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Supplementary Materials: Permutation Variation and Alternative
Hyper-Sphere Decomposition
Qingze Li 1,*,† and Jianxin Pan 2,3,*,†

1. Asymptotic Properties in Details

In this section, consistency and asymptotic normality of MHPC estimators under
standard situation p < n are proven. Similar to the proof in Zhang and et al. (2004), under
some regularity conditions:

1. Model assumptions for mean and variance-covariance components are correct.
2. The dimensions qβ, qλ and qγ for parameters β, λ and γ are fixed, meanwhile sample

size n→ ∞.
3. The parameter space for β, λ and γ are compact subspaces of Rqβ , Rqλ and Rqγ

respectively. And the true values β0, λ0 and γ0 are in the interiors of corresponding
subspaces.

4. As sample size n→ ∞, n−1 I almost surely converges to a positive definite matrix I ,
where I is the negative expected Hessian matrix .

Here the compactness in Condition 3 means the solution subspaces for our estimators
are closed, and also ensures the distance between any estimator and true value is bounded,
which means there exists a ε so that

||β̂− β0|| < ε, ||λ̂− λ0|| < ε, ||γ̂− γ0|| < ε.

Then we can have the asymptotic consistency of estimators β̂, λ̂ and γ̂.

Theorem 1. Under the regularity conditions 1,2,3, when sample size n goes to ∞, the maximum
likelihood estimator β̂, λ̂ and γ̂ is consistent with the true value.

(β̂′, λ̂′.γ̂′)′ a.s−→ (β′0, λ′0, γ′0)
′

We already have the score functions for β, λ and γ. And based on the consistency of
MLEs β̂, λ̂ and γ̂ in Theorem 1, we then have:

E(
∂l
∂β

)β̂ = 0, E(
∂l
∂λ

)λ̂ = 0, E(
∂l
∂γ

)γ̂ = 0.

By simple calculation, we can prove that:

E(
∂l
∂β

∂l
∂β′

) = −E(
∂2l

∂β∂β′
), E(

∂l
∂β

∂l
∂λ′

) = −E(
∂2l

∂β∂λ′
),

E(
∂l
∂β

∂l
∂γ′

) = −E(
∂2l

∂β∂γ′
), E(

∂l
∂λ

∂l
∂λ′

) = −E(
∂2l

∂λ∂λ′
),

E(
∂l
∂λ

∂l
∂γ′

) = −E(
∂2l

∂λ∂γ′
), E(

∂l
∂γ

∂l
∂γ′

) = −E(
∂2l

∂γ∂γ′
).

Then as the sample size n goes to ∞, it is straightforward to have:

1
n

I(β̂, λ̂, γ̂)− 1
n

E(I) a.s−→ 0, (1)

where I is a positive definite matrix, which we defined in Condition ??. And it is easy to
prove I = I(β0, λ0, γ0). Then similar to the proof of Theorem 2 in Chiu et al. (1996) we can
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have the asymptotic normality of our estimators.

Theorem 2. Based on the Condition 1,2,3,4 and Liapounov form of the multivariate central limit
theorem, (β̂′, λ̂′, γ̂′)′ is asymptotically normally distributed with variance I(β0, λ0, γ0)

−1:

√
n

 β̂− β0
λ̂− λ0
γ̂− γ0

 d
=⇒ MVN(~0, I(β0, λ0, γ0)

−1).

Theorem 1 and 2 indicate the asymptotic consistency and normality of MHPC estima-
tors (β̂′, λ̂′, γ̂′)′ separately.

