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Abstract: Current covariance modeling methods work well in longitudinal data analysis. In the
analysis of data with no nature order, a common covariance modeling method would be inadequate.
In this paper, a study is implemented to investigate the effects of permutations of data on the
estimation of covariance matrix Σ. Based on the Hyper-sphere decomposition method (HPC), this
study suggests that the change of data’s permutation breaks the consistency of covariance estimation.
An alternative Hyper-sphere decomposition method with permutation invariant is introduced later
in this paper. The alternative method’s consistency and asymptotic normality are studied when
the observations follow a normal distribution. These results are tested using some example studies.
Furthermore, a real data analysis is conducted for illustration purposes.

Keywords: order dependency; alternative Hyper-sphere decomposition; permutation invariant;
unconstrained parameterization

1. Introduction

The covariance matrix is a simple and popular method to describe the variation and
correlation between random variables in multivariate statistics. A valid covariance matrix
must be symmetric and semi-positive definite. In some areas, like social sciences, finance,
economics and geology, people are more interested in studying the covariance matrices
than mean models. Meanwhile, an appropriate working covariance matrix could increase
the estimator’s efficiency. Moreover, Pourahmadi (2013) [1] suggests a good estimate of the
covariance matrix can lead to an accurate statistical inference and test results. Little and
Rubin (2019) [2] show that an accurate estimate of covariance is essential in dealing with
missing data problems. A sample covariance is usually used to estimate the population
covariance matrix for its convenience. In some special cases, for example, high-dimensional
situations where the number of repeated measurements n is less than that of unknown
parameters in covariance matrix, using sample covariance matrix would end up with a
biased estimator of mean model [3].

Pourahmadi (1999) [4] introduced the modified Cholesky decomposition method
(MCD ) into the estimation of covariance matrix by applying regression-based ideas into
matrix decomposition methods. However, the interpretation of the relationship between
model coefficients and correlation/variance of population Y is indirect. Pan and Pan
(2017) [5] proposed the alternative Cholesky decomposition method (ACD) in 2017 that im-
proves the correlation-interpretation problem of MCD by applying Cholesky decomposition
on the correlation matrix R,

Σ = DRD = DTT′D,

where matrix D is a diagonal matrix with standard deviations σ of population Y, and T is a
lower-triangular matrix with unit row vectors, ~T(i) i = 1, . . . , p, whose Euclidean norm is 1.
The same model regression procedure as in MCD cannot be applied in ACD due to the extra
unit-norm-restriction on row vectors in matrix T. Rebonato and Jäckel (2011) [6] projected
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T in ACD into a unit Hyper-sphere coordinate system and proposed the Hyper-sphere
decomposition method (HPC), in which elements tij in T are

tij =


1 i = j = 1

cos φij ∏
j−1
k=1 sin φik j = 1, . . . , p− 1, i = 2, . . . , p

∏
j−1
k=1 sin φik j = p

, (1)

where φjk are corresponding new angular coordinates of vector ~T(i) in a unit hyper-sphere
coordinate system. As a result we have

T =


1 0 0 . . . 0

c21 s21 0 . . . 0
...

...
...

. . .
...

cp,1 cp,2sp,1 cp,3sp,2sp,1 . . . ∏
p
k=1 sp,k

,

where cij and sij refer to cos(φij) and sin(φij). Comparing to ACD there is an additional
matrix Φ, which is also a lower triangular with diagonal elements 0 and with the lower
off-diagonal being angles φij ∈ [0, π),

Φ =


0 0 0 . . . 0 0

φ21 0 0 . . . 0 0
φ31 φ32 0 . . . 0 0

...
...

...
. . .

...
...

φp1 φp2 φp3 . . . φp,p−1 0

.

This method can guarantee the unit-row vectors in T for any given estimator matrix
Φ; meanwhile, this decomposition has a geometry meaning for Φ [7]. In that sense, the
regular model regression procedure can be applied in HPC just as in Pourahmadi (2000) [8].
To ensure φjk ∈ [0, π) we can do a further triangular transpose on the liner model:

tan(φjk −
π

2
) = ω′jkγ φ ∈ [0, π), and log σ2

j = h′jλ, (2)

where ωjk and hj are design matrices and vectors for angles φjk and variances σ2
j , re-

spectively. Meanwhile, γ and λ in Equation (2) are unknown correlation and variance
components.

