite element method. Neves et al. [14]
obtained the buckling of FG sandwich plates by considering the thickness stretching effect.
Akavci [15] researched the buckling, bending, and vibration of FG sandwich plates accord-
ing to hyperbolic shear and normal deformations theory. According to three-unknown,
non-polynomial shear deformation theory, Bouazza and Zenkour [16] discussed the hygro-
thermo-mechanical buckling of a laminated beam using hyperbolic refined shear defor-
mation theory. Nguyen et al. [17] examined the buckling, bending, and free vibration
responses of isotropic and FG sandwich plates based on an inverse trigonometric shear
deformation theory.

The FG structures can be affected by micro-voids or porosity during the process of
manufacturing FG as a result of technical issues. For instance, the pores can be scattered
in the internal FG structures during the non-pressure sintering technique [18]. Porous
gradient materials have a multifunctional nature, with features such as a high performance-
to-weight ratio and shock resistance. However, it is crucial to remember that porosity
creates a local loss of stiffness. The most recent progress in manufacturing techniques
allows for the fabrication of porous materials with an FG utilizing technologies such as
additive 3D printing. As a result, porous materials with specified variable stiffness may
be created and adapted for specific technical applications, maximizing performance and
decreasing weight [19,20]. Therefore, it is crucial to consider the effect of porosity on the
buckling response of FG porous structures, taking into account the presence of porosities in
the internal FG structures.

The studies mentioned above considered the perfect FG structures without the pres-
ence of porosity inside the structure. However, investigating equipped porous forms of FG
sandwich and isotropic structures has been an essential subject of study for researchers.
Furthermore, the significant role of these structures in numerous elements of production,
such as cost, stability, and reliability, has brought them to the forefront of researchers’
attention more than ever before. A few investigations are focused on the buckling of FG
porous plates. Kumar et al. [21] used hyperbolic higher-order shear deformation theory
to study the buckling and free vibration of FG porous plates resting on an elastic base. In
this study, the symmetric center, top, and bottom enhanced porosity distributions were
considered. Dhuria et al. [22] studied the static and buckling responses of an FG porous
plate subjected to a transverse load. Fan [23] examined the nonlinear buckling and post-
buckling load of porous micro- and nano-FG plates. Babaei et al. [24] analyzed the stability
analysis of saturated porous FG shells. Tran et al. [25] investigated the bending, buckling,
and free vibration responses of FG porous nanoshells resting on an elastic foundation
in the context of extended four-unknown, higher-order nonlocal theory. Thom et al. [26]
presented the buckling response of cracked FG plates resting on an elastic foundation.
Daikh and Zenkour [27] proposed four porosity distributions to report the buckling and
free vibration behaviors of FG sandwich plates based on sigmoid and polynomial functions.
Chen et al. [28] presented the buckling and bending analysis of FG sandwich plates by
employing the Chebyshev–Ritz method and first-order shear deformation plate theory.
Xu et al. [29] reported the buckling response of the FG porous core with laminated skins
resting on an elastic base. Singh and Harsha [30] used a modified sigmoid model to examine
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the buckling of FG sandwich porous plates for three different types of porosity distributions.
Mojahedin et al. [31] investigated the buckling response of radially loaded clamped FG
circular porous plates. Yang [32] studied the buckling and free vibration response of porous
nanocomposite FG plates reinforced with graphene platelets.

As quasi-3D theory includes both shear and normal deformations, various quasi-
3D theories have been proposed in the literature. Some studies regarding the different
responses of FG structures are reported in [33–43]. However, to the best of the author’s
knowledge, no prior studies have examined the buckling of FG porous plates with the
consideration of the influence of the thickness stretching on the structure, which is essential
for thick plate investigation. Therefore, this paper will propose a quasi-3D refined theory
to investigate the buckling of isotropic and sandwich FG porous plates. The novelty of
this research is to examine the buckling response of various FG plate configurations with
porosity using a quasi-3D refined plate theory. The thickness stretching effect is considered
in the quasi-3D refined plate theory. Three configurations of FG models are considered:
isotropic FG plates, two FG sandwich plates (one is FG faces with a homogenous core),
and homogenous faces with an FG core. The present FG porous material properties vary
smoothly in the plate thickness direction based on modified polynomial law. The equi-
librium equations are obtained according to the principle of total potential energy. The
uniaxial and biaxial buckling loadings are reported for simply supported FG plates. The
influences of the thickness stretching effect, various porosity parameters, volume fraction
exponents, skin-core-skin, and geometric parameters on the critical buckling loads of FG
porous plates are reported.

2. Problem Definition and Modeling
2.1. Structural Definition

An FG porous plate of thickness h and cross-sectional a× b was considered as pre-
sented in Figure 1. A Cartesian coordinate system (x, y, z) was adopted to define the plate
displacement fields as 0 ≤ x ≤ a, 0 ≤ y ≤ b, and −h/2 ≤ z ≤ h/2. The FG porous layer
was composed of ceramic at the upper plane, and it was continuously varying to metal at
the lower plane. The present porous model describes the variation of the materials based
on modified polynomial law.

Figure 1. The configurations and geometry of the FG porous plate.

Assuming the porosity is dispersed evenly along the FG structure, the effective material
properties of the porous plate based on modified polynomial material law are defined as

P = Pm

[
Vm(z)−

ξ

2

]
+ Pc

[
Vc(z)−

ξ

2

]
, 0 ≤ ξ ≤ 1, (1)
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where P is the material properties of the porous structure and ξ is a porosity coefficient
that describes the pore volume’s fraction to the total volume of the structure. In addition,
subscripts m and c indicate the constituents of metal as the lower plane and ceramic as the
upper plane of the FG layer, respectively. In this paper, three models of FG porous plates
are considered:

• Model I: Isotropic FG Plates

This porous model is composed of ceramic at the upper plane (z = h/2), and it is
continuously varying to metal at the lower plane (z = −h/2). The volume fraction of the
ceramic is given as

Vc =

(
1
2
+

z
h

)k
, z ∈

[
−h

2
,

h
2

]
, (2)

where k is the volume fraction exponent and k ≥ 0.