The prove is similar as in Chui et al. (1996). Giving a set of estimators β̂, λ̂ and γ̂, and
setting

ri = yi − Xβ0 + X(β0 − β̂), (2)

where β0 is the true value for coefficient β in mean model. Then we have

E(ri) = X(β0 − β̂), (3)

and

E(rir′i) = Σ0 + X(β0 − β̂)(β0 − β̂)′X′, (4)

where Σ0 is the true covariance matrix build with λ0 and γ0. Giving a sample yi (i =
1, 2, . . . , n), ignoring the constant part we have the log-likelihood function li = log f (yi, β, λ, γ)
as follow:

− 2li = log |Σ̂|+ r′iΣ̂
−1ri (5)

When β = β̂, λ = λ̂ and γ = γ̂ we have the mean and variance of the log-likelihood for
sample yi as:

−2E(li) = log |Σ̂|+ tr(Σ̂−1Σ0) + (β0 − β̂)′X′Σ̂−1X(β0 − β̂),
2var(li) = tr(Σ̂−1Σ0)

2 + 2
[
(β0 − β̂)′X′Σ̂−1Σ0Σ̂−1X(β0 − β̂)

]
.

(6)

Based on the compactness of solution subspaces and boundedness of the covariates it
can be shown that there exist a constant κ so that for all 1 ≤ i ≤ n, var(li) ≤ κ. Therefore
by the Kolmogorov’s strong law of large number average of the log-likelihood li is almost
surely convergence to the average of its mean:

1
n

n

∑
i=1

li −
1
n

n

∑
i=1

E(li)
a.s−→ 0, as n→ ∞. (7)

The κ in above is independent of the estimators, so the average of the expected log-

likelihood
1
n ∑n

i=1 E(li) is equi-continuous in solution subspaces. Then similar to the proof
of Theorem 1 in Chiu et al. (1996), we can also prove the consistency of our estimators here.

2. Derivative of Score and Expected Fisher Information Matrices

Iλλ′ = −E(
∂2l

∂λ∂λ′
) =

n
4

p

∑
l=1

l

∑
k1=1

l

∑
k2=1

alk1 alk2 ρk1k2(hk1 h′k1
+ hk2 h′k1

). (8)

Based on some properties of derivative of matrix:

∂

∂X
tr(AXB) = A′B′, (9)
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and
∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1, (10)

where Y = g(x), we can have:

∂

∂γm
r′i D
−1R−1D−1ri =

∂

∂R−1 tr(r′i D
−1R−1D−1ri)

∂R−1

∂γm

= tr(D−1rir′i D
−1(−R−1)∆(

∂ρjk

∂γm
)R−1).

(11)

Based on:

∂log|X|
∂x

= tr(X−1 ∂X
∂x

), (12)

we have:

∂log|DRD|
∂γm

= tr(R−1 ∂R
∂γm

). (13)

Similar as in Zhang and Leng (2015),based on the notation of ξi∗l we will have Tiξil = D−1
i ril .

Then we can show the jth element will have equation as:

ξ j =
j

∑
k=1

ajk

σk
rj, (14)

Then taking the first derivative of ξ j with respect to λ is:

∂ξ j/∂λ =
j

∑
k=1

ajkrk∂σ−1
k /∂λ, (15)

and
∂σ−1

k /∂λ = −1
2

hk/σk. (16)

Then taking the first derivative of our log-likelihood with respect to λ will give us the score
function for λ:

Uλ = ∂l/∂λ = −1
2

n ∑
p
l=1

∂logσ2
l

∂λ − 1
2 ∑

p
l=1 ∑n

j=1
∂ξ2

j
∂λ

= −1
2

n ∑
p
l=1 hl +

1
2 ∑

p
l=1 ∑n

j=1 ξ j ∑
j
k=1 ajkrkhk/σk.

(17)

Taking the second derivative of log-likelihood with respect to λi

−2
∂2l

∂λi∂λ′i
= −∑n

j=1 ∑
p
l=1

[
(∑l

k=1 alk
rkj

σk
hk

∂ξ j

∂λ′
) + (ξ j ∑l

k=1 alkrkhk
∂σ−1

k
∂λ′

)

]
= −∑ni

j=1 ∑
p
l=1

[
(−1

2 ∑l
k1=1 alk1

rk1

σk1

hk1 ∑l
k2=1 alk2

rk2

σk2

h′k2
)

+(−1
2

ξl j ∑l
k=1 alk

rk
σk

hkh′k)
]

.