The current popular methods like HPC work well in longitudinal data analysis in
which there is a natural order of the sample data. While in analyses like geometric and
causal data there is no natural permutation of data, these methods generate estimates that
depend on the permutation of sample data. The purpose of this article is to illustrate the
permutation variance of covariance estimator of HPC. After that, we redefine the transla-
tion between T and Φ, then propose an alternative Hyper-sphere decomposition (AHPC)
method that inherits most of the advantages of HPC while improving the permutation
variance. Meanwhile, the AHPC has a more straightforward geometrical interpretation.

2. Interpretations of Hyper-Sphere Decomposition Method

Rapisarda, Brigo and Mercurio (2007) [7] explained HPC from the aspect of Jacobi
rotation. In a p-dimensional right-hand system, axis e1, e2, . . . , ep are selected as follows:

1. Set the direction of ~T(1) as the first axis e1.
2. In the plane containing vectors ~T(1) and ~T(2), make the e2 vertical to e1 in a right-

hand system.
3. e3 is perpendicular to the previous axis, e1 and e2, and on the same side of their cross

product e1 × e2.
4. After the signed j axis, the next axis ej+1 is defined as vertical to all previous axes and

on the same direction of e1 × e2 · · · × ej, while j + 1 ≤ p.
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Cross product ej × ek = ||ej|| · ||ek||sinθ ·~n determines a direction~n perpendicular to
the plane containing ej and ek given by the right-hand rule.

With all axes having been set up, the row vectors ~T(j) =
(
tj1, . . . , tjj, 0, . . . , 0

)′ shows
us the coordinate of ~T(j) in this Cartesian system. According to [7], the relation between
angles φij and coordinates of ~T(k)s is (Figure 1a):

1. We begin with ~T(1). Next we turn ~T(1) counter-clockwise in hyper-plane PL12 with
angle φ2,1. Then we have ~T(2) = G(1, 2; φ2,1)~T(1). The hyper-plane PL12 is built with e1
and e2.

2. Turn ~T(1) in PL12 with angle φ3,1; then do another rotation in PL23 with angle φ3,2. We
then have ~T(3) = G(2, 3; φ3,2)G(1, 2; φ3,1)~T(1).

3. ~T(k) is built up with k− 1 times turn as: ~T(k) = G(k− 1, k; φk,k−1) . . . G(1, 2; φk,1)~T(1).

In a p-dimensional space, G(j, k; θ) is a Jacobi rotation matrix in hyper-plane PLj,k with
counter-clockwise angle θ. Besides the geometric explanation from [7], we also propose
a new interpretation of the correlation between matrices T and Φ in the HPC method,
regarding angles between two hyper-planes in a row space of T (Figure 1b):

1. Lower off-diagonal entries in the first column of Φ, φi1s, are angles between the first
and ith row vectors in T.

2. The lower off-diagonal entries in second column of Φ contains angles, φi2s, between
plane HP12, which is defined by the first and second row vectors in T, and HP1i i > 2,
which is defined by the first and ith row vectors in T.

3. After that, elements φjk in kth column of matrix Φ, j > k ≥ 3, are angles between two
hyper-planes HP12...(k−1)k and HP12...(k−1)j.

The HP12...k’s are built with the first, second and until the kth row vectors. The angle
between hyper-planes is well known in the mathematics literature, see, e.g., [Chep. 3] of
Murty [9]. The angle φjk’s between two hyper-planes, HP12...(k−1)k and HP12...(k−1)j can be
calculated recursively via

θjk =


arcos(tjk) j ≥ 2, k = 1

arcos(
tjk

tj(k−1)tan(θj(k−1))
) j > 2, k ≥ 2 , (3)

According to [7], when θjk’s and φjk’s are in [0, π], the translation in Equation (3) is
unique, θjk = φjk.