• Model II: FG Sandwich Plates (FG Faces with a Homogenous Core Plate)

This porous model is composed of FG porous layers at the upper and lower surfaces,
while the core is a perfect ceramic. h0 = −h/2 and h3 = h/2 are the lower and upper faces.
The volume fraction of the ceramic is given as

Vc =
(

z−h3
h2−h3

)k
, z ∈ [h2, h3],

Vc = 1, z ∈ [h1, h2],

Vc =
(

z−h0
h1−h0

)k
, z ∈ [h0, h1].

(3)

• Model III: FG Sandwich Plates (Homogenous Faces with an FG Core Plate)

This porous plate is composed of perfect homogenous layers at the upper and lower
surfaces, while the core is FG with porosity. h0 = −h/2 and h3 = h/2 are the lower and
upper faces. The volume fraction of the ceramic is given as

Vc = 0, z ∈ [h2, h3],

Vc =
(

z−h1
h2−h1

)k
, z ∈ [h1, h2],

Vc = 1, z ∈ [h0, h1].

(4)

2.2. The Quasi-3D Refined Theory

The displacement field of quasi-3D refined theory, taking into account the thickness
stretching effect, is expressed as [9]

u1(x, y, z) = u(x, y)− z ∂w
∂x + ϕ(z)θx(x, y),

u2(x, y, z) = v(x, y)− z ∂w
∂y + ϕ(z)θy(x, y),

u3(x, y, z) = w(x, y) + ϕ′(z)θz(x, y),
(5)

where (u1, u2, u3) represents the displacement field along with the system (x, y, z) in the
plate structure, respectively, (u, v, w) represents the displacement projections on the mid-
plane along (x, y, z), respectively, and θx, θy, and θz are rotations of the normal to mid-plane
about the y-, x-, and z-axes, respectively. The superscript notation (′) denotes differentiation
concerning z. The present formulation does not require a shear correction factor. Unlike
other shear deformation theories, this quasi-3D theory takes under consideration the
effect of thickness stretching along with the plate thickness (εz 6= 0). The following shape
function is considered:

ϕ(z) =
h
π sinh

(
π z

h
)
− z cos h

(
π
2
)

1− cos h
(

π
2
) , (6)
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The strain relations associated with Equation (6) are given as
εx
εy

γxy

 =


ε0

x
ε0

y
γ0

xy

+ z


ε1

x
ε1

y
γ1

xy

+ϕ(z)


ε2

x
ε2

y
γ2

xy

,

{
γyz
γxz

}
= ϕ′(z)

{
γ0

yz
γ0

xz

}
, εz = ϕ′′ (z)θz

(7)

where the components of the strains are in the following forms:


ε0

x
ε0

y
γ0

xy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

,


ε1

x
ε1

y
γ1

xy

 = −


∂2w
∂x2
∂2w
∂y2

2 ∂2w
∂x∂y

,


ε2

x
ε2

y
γ2

xy

 =


∂θx
∂x
∂θy
∂y

∂θx
∂y +

∂θy
∂x

,
{

γ0
yz

γ0
xz

}
=

{
θy +

∂θz
∂y

θx +
∂θz
∂x

}
.

(8)

The stress–strain constitutive equations of the porous plate when (εz 6= 0) can be
written as 

σx
σy
σz
τyz
τxz
τxy



(r)

=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66



(r) 

εx
εy
εz

γyz
γxz
γxy


(9)

where (σi, τij) represents the in-plane normal and shear stresses, (γij,εi) represents the
in-plane normal and shear strains of the plate, and (i, j = x, y and z), (r = 1, 2, 3) in the
case of a sandwich structure. The three-dimensional elastic constants are written as

c(r)11 = c(r)22 = c(r)33 =
(1−ν(r)(z)) E(r)(z)

(1+ν(r)(z))(1−2ν(r)(z))
,

c(r)12 = c(r)13 = c(r)23 = νc(r)11 , c(r)44 = c(r)55 = c(r)66 = E(r)(z)
2(1+ν(r)(z))

.
(10)

If the stretching effect is ignored (εz 6= 0), the elastic constants cij are defined as

c(r)11 = c(r)22 =
E(r)(z)

1−
(
ν(r)(z)

)2 , c(r)12 = ν(r)(z)c(r)11 , c(r)44 = c(r)55 = c(r)66 =
E(r)(z)

2
(
1 + ν(r)(z)

) , (11)

where E(r)(z) and ν(r)(z) indicate the Young’s modulus and Poisson’s ratio of layer
r, respectively.

2.3. Equilibrium Equations

The equilibrium equations can be obtained by applying the principle of total potential
energy. It can be expressed in its analytical form as

∑3
r=1

∫ hr

hr−1

∫
Ω

{(
σ
(r)
i δε

(r)
i + τ

(r)
ij δγ

(r)
ij

)
dz
}

dΩ +
∫

Ω

(
S1

∂2w
∂x2 ++S2

∂2w
∂y2

)
δu3dΩ = 0, (12)
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where i, j = x, y, z, S1 and S2 are the membrane forces caused by in-plane end loads, and
hr and hr−1 (r = 1, 2, 3) are the top and bottom z-coordinates of the rth layer. By inserting
Equations (7) and (8) into Equation (12), this yields

∑3
r=1
∫ hr

hr−1

∫
Ω

{
σ
(r)
x

(
∂δu
∂x − z ∂2δw

∂x2 + ϕ(z) ∂δθx
∂x

)
+ σ

(r)
y

(
∂δν
∂y − z ∂2δw

∂y2 + ϕ(z) ∂δθy
∂y

)
+σ

(r)
z (ϕ′′ (z)δθz) + τ

(r)
yz

[
∂δν
∂x + ∂δu

∂y − 2z ∂2δw
∂x∂y + ϕ(z)

(
∂δθx
∂y +

∂δθy
∂x

)]
+τ

(r)
xz

[
ϕ′(z)

(
δθx +

∂δθz
∂x

)]
+ τ

(r)
yz

[
ϕ′(z)

(
δθy +

∂δθz
θy

)]}
dzdΩ

+
∫

Ω

(
S1

∂2w
∂x2 ++S2

∂2w
∂y2

)
δu3dΩ = 0

(13)

When integrating Equation (13) in parts, the following are obtained:

−
∫

Ω

{(
∂Nx
∂x +

∂Nxy
∂y

)
δu +

(
∂Nxy

∂x +
∂Ny
∂y

)
δv +

(
∂2 Mx
∂x2 + 2 ∂2 Mxy

∂x∂y +
∂2 My
∂y2

)
δw

+
(

∂Px
∂x +

∂Pxy
∂y −Qxz

)
δθx +

(
∂Pxy
∂x +

∂Py
∂y −Qxz

)
δθy +

(
∂Qxy

∂x +
∂Qyz

∂y − Nz

)
δθz

+
(

S1
∂2w
∂x2 + S2

∂2w
∂y2

)
δw
}

dΩ = 0,

(14)

where Ni, Mi, Pi, and Qj (i = x, y, xy, j = xz, yz) are the resultant stress, moment, addi-
tional stress couples, and transverse shear stress resultants, respectively. The equilibrium
equations are determined from Equation (14) by setting the coefficients of δu, δv, δw, δθx,
δθy, and δθz to zero separately. Then, the equilibrium equations of the current theory are
obtained as

δu : ∂Nx
∂x +

∂Nxy
∂y = 0, δν : ∂Nxy

∂x +
∂Ny
∂y = 0,

δw : ∂2 Mx
∂x2 + 2 ∂2 Mxy

∂x∂y +
δ2 My
δy2 + S1 ∂2w

∂x2 + S2 ∂2w
∂y2 = 0, δθx : ∂Px

∂x +
∂Pxy
∂y −Qxz = 0,

δθy : ∂Pxy
∂x +

∂Py
∂y −Qyz = 0, δθz : ∂Qxy

∂x +
∂Qyz

∂y − Nz = 0.

(15)

where{
Nij, Mij, Pij

}
= ∑3

r=1
∫ hr

hr−1
σ
(r)
ij {1, z, ϕ(z)}dz, Qiz = ∑3

r=1
∫ hr

hr−1
σ
(r)
iz ϕ′(z)dz

Nz = ∑3
r=1
∫ hr

hr−1
σ
(r)
z ϕ′′ (z) dz, (i, j = x, y).

(16)

Substituting Equation (9) into Equation (16) via integration across the thickness yields
the following:

Nx
Ny
Mx
My
Px
Py
Nz


=



A11 A12 B11 B12 B∗11 B∗12 G∗13
A12 A22 B12 B22 B∗12 B∗22 G∗23
B11 B12 D11 D12 D∗11 D∗12 H∗13
B12 B22 D12 D22 D∗12 D∗22 H∗23
B∗11 B∗12 D∗11 D∗12 F∗11 F∗12 L∗13
B∗12 B∗22 D∗12 D∗22 F∗12 F∗22 L∗23
G∗13 G∗23 H∗11 H∗23 L∗13 L∗23 J∗33





ε0
x

ε0
y

ε1
x

ε1
y

ε2
x

ε2
y

εz
x


(17)


Nxy
Mxy
Pxy

 =

 A66 B66 B∗66
B66 D66 D∗66
B∗66 D∗66 F∗66




γ0
xy

γ1
xy

γ2
xy

,
{

Qyz
Qxz

}[
J∗44 0
0 J∗55

]{
γ0

yz
γ0

xz

}
,
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where the plate stiffnesses are expressed as{
Aij, Bij, Dij

}
= ∑3

r=1
∫ hr

hr−1
c(r)ij
{

1, z, z2} dz, ij = 1, 2, 6,{
B∗ij, D∗ij, F∗ij

}
= ∑3

r=1
∫ hr

hr−1
c(r)ij ϕ(z){1, z, ϕ(z)} dz,{

G∗r3, H∗r3, L∗r3
}
= ∑3

r=1
∫ hr

hr−1
c(r)ij ϕ′′ (z){1, z, ϕ(z)} dz, r = 1, 2,

J∗ττ = ∑3
r=1
∫ hr

hr−1
c(r)ττ (ϕ′(z))2dz, τ = 4, 5.

(18)

The equilibrium equations can be expressed in terms of displacement as

A11
∂2u
∂x2 + A66

∂2u
∂y2 + (A12 + A66)

∂2v
∂x∂y − B11

∂3w
∂x3 − (B12 + 2B66)

∂3w
∂x∂y2 +

A∗11
∂2θx
∂x2 + A∗66

∂2θy
∂y2 +

(
A∗12 + A∗66

) ∂2θy
∂x∂y − G∗13

∂θz
∂x = 0,

(A12 + A66)
∂2u

∂x∂y + A66
∂2v
∂x2 + A11

∂2v
∂y2 − (B12 + 2B66)

∂3w
∂x2∂y − B11

∂3w
∂y3 +

A∗66
∂2θx
∂x2 + A∗11

∂2θy
∂y2 +

(
A∗12 + A∗66

) ∂2θx
∂x∂y − G∗23

∂θz
∂y = 0,

B11
∂3u
∂x3 + (B12 + 2B66)

∂3u
∂x∂y2 + (B12 + 2B66)

∂3v
∂x2∂y + B11

∂3v
∂y3−

D11
∂4w
∂x4 − D11

∂4w
∂x2∂y2−D22

∂4w
∂y4 −

(
SE + Sb

)(
∂2w
∂x2 + ∂2w

∂y2

)
+ D*

11
∂3θx
∂x3 +(

D*
12 + 2D*

66
) ∂3θx

∂x2∂y + D*
11

∂3θy
∂y3 +

(
D∗12 + 2D∗66

) ∂3θy
∂x2∂y + H∗13

∂2θz
∂x2 + H∗23

∂2θz
∂y2 = 0,

B∗11
∂2u
∂x2 + B∗66

∂2u
∂y2 +

(
B∗12 + B∗66

)
∂2v

∂x∂y − D∗11
∂3w
∂x3 −

(
D∗12 + 2D∗66

)
∂3w

∂x2∂y−

J∗55θx + F∗11
∂2θx
∂x2 + F∗66

∂2θx
∂y2 +

(
F∗12 + F∗66

) ∂2θy
∂x∂y +

(
J∗55 − L∗13

) ∂θz
∂x = 0,(

B∗12 + B∗66
)

∂2u
∂x∂y + B∗66

∂2v
∂x2 + B∗22

∂2v
∂y2 − D∗22

∂3w
∂y3 −

(
D∗12 + 2D∗66

)
∂3w

∂x2∂y+(
F∗12 + F∗66

) ∂2θx
∂x∂y + J∗44 + F∗66

∂2θy
∂x2 + F∗22

∂2θy
∂y2 +

(
J∗44 − L∗23

) ∂θz
∂y = 0,

−G∗13
∂u
∂x − G∗23

∂v
∂y + H∗13

∂2w
∂x2 + H∗23

∂2w
∂y2 +

(
J∗55 − L∗13

) ∂θx
∂x +

(
J∗44 − L∗23

) ∂θy
∂y

+J∗33θz + J∗55
∂2θz
∂x2 + J∗44

∂2θz
∂y2 = 0.