(18)

Giving that
∂ξ j

∂λ
is known, taking the second derivative of it with respect to λ′. And with

equations (16), (15), as the result the expectation of (18) is (8).
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Since E(ri) =~0 the expectation of Iγm β:

E
[
Iγm β

]
= E

[
Iβγm

]
= −1/2 ∑n

i=1 E
[(

∂r′i
∂β

D−1R−1∆(
∂ρjk

∂γm
)R−1D−1ri

)
(

r′i D
−1R−1∆(

∂ρjk

∂γm
)R−1D−1 ∂ri

∂β

)]
=~0

. (19)

Based on same reason, the off diagonal blocks in expected Fisher-information matrix be-
tween β and variance component λ also is 0.

2Iβλ′ = 2I′λβ′ = −2E(
∂2l

∂β∂λ′
)

= X′
∂

∂λ
Σ−1

i E(εi)1ni = 0,
(20)

3. More Example Studies
3.1. Order-dependency of HPC

We assume a set of Yj j = 1, 2, 3, 4, 5, 6. There is no nature order for Yjs. And correlation
matrix for Yjs is:

R0 =



1 0.980 0.921 0.696 0.169 −0.588
0.980 1 0.966 0.759 0.160 −0.695
0.921 0.966 1 0.814 0.098 −0.836
0.696 0.759 0.814 1 −0.166 −0.892
0.169 0.160 0.098 −0.166 1 0.046
−0.588 −0.695 −0.836 −0.892 0.046 1

 (21)

Then under order Y1, Y2, Y3, Y4, Y5, Y6, we will have HPC decomposition of R0 as follow:

R0 = T0T′0

Where T0 is:

T0 =



1 0 0 0 0 0
0.980 0.198 0 0 0 0
0.921 0.321 0.219 0 0 0
0.696 0.387 0.218 0.562 0 0
0.169 −0.028 −0.223 −0.399 0.872 0
−0.588 −0.596 −0.467 −0.265 −0.093 0.013

 (22)

And corresponding Φ0 matrix is:

Φ0 =



0 0 0 0 0 0
0.2 0 0 0 0 0
0.4 0.6 0 0 0 0
0.8 1.0 1.2 0 0 0
1.4 1.6 1.8 2.0 0 0
2.2 2.4 2.6 2.8 3.0 0


First, we change the order into Y1, Y2, Y5, Y4, Y3, Y6, switching the position between Y3 and
Y5. That will make R0 into R3/5 by relocating entries’ position in dark shaded area:
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R3/5 =



1 0.980 0.169 0.696 0.921 −0.588
0.980 1 0.160 0.759 0.966 −0.695
0.169 0.160 1 −0.166 0.098 0.046
0.696 0.759 −0.166 1 0.814 −0.892
0.921 0.966 0.098 0.814 1 −0.836
−0.588 −0.695 0.046 −0.892 −0.836 1

 (23)

The HPC decomposition of R3/5 is as follow:

T3/5 =



1 0 0 0 0 0
0.980 0.198 0 0 0 0
0.169 −0.028 0.985 0 0 0
0.696 0.387 −0.277 0.535 0 0
0.921 0.321 −0.049 0.063 0.204 0
−0.588 −0.596 0.131 −0.401 −0.345 0.013

 (24)

Value of entries on the left-hand side of the vertical line remains the same, only the location
of entries have changed accordingly. For the reasons we stated before, on the right-hand
side are all new values, expect 0s. Then we will have Φ3/5 as:

Φ3/5 =



0.0 0.0 0 0 0 0
0.2 0.0 0 0 0 0
1.4 1.6 0 0 0 0
0.8 1.0 2.048 0 0 0
0.4 0.6 1.8 1.268 0 0
2.2 2.4 1.328 2.429 3.103 0


This is just like what we described before. All angles on the left side of the vertical line stay
the same, and only the location has changed. Meanwhile, we will have whole new angles
on the right-hand side, for the reason we proved before.
We further change the order into Y1, Y2, Y5, Y6, Y3, Y4, by switching the position between Y4
and Y6. Under the new order, relocate entries in gray shade and get the correlation matrix
R3/5||4/6 as:

R3/5||4/6 =



1 0.980 0.169 −0.588 0.921 0.696
0.980 1 0.160 −0.695 0.966 0.759
0.169 0.160 1 0.046 0.098 −0.166
−0.588 −0.695 0.046 1 −0.836 −0.892
0.921 0.966 0.098 −0.836 1 0.814
0.696 0.759 −0.166 −0.892 0.814 1

 (25)

And T3/5||4/6 is:

T3/5||4/6 =



1 0 0 0 0 0
0.980 0.198 0 0 0 0
0.169 −0.028 0.985 0 0 0
−0.588 −0.596 0.131 0.530 0 0
0.921 0.321 −0.049 −0.181 0.113 0
0.696 0.387 −0.277 −0.405 −0.349 0.024

 (26)

On the left-hand side of the double vertical line is the remain-same-value part of T3/5||4/6
comparing with T3/5. And the corresponding Φ3/5||4/6 is:
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Φ3/5||4/6 =



0.0 0.0 0 0 0 0
0.2 0.0 0 0 0 0
1.4 1.6 0 0 0 0
2.2 2.4 1.328 0 0 0
0.4 0.6 1.8 2.584 0 0
0.8 1.0 2.048 2.429 3.072 0

.

The gray-shaded part remains the same value as Φ3/5 after the second change. We can
see that the remain-same-value pattern remains after we further change the order from
Y1, Y2, Y5, Y4, Y3, Y6 to Y1, Y2, Y5, Y6, Y3, Y4.

These two simple simulation studies testify that the HPC method on correlation matrix
is order dependent in terms of value of entries in Φ matrix.

3.2. Order invariance of MHPC

Now we apply the same simulation study on MHPC and see how the new method
react. Giving the same starting correlation matrix R0 as (21), after Cholesky Decomposition
on R0, the same T0 as the one before is generated in (22). Based on equation (??) we have
Φ̃0 for the MHPC method as:

Φ̃0 =



0 0 0 0 0 0
0.2 0 0 0 0 0
0.4 0.259 0 0 0 0
0.8 0.707 0.619 0 0 0
1.4 1.409 1.472 1.737 0 0
2.2 2.339 2.561 2.674 1.524 0

,

where entries, φjk, is the angle between ~T(j) and ~T(k). For example, as shown above,
φ53 = 1.472 is the angle between ~T(5) and ~T(3). Then we swap position 3 and 5, which gives
R3/5 and T3/5 as (23) and (24) in HPC. According to the new proposed definition of the
translation between Φ and T in MHPC, we have Φ̃3/5 for MHPC as follow:

Φ̃3/5 =



0 0 0 0 0 0
0.2 0 0 0 0 0
1.4 1.409 0 0 0 0
0.8 0.707 1.737 0 0 0
0.4 0.259 1.472 0.619 0 0
2.2 2.339 1.524 2.674 2.561 0

,

all those gray shaded parts have their positions re-allocated, but value remains the same as
the original Φ̃0 for MHPC. Further, switch order 4 and 6 on the previous order, we have
R3/5||4/6 and T3/5||4/6 in (25) and (26). And using the MHPC method we get Φ̃3/5||4/6 as
below:

Φ̃3/5||4/6 =



0 0 0 0 0 0
0.2 0 0 0 0 0
1.4 1.409 0 0 0 0
2.2 2.339 1.524 0 0 0
0.4 0.259 1.472 2.561 0 0
0.8 0.707 1.737 2.674 0.619 0

,

those dark shaded elements are the new corresponding position-switched ones comparing
to Φ̃3/5. We can see after many order changes all value in matrix Φ under MHPC method
remain the same, only their position change to fit the new order. In that sense, we say

https://doi.org/10.3390/math10040562


Mathematics 2022, 10, 562. https://doi.org/10.3390/math10040562 S7 of S7

MHPC is order invariant in terms of matrix Φ.
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