(a) (b)

Figure 1. 3-dimensional illustration of HPC. (a) Interpretation of HPC method based on the idea of
angles between hyper-plane. (b) Interpretation of HPC method based on Jacobi rotation.

3. Order-Dependence of Hyper-Sphere Decomposition Method

Based on both explanations of the HPC method above, we show that the HPC is
order-dependent from two aspects in this section.
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Setting R as a correlation matrix between random sample Y = (Y1, . . . , Yp)′, and after

a standard Cholesky decomposition R = TT′, where T =
(
~T(1), . . . ,~T(p)

)′
, based on the

definition of HPC decomposition, the correlation ρjk in R is actually the cosine value of
an angle between two unit vectors ~T(j) and ~T(k), ρjk = ~T′(j)

~T(k) = cos < ~T(j),~T(k) >. So

eventually we say that these unit vectors ~T(j) in lower-triangular matrix T represent the
whole correlation information of corresponding random sample Yj. In that sense, the order
of row vectors in T has almost the same representation of the order of Yj in correlation
matrix R. For example, when p = 6, under the order Y1, Y2, Y3, Y4, Y5, Y6, we have R and
the lower triangular T matrix in (4) where, for example, t42 is the coordinate on axis e2 for
vector ~T(4), which corresponds to Y4. Then we will have a Φ matrix as the left one in (5)
where in the matrix Φ, from left to right, φjk is the kth Jacobi rotation angle in hyper-plane
PLk,k+1, which is built with ek and ek+1. For example, φ42 is the second Jacobi rotation angle
in PL23.

R =



Y1 Y2 Y3 Y4 Y5 Y6

Y1 1 ρ12 ρ13 ρ14 ρ15 ρ16
Y2 ρ21 1 ρ23 ρ24 ρ25 ρ26
Y3 ρ31 ρ32 1 ρ34 ρ35 ρ36
Y4 ρ41 ρ42 ρ43 1 ρ45 ρ46
Y5 ρ51 ρ52 ρ53 ρ54 1 ρ56
Y6 ρ61 ρ62 ρ63 ρ64 ρ65 1

, T =



e1 e2 e3 e4 e5 e6
~T(1) 1 0 0 0 0 0
~T(2) t21 t22 0 0 0 0
~T(3) t31 t32 t33 0 0 0
~T(4) t41 t42 t43 t44 0 0
~T(5) t51 t52 t53 t54 t55 0
~T(6) t61 t62 t63 t64 t65 t66


. (4)

From the aspect of angles between two hyper-planes, we have the table for matrix Φ
as in the right one in (5) where j stands for row number. In this table, for example, φ53 is
the angle between HP1,2,3 and HP1,2,5. Hyper-plane HP1,2,5 is built with the first, second
and fifth row vectors in T.



e1e2 e2e3 e3e4 e4e5 e5e6
~T(1) 0 0 0 0 0 0
~T(2) φ21 0 0 0 0 0
~T(3) φ31 φ32 0 0 0 0
~T(4) φ41 φ42 φ43 0 0 0
~T(5) φ51 φ52 φ53 φ54 0 0
~T(6) φ61 φ62 φ63 φ64 φ65 0


,



1|j 12|1j . . . 12345|1234j
~T(1) 0 0 . . . 0 0
~T(2) φ21 0 . . . 0 0
~T(3) φ31 φ32 . . . 0 0
~T(4) φ41 φ42 . . . 0 0
~T(5) φ51 φ52 . . . 0 0
~T(6) φ61 φ62 . . . φ65 0


. (5)

Eventually we have the same equation between ρ and φ as in [10]:

ρjk = cjk

k−1

∏
l=1

sjlskl +
k−1

∑
l=1

[
cjlckl

l−1

∏
t=1

sjtskt

]
, (6)

where sjk and cjk stand for sin(φjk) and cos(φjk), respectively.
If we change the order of Yjs in correlation matrix R, simultaneously we change the

corresponding row vectors, ~T(j)s, in lower-triangular matrix T. While the elements in new
matrix T∗ may change after changing order, the relationship between ~T(j) and Yj remains
the same. As illustrated before, elements in matrix T are coordinates. When the order of
Yjs is different, we set up a new set of axes. That leads us to have a new set of coordinates
for ~T(j)s. If we change the order into Y1, Y2, Y5, Y4, Y3, Y6, then the new correlation matrix
R∗ can be obtained by swapping elements in R and doing the Cholesky decomposition on
R∗ we get T∗ as in (7).
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R∗ =