(19)

3. Closed-Form Solution

Navier’s procedure is used to derive the exact solution of the mechanical buckling prob-
lem. The following boundary conditions are required at the side edges to apply this method:

v = w = θy = θz = Nx = Mx = Px = 0 at x = 0, a,
u = w = θx = θz = Ny = My = Py = 0 at y = 0, b.

(20)

The forms of the displacement expressions that are assumed to satisfy the boundary
conditions are defined as

(u, θx)(
v, θy

)
(w, θz)

 =


(U, X) cos(λmx) sin(µny)
(V, Y) sin(λmx) cos(µny)
(W, Z) sin(λmx) sin(µny)

, (21)

where λm = mπ
a , µn = nπ

b , m, and n are mode numbers and U, V, W, X, Y, and Z are
arbitrary parameters to be determined by substituting Equation (21) into Equation (19).
Then, the following analytical solution is obtained:

[Γ]{Λ} = {0}, (22)
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where
{Λ} = {U, V, W, X, Y, Z}t, (23)

The components Γij = Γji of the matrix [Γ] are expressed as

Γ11 = −λ2
m A11 − µ2

n A66, Γ12 = −λmµn (A12 + A66),
Γ13 = λ3

mB11 + λmµ2
n (B12 + 2B66), Γ14 = −λ2

mB∗11 − µ2
nB∗66,

Γ15 = −λmµn
(

B∗12 + B∗66
)
, Γ16 = λmG∗13, Γ22 = −λ2

m A66 − µ2
n A22,

Γ23 = µ3
nB22 + λ2

mµn(B12 + 2B66), Γ24 = −λmµn
(

B∗12 + B∗66
)
,

Γ25 = −λ2
mB∗66 − µ2

nB∗22, Γ26 = µnG∗23,
Γ33 = λ4

mD11 + 2λ2
mµ2

n (D12 + 2D66) + µ4
mD22 − λ2

mS1 − µ2
nS2,

Γ34 = −λ3
mD∗11 − λmµ2

n
(

D∗12 + 2D∗66
)
, Γ35 = −µ3

nD∗22 − λ2
mµn

(
D∗12 + 2D∗66

)
,

Γ36 = λ2
mH∗13 + µ2

n H∗23, Γ44 = −J∗55 − λ2
mF∗11 − µ2

nF∗66,
Γ45 = −λmµn

(
F∗12 + F∗66

)
, Γ46 = λm

(
L∗13 − J∗55

)
, Γ55 = −J∗44 − λ2

mF∗66 − µ2
nF∗22,

Γ56 = µn
(

L∗23 − J∗44
)
, Γ66 = J∗33 + λ2

m J∗55 + µ2
n J∗44.

(24)

4. Numerical Results and Discussions

The buckling response of simply supported FG porous plates with several configu-
rations subject to various loading conditions is presented. In these results, the shear and
normal strain were considered. The porous plate was made of alumina (Al2O3) as the
ceramic and aluminum (Al) as the metal. The plate material properties of the FG layer
were graded across the z direction, where the top surface was fully ceramic while the
bottom surface was fully metal. The elasticity modulus of alumina is Ec =380 GPa, and
aluminum’s is Em = 70 GPa, while Poisson’s ratio is ν = 0.3. In this analysis, Ncr = S1 and
S2 = γ S1, where γ is the in-plane loadings, which are uniaxial compression (γ = 0) and
biaxial compression (γ = 1).

4.1. FG Porous Plates

The critical buckling of isotropic FG porous plates for various volume fraction expo-
nents k, aspect ratio a/b, and side-to-thickness ratio a/h are presented in Tables 1 and 2.
The present porous plate describes the variation of the materials based on a modified
polynomial law. The obtained results were calculated for two in-plane loads cases: uniaxial
compression (γ = 0) and biaxial compression (γ = 1). The inclusion of porosity was con-
sidered in this investigation. The critical buckling was determined based on the following
dimensionless parameter [6,44–46]:

Ñcr =
Ncr a2

Emh3 . (25)

Table 1. The critical buckling loads Ñcr of isotropic FG porous plates (γ = 0, Model I).

a/b a/h Theory εz
k

0 0.5 1 2 5 10

0.5 5

Present

ξ = 0.1 6= 0 6.43352 4.10285 3.06133 2.23716 1.71195 1.49599

ξ = 0 6= 0 6.96910 4.63564 3.62143 2.82963 2.28633 2.02068

= 0 6.72084 4.42374 3.41659 2.64599 2.15129 1.92284

RSDT [6] 6= 0 6.963 4.630 3.618 2.830 2.283 2.018

HSDT [44] = 0 6.714 4.409 3.39 2.61 2.124 1.90

RSDT [45] = 0 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213
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Table 1. Cont.

a/b a/h Theory εz
k

0 0.5 1 2 5 10

0.5 10

Present

ξ = 0.1 6= 0 6.91620 4.36526 3.25199 2.39253 1.89252 1.68723

ξ = 0 6= 0 7.49362 4.93859 3.85845 2.82963 2.53365 2.26485

= 0 7.40554 4.82073 3.71118 2.88994 2.41739 2.19013

RSDT [6] 6= 0 7.480 4.928 3.852 3.041 2.530 2.259

HSDT [44] = 0 7.397 4.81 3.70 2.87 2.40 2.18

RSDT [45] = 0 7.405 4.82 3.71 2.88 2.41 2.18

1

5

Present

ξ = 0.1 6= 0 15.57565 10.00664 7.47646 5.43900 4.06881 3.50879

ξ = 0 6= 0 16.87004 11.29550 8.82513 6.85195 5.42442 4.75810

= 0 16.02248 10.62598 8.22513 6.34613 5.06271 4.48574

RSDT [6] 6= 0 16.866 11.288 8.823 6.855 5.418 4.755

HSDT [44] = 0 16.00 10.57 8.146 6.23 4.97 4.44

RSDT [45] = 0 16.02 10.62 8.22 6.34 5.05 4.48

10

Present

ξ = 0.1 6= 0 17.44699 11.03593 8.22396 6.04171 4.74522 4.21204

ξ = 0 6= 0 18.90267 12.48193 9.75157 7.67526 6.34950 5.66185

= 0 18.57932 12.12331 9.33944 7.26418 6.03894 5.45491

RSDT [6] 6= 0 18.873 12.459 9.738 7.673 6.341 5.650

HSDT [44] = 0 18.54 12.08 9.299 7.21 5.99 5.42

RSDT [45] = 0 18.57 12.12 9.33 7.26 6.03 5.45

Table 2. The critical buckling loads Ñcr of isotropic FG porous plate (γ = 1, Model I).

a/b a/h Theory εz
k

0 0.5 1 2 5 10

0.5

5

Present

ξ = 0.1 6= 0 5.14681 3.28228 2.44907 1.78973 1.36956 1.19679

ξ = 0 6= 0 5.57528 3.70851 2.89714 2.26371 1.82906 1.61654

= 0 5.37667 3.53899 2.73327 2.11679 1.72103 1.53827

RSDT [6] 6= 0 5.570 3.704 2.895 2.264 1.826 1.614

HSDT [46] 6= 0 5.4090 3.5652 2.7563 2.1348 1.7320 1.5474

RSDT [45] = 0 5.376 3.539 2.733 2.116 1.719 1.537

10

Present

ξ = 0.1 6= 0 5.53296 3.49221 2.60159 1.91402 1.51402 1.34978

ξ = 0 6= 0 5.99490 3.95087 3.08676 2.43435 2.02692 1.81188

= 0 5.92443 3.85658 2.96895 2.31195 1.93391 1.75211

RSDT [6] 6= 0 5.984 3.942 3.082 2.433 2.024 1.807

HSDT [46] 6= 0 5.9343 3.8644 2.9758 2.3174 1.9374 1.7551

RSDT [45] = 0 5.926 3.857 2.969 2.312 1.933 1.752



Mathematics 2022, 10, 565 10 of 20

Table 2. Cont.

a/b a/h Theory εz
k

0 0.5 1 2 5 10

1

5

Present

ξ = 0.1 6= 0 7.78782 5.00332 3.73823 2.71950 2.03440 1.75439

ξ = 0 6= 0 8.43502 5.64775 4.41256 3.42597 2.71221 2.37905

= 0 8.01124 5.31299 4.11256 3.17306 2.53135 2.24287

SRSDT [6] 6= 0 8.433 5.644 4.411 3.427 2.709 2.377

HSDT [46] 6= 0 8.0826 5.3716 4.1643 3.2132 2.5549 2.2621

RSDT [45] = 0 8.011 5.313 4.112 3.172 2.527 2.240

10

Present

ξ = 0.1 6= 0 8.72349 5.51796 4.11198 3.02085 2.37261 2.10602

ξ = 0 6= 0 9.45133 6.24096 4.87578 3.83763 3.17475 2.83092

= 0 9.28966 6.06165 4.66972 3.63209 3.01947 2.72745

RSDT [6] 6= 0 9.436 6.229 4.869 3.836 3.170 2.825

HSDT [46] 6= 0 9.3139 6.0810 4.6867 3.6455 3.0280 2.7346

RSDT [45] = 0 9.289 6.062 4.670 3.632 3.018 2.726

The current results of isotropic FG perfect plates were compared with those determined
via the refined plate theory (RSDT) of Zenkour and Aljadani [6] and Thai and Choi [45] as
well as the higher-order plate theory (HSDT) of Reddy et al. [44] and Thinh et al. [46]. It
can be noted that the present solutions were in excellent agreement with those reported
in [6,46], as the thickness stretching was considered. However, the reported calculations
in [44,45] slightly underestimated the critical buckling of thick FG plates. This was due to
the neglect of the thickness stretching effect. Moreover, the critical buckling rose with the
increase in the aspect ratio as well as the side-to-thickness ratio. It can be observed that
the critical buckling decreased by increasing the porosity parameter. This means that the
porosity inclusion on the plate structure reduced the plate stiffness, which decreased the
critical buckling loads.

4.2. FG Porous Sandwich Plates

Two types of simply supported FG sandwich porous plates are presented. Model II is
composed of FG porous layers at the upper and lower surfaces, while the core is a perfect
ceramic, and Model III is composed of perfect homogenous layers at the upper and lower
surfaces, while the core is made of FG with porosity. h0 = −h/2 and h3 = h/2 are the
lower and upper faces. Various types of FG sandwich porous plate schemes were assumed,
and they are listed below [47,48]:

• The (1-0-1) FG Sandwich Porous Plate

The structure is composed of two equal skin layers, and thus

h1 = h2 = 0. (26)

• The (1-1-1) FG Sandwich Porous Plate

This plate has three equal-thickness layers, and therefore

h1 = −h
6

, h2 =
h
6

. (27)

• The (1-2-1) FG Sandwich Porous Plate
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This plate has a core with double the thickness of the skin layer:

h1 = −h
4

, h2 =
h
4

. (28)

• The (2-1-2) FG Sandwich Porous Plate

The core thickness of this plate is half the thickness of the skin layer, and hence

h1 = − h
10

, h2 =
h

10
. (29)

• The (2-2-1) FG Sandwich Porous Plate

This non-symmetric sandwich porous plate has a core and lower skin layer with the
same thickness as double the upper skin sheet, such that

h1 = − h
10

, h2 =
3h
10

. (30)

• The (2-1-1) FG Sandwich Porous Plate

This non-symmetric sandwich porous plate has a core and upper skin layer with the
same thickness, and they are half of the lower skin layer. Therefore, the following is true:

h1 = 0, h2 =
h
4

. (31)

• The (1-3-1) FG Sandwich Porous Plate

The core thickness of this plate is triple the thickness of the skin layer, and thus

h1 = −3h
10

, h2 =
3h
10

. (32)

In this study, the critical buckling was determined based on the following dimension-
less parameter:

Ncr =
Ncr a2

100h3 . (33)

The critical buckling of FG square sandwich plates (Model II) is shown in Tables 3 and 4.
The following parameters were used: a/h = 10 and a/b = 1. The sandwich plate was
composed of FG porous layers at the upper and lower surfaces, while the core was a perfect
ceramic. The current solutions for sandwich FG perfect plates were compared with those
determined via the higher-order shear deformation plate theory of Daikh and Zenkour [27]
and Zenkour [9]. It should be noted that the results of the present theory (εz = 0) agreed well
with those reported in [9,27] due to ignoring the stretching effect in these results. However,
the present solution (εz 6= 0) was slightly higher compared with that of [9,27]. This shows
that the thickness stretching impact could affect the buckling response of sandwich FG
plates. This indicates that the current theory gave more accurate results than higher-order
shear deformation theories. Furthermore, the critical buckling decreased with the rise in
the volume fraction exponent. The critical buckling of the sandwich FG porous plate under
biaxial load had a lower value than the uniaxial buckling load for any value of the volume
fraction exponent. The structure (1-2-1) had the highest buckling load among the other
structures. This was because (1-2-1) had the highest volume fraction of the ceramic phase,
hardening the structure.
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Table 3. The critical buckling load Ncr of an FG square sandwich plate (γ = 1, Model II).

k Theory εz 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1

0

Present
6= 0 6.61593 6.61593 6.61593 6.61593 6.61593 6.61593

= 0 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276

SHSDT [27] = 0 6.50266 6.50266 6.50266 6.50266 6.50266 6.50266

SSDT [9] = 0 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

FPT [9] = 0 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

CPT [9] = 0 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896

0.5

Present
6= 0 3.75098 4.29737 4.69467 4.04480 4.49177 4.19455

= 0 3.68189 4.21823 4.60878 3.97022 4.40514 4.11235

SHSDT [27] = 0 3.68250 4.21836 4.60832 3.97068 4.40504 4.11249

SSDT [9] = 0 3.68284 4.21856 4.60835 3.97097 4.40519 4.11269

FPT [9] = 0 3.66866 4.20517 4.59758 3.95660 4.39336 4.10007

CPT [9] = 0 3.82699 4.39032 4.80762 4.12798 4.59127 4.28112

1

Present
6= 0 2.63324 3.29531 3.82615 2.97666 3.55158 3.16779

= 0 2.58314 3.23224 3.75359 2.91970 3.47476 3.09685

SHSDT [27] = 0 2.58391 3.23252 3.75317 2.92032 3.47479 3.09713

SSDT [9] = 0 2.58423 3.23270 3.75314 2.92060 3.47490 3.09731

FPT [9] = 0 2.57118 3.21946 3.74182 2.90690 3.46286 3.08510

CPT [9] = 0 2.66624 3.34075 3.89203 3.01366 3.59831 3.20195

5

Present
6= 0 1.35326 1.82621 2.41649 1.55090 2.11731 1.75366

= 0 1.32839 1.78936 2.36731 1.52070 2.05578 1.70140

SHSDT [27] = 0 1.32960 1.79007 2.36739 1.52169 2.05625 1.70202

SSDT [9] = 0 1.33003 1.79032 2.36744 1.52203 2.05644 1.70224

FPT [9] = 0 1.31921 1.77979 2.35737 1.51126 2.04642 1.69269

CPT [9] = 0 1.36540 1.82866 2.42859 1.55352 2.10619 1.74209

Table 5 shows the porosity’s impact on the critical buckling of the FG square sandwich
plates (Model II). The predicted solutions were compared with the results of the higher-order
shear deformation plate theory of Daikh and Zenkour [27]. It was found that the present
solution (εz = 0) was in excellent agreement with the results in [27], while the obtained
solutions (εz 6= 0) were in very close agreement. This work demonstrates that the thickness
stretching effect had an impact on the buckling response of the sandwich FG porous plates, as
(εz 6= 0) had greater critical buckling than (εz = 0). This shows that the current formulation
predicted more accurate results compared with higher-order shear deformation theories.
Moreover, the critical buckling reduced as the porosity parameter rose.

Tables 6 and 7 display the critical buckling of the FG square sandwich plates (Model
III). The sandwich plate was composed of perfect homogenous layers at the upper and
lower surfaces, while the core was FG with porosity. The achieved solutions were compared
with the results associated with the inverse trigonometric shear deformation plate theory
of Nguyen et al. [17]. Good agreement between the results was found when the thickness
stretching effect was ignored. The critical buckling was higher when (εz 6= 0) than (εz = 0).
The effect of thickness stretching appeared to be significant in the thicker plates. Still, the
thickness stretching effect must always be considered in the formulation for thinner structures.
Additionally, porosity inclusion decreased the critical buckling of the sandwich plates.
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Table 4. The critical buckling load Ncr of an FG square sandwich plate (γ = 0, Model II).

k Theory εz 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1

0

Present
6= 0 13.23187 13.23187 13.23187 13.23187 13.23187 13.23187

= 0 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552

SSDT [9]

= 0

13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

FPT [9] 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

CPT [9] 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791

0.5

Present
6= 0 7.50197 8.59474 9.38935 8.08961 8.98355 8.38910

= 0 7.36379 8.43646 9.21757 7.94045 8.81028 8.22471

SSDT [9]

= 0

7.36568 8.43712 9.21670 7.94195 8.81037 8.22538

FPT [9] 7.33732 8.41034 9.19517 7.91320 8.78673 8.20015

CPT [9] 7.65398 8.78063 9.61525 8.25597 9.18254 8.56223

1

Present
6= 0 5.26648 6.59063 7.65230 5.95333 7.10317 6.33559

= 0 5.16629 6.46449 7.50718 5.83940 6.94952 6.19371

SSDT [9]

= 0

5.16846 6.46539 7.50629 5.84119 6.94980 6.19461

FPT [9] 5.14236 6.43892 7.48365 5.81379 6.92571 6.17020

CPT [9] 5.33248 6.68150 7.78406 6.02733 7.19663 6.40391

5

Present
6= 0 2.70653 3.65243 4.83298 3.10180 4.23463 3.50732

= 0 2.65678 3.57873 4.73462 3.04141 4.11156 3.40280

SSDT [9]

= 0

2.66006 3.58063 4.73488 3.04406 4.11288 3.40449

FPT [9] 2.63842 3.55958 4.71475 3.02252 4.09285 3.38538

CPT [9] 2.73080 3.65732 4.85717 3.10704 4.21238 3.48418

Table 5. Porosity effect on the critical buckling load Ncr of FG square sandwich porous plates
(a/h = 10, k = 2, Model II).

γ ξ Theory εz 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1

1

0
Present

6= 0 1.81253 2.45270 3.05374 2.12331 2.74200 2.33140

= 0 1.77764 2.40403 2.99365 2.08151 2.67312 2.26987

SHSDT [27] = 0 1.77856 2.40449 2.99342 2.08228 2.67334 2.27031

0.1
Present

6= 0 1.38468 2.03504 2.67717 1.69386 2.32886 1.89483

= 0 1.36172 1.99689 2.62266 1.66433 2.27238 1.84858

SHSDT [27] = 0 1.36232 1.99718 2.62234 1.66484 2.27248 1.84884

0.2
Present

6= 0 0.97393 1.63579 2.31862 1.28230 1.93035 1.47071

= 0 0.95997 1.60453 2.26577 1.26181 1.88151 1.43594

SHSDT [27] = 0 0.96028 1.60465 2.26539 1.26208 1.88149 1.43604

0

0 Present
6= 0 3.62507 4.90541 6.10749 4.24663 5.48401 4.66280

= 0 3.55528 4.80807 5.98730 4.16303 5.34624 4.53975

0.1 Present
6= 0 2.76936 4.07009 5.35434 3.38772 4.65773 3.78966

= 0 2.72345 3.99379 5.24532 3.32867 4.54476 3.69716

0.2 Present
6= 0 1.94786 3.27158 4.63724 2.56460 3.86071 2.94142

= 0 1.91995 3.20907 4.53155 2.52363 3.76302 2.87188
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Table 6. The critical buckling load Ncr of FG porous square sandwich plates (γ = 1, Model III).

a/h Scheme Theory εz
k

0 0.5 1 5 10

5

1-1-1
Present

ξ = 0.1 6= 0 2.1327 2.3948 2.5199 2.8165 2.9065

ξ = 0 6= 0 2.2325 2.4797 2.6004 2.8910 2.9801

= 0 2.0416 2.2654 2.3773 2.6540 2.7402

TSDT [17] = 0 2.0513 2.2342 2.3333 2.5978 2.6834

1-2-1
Present

ξ = 0.1 6= 0 1.9134 2.3560 2.5556 3.0542 3.2185

ξ = 0 6= 0 2.0962 2.5015 2.6922 3.1764 3.3379

= 0 1.9325 2.2935 2.4692 2.9317 3.0890

TSDT [17] = 0 1.9456 2.2725 2.4387 2.8964 3.0545

2-2-1
Present

ξ = 0.1 6= 0 2.1427 2.5897 2.8218 3.3917 3.5641

ξ = 0 6= 0 2.3335 2.7596 2.9821 3.5327 3.7006

= 0 2.1270 2.5305 2.7443 3.2801 3.4446

TSDT [17] = 0 2.1369 2.5023 2.7056 3.2351 3.4009

10

1-1-1
Present

ξ = 0.1 6= 0 2.4428 2.6316 2.7340 3.0082 3.0989

ξ = 0 6= 0 2.5376 2.7172 2.8163 3.0851 3.1749

= 0 2.3524 2.5289 2.6285 2.9038 2.9964

TSDT [17] = 0 2.3508 2.5165 2.6123 2.8848 2.9773

1-2-1
Present

ξ = 0.1 6= 0 2.3019 2.6153 2.7839 3.2639 3.4365

ξ = 0 6= 0 2.4786 2.7676 2.9281 3.3920 3.5613

= 0 2.3121 2.5859 2.7445 3.2191 3.3943

TSDT [17] = 0 2.3095 2.5768 2.7322 3.2063 3.3816

2-2-1
Present

ξ = 0.1 6= 0 2.3692 2.7992 3.0304 3.6274 3.8170

ξ = 0 6= 0 2.5838 2.9866 3.2059 3.7791 3.9631

= 0 2.3930 2.8009 3.0259 3.6189 3.8096

TSDT [17] = 0 2.3928 2.7898 3.0116 3.6028 3.7937

100

1-1-1
Present

ξ = 0.1 6= 0 2.5642 2.7182 2.8104 3.0741 3.1648

ξ = 0 6= 0 2.6555 2.8034 2.8929 3.1516 3.2413

= 0 2.4773 2.6301 2.7237 2.9971 3.0920

TSDT [17] = 0 2.4773 2.6308 2.7236 2.9969 3.0918

1-2-1
Present

ξ = 0.1 6= 0 2.4659 2.7116 2.8658 3.3357 3.5109

ξ = 0 6= 0 2.6356 2.8657 3.0123 3.4657 3.6372

= 0 2.4730 2.6998 2.8496 3.3269 3.5089

TSDT [17] = 0 2.4730 2.7015 2.8495 3.3268 3.5087

2-2-1
Present

ξ = 0.1 6= 0 2.4531 2.8733 3.1031 3.7079 3.9035

ξ = 0 6= 0 2.6765 3.0669 3.2837 3.8630 4.0526

= 0 2.4963 2.9035 3.1322 3.7469 3.9479

TSDT [17] = 0 2.4963 2.9038 3.1320 3.7467 3.9476
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Table 7. The critical buckling load Ncr of FG square sandwich porous plates (γ = 0, Model III).

a/h Scheme ξ εz
k

0 0.5 1 5 10

5

1-1-1

0.1 6= 0 4.2655 4.7897 5.0398 5.6331 5.8130

0
6= 0 4.4651 4.9595 5.2009 5.7820 5.9602

= 0 4.0832 4.5308 4.7547 5.3081 5.4805

1-2-1

0.1 6= 0 3.8268 4.7121 5.1113 6.1085 6.4371

0
6= 0 4.1925 5.0031 5.3845 6.3528 6.6758

= 0 3.8650 4.5870 4.9384 5.8634 6.1781

2-2-1

0.1 6= 0 4.2854 5.1795 5.6436 6.7834 7.1282

0
6= 0 4.6671 5.5192 5.9642 7.0655 7.4013

= 0 4.2541 5.0610 5.4886 6.5603 6.8893

10

1-1-1

0.1 6= 0 4.8856 5.2633 5.4681 6.0164 6.1979

0
6= 0 5.0752 5.4344 5.6326 6.1702 6.3498

= 0 4.7049 5.0578 5.2571 5.8077 5.9929

1-2-1

0.1 6= 0 4.6038 5.2306 5.5678 6.5278 6.8731

0
6= 0 4.9573 5.5353 5.8562 6.7841 7.1226

= 0 4.6243 5.1719 5.4891 6.4383 6.7886

2-2-1

0.1 6= 0 4.7385 5.5984 6.0609 7.2548 7.6341

0
6= 0 5.1676 5.9733 6.4118 7.5582 7.9263

= 0 4.7861 5.6019 6.0518 7.2379 7.6192

100

1-1-1

0.1 6= 0 5.1284 5.4364 5.6209 6.1483 6.3297

0
6= 0 5.3110 5.6068 5.7859 6.3033 6.4827

= 0 4.9546 5.2603 5.4475 5.9942 6.1841

1-2-1

0.1 6= 0 4.9318 5.4232 5.7317 6.6715 7.0219

0
6= 0 5.2713 5.7315 6.0247 6.9314 7.2744

= 0 4.9461 5.3996 5.6993 6.6539 7.0179

2-2-1

0.1 6= 0 4.9063 5.7466 6.2062 7.4159 7.8071

0
6= 0 5.3530 6.1339 6.5674 7.7261 8.1053

= 0 4.9926 5.8071 6.2644 7.4938 7.8958

The effects of various porosity parameters, volume fraction exponents, FG configura-
tions, aspect ratios, and side-to-thickness ratios are illustrated in Figure 2, Figure 3, Figure 4,
Figure 5. The following parameters were used: a/h = 10, a/b = 1, γ = 1, and k = 2.
Figure 2 shows the effect of the porosity parameter ξ and aspect ratio a/b on the critical
buckling of FG porous plates with different configurations. The porosity inclusion on the
plate reduced the critical buckling. The effect of the porosity increasing the aspect ratio was
more pronounced for Model I, since the entire structure had porosity. The configuration of
the FG porous plates and aspect ratio significantly impacted the porosity influence on the
buckling of the FG porous plates.

The effects of the porosity parameter ξ and side-to-thickness ratio a/h on the critical
buckling of the FG porous plates with different configurations are demonstrated in Figure 3.
It can be seen that as the porosity parameter increased, the critical buckling of the FG
porous plates for various a/h values became identical for Model I. However, the impact
of the porosity and side-to-thickness ratio increasing in Model III gave different critical
buckling loads. This was because Model III was stiffer than the other structures.
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Figure 2. Porosity and aspect ratio effects on the buckling of FG porous plates (k = 2) for (a) Model I,
(b) Model II (1-2-1), and (c) Model III (1-2-1).

Figure 3. Porosity and side-to-thickness effects on the buckling of FG porous plates (k = 2) for
(a) Model I, (b) Model II (1-2-1), and (c) Model III (1-2-1).

Figure 4. Porosity and volume fraction exponent effects on the buckling of FG porous plates (k = 2)
for (a) Model I, (b) Model II (1-2-1), and (c) Model III (1-2-1).
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Figure 5. Porosity and side-to-thickness effects on the buckling of FG porous plates (k = 2) for
(a) Model I, (b) Model II (1-2-1), and (c) Model III (1-2-1).

Figure 4 illustrates the impact of the porosity parameter and volume fraction exponent
on the buckling of FG porous plates. For Models I and II, the critical buckling reduced with
the rise in the volume fraction exponent. On the other hand, the critical buckling of Model
III increased with the rise in the volume fraction exponent. In general, the increase of the
porosity parameter reduced the plate stiffness, which decreased the critical buckling of the
FG plates.

The impacts of the porosity parameters and side-to-thickness ratios on the critical
buckling of the FG porous plates are presented in Figure 5. The critical buckling rose with
the increase in the side-to-thickness. The impact of a/h was more significant for the FG
thick plates. Moreover, the critical buckling decreased as the porosity of the plate increased.
The impact of the porosity on the buckling of the porous plate increased with the rise in the
side-to-thickness ratio.

5. Conclusions

This paper investigated the buckling response of FG porous plates via a quasi-3D refined
theory. The thickness stretching effect was taken into consideration in this analysis. Three
models of FG porous plates were considered: an isotropic FG porous plate, FG skins with a
homogenous core, and an FG core with homogenous skins. Modified polynomial law was used
to describe the variation in material properties. Various validation cases were presented, and
calculations of a quasi-3D refined theory were presented for the FG porous plates’ buckling
response. Based on the presented results, the following conclusions were drawn:

• The current formulation accurately predicted the FG perfect plate buckling response
compared with the higher-order shear deformation theory.

• The effect of thickness stretching appeared to be significant in the thicker plates.
Still, the thickness stretching effect must always be considered in the formulation
for thinner structures.

• The present results show the porosity’s effect on reducing the stiffness of the plate,
which decreased the critical buckling of the FG plate.

• The impact of the porosity on the buckling of the porous plate increased with the rise
in the side-to-thickness ratio.

• The FG porous plates’ configuration and aspect ratio significantly affected the poros-
ity’s impact on the buckling of FG porous plates.

• The critical buckling of FG porous plates under biaxial load had a lower value than a
uniaxial buckling load for any value of the volume fraction exponent, side-to-thickness
ratio, or porosity parameter.

• In Models I and II, the critical buckling decreased with the rise in the volume fraction
exponent. On the other hand, the critical buckling of Model III increased with the
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increase in the volume fraction exponent, which made the structure more reliable than
the other forms.

• Among Model II’s configurations, the structure (1-2-1) had the highest buckling load
among the other structures.
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