Y1 Y2 Y5 Y4 Y3 Y6

Y1 1 ρ12 ρ15 ρ14 ρ13 ρ16
Y2 ρ21 1 ρ25 ρ24 ρ23 ρ26
Y5 ρ51 ρ52 1 ρ54 ρ53 ρ56
Y4 ρ41 ρ42 ρ45 1 ρ43 ρ46
Y3 ρ31 ρ32 ρ35 ρ34 1 ρ36
Y6 ρ61 ρ62 ρ65 ρ64 ρ63 1

, T∗ =



e1 e2 e∗3 e∗4 e∗5 e∗6
~T(1) 1 0 0 0 0 0
~T(2) t21 t22 0 0 0 0
~T(5) t31 t32 ∗ 0 0 0
~T(4) t41 t42 ∗ ∗ 0 0
~T(3) t51 t52 ∗ ∗ ∗ 0
~T(6) t61 t62 ∗ ∗ ∗ ∗


. (7)

Since we changed the order from position Y3, simultaneously a new set of axes e∗3 , e∗4 ,
e∗5 and e∗6 are selected. As a result we will have new value for the coordinate on e∗3 , e∗4 and
e∗5 , represented as ∗s. Meanwhile, the corresponding Φ∗ matrix will be like in (8).



e1e2 e2e∗3 e∗3e∗4 e∗4e∗5 e∗5e∗6
T̃′1 0 0 0 0 0 0
T̃′2 φ21 0 0 0 0 0
T̃′5 φ51 φ52 0 0 0 0
T̃′4 φ41 φ42 ∗ 0 0 0
T̃′3 φ31 φ32 φ53 ∗ 0 0
T̃′6 φ61 φ62 ∗ ∗ ∗ 0

,



1|j 12|1j 123|12j . . .
~T(1) 0 0 0 . . . 0
~T(2) φ21 0 0 . . . 0
~T(5) φ51 φ52 0 . . . 0
~T(4) φ41 φ42 ∗ . . . 0
~T(3) φ31 φ32 φ53 . . . 0
~T(6) φ61 φ62 ∗ . . . 0


. (8)

From the aspect of Jacobi rotation, element φjk in Φ is a rotating angle in plane PLk,k+1

built by axes ek and ek+1. Because the definition of axis ejs depend on the order of ~T(j),
which is again also the order of Yj, φjk still depends on the order of Yj. We can observe
that cos < ~T(1),~T(k) >= ~T′(1)~T(k) = (1, . . . , 0)(ck1, . . . .0)′ = ck1 = f (φk1), and cos <

~T(2),~T(k) >= ~T′(2) · ~T(k) = (c21, . . . , 0)(ck1, . . . , 0)′ = c21ck1 + s21ck2sk1 = f (φ21, φk1, φk2),
which shows that ρ1k and ρ2k only relay on φk1, φk2 and φ21. This explains the reason why
φk1 and φk2 remain the same, respectively. Since the third vector becomes ~T(5), angles on
the column 3 all will have a new value, except φ53, for obvious reasons, the angle between
HP∗1,2,3 and HP∗1,2,5 equals that between HP1,2,5 and HP1,2,3.

We summarize this dependency in Table 1. Table 1 indicates how the value of entries
in Φ depend on the order of row vectors in matrix T.

After proving the permutation variation of the values in the Φ matrix, we consider how
this would affect our modeling process. If the HPC method were permutation invariant,
the model assumption should always hold no matter how we change the order of data
Y. However, a different order gives different values of Φ, proven above. Then, under the
model (2), with the same covariates ω∗ and h∗ in which the corresponding values have
been rearranged according to the new order, HPC would have a different estimator of γ̂
and λ̂. In some cases, even the whole model assumption would be wrong under the new
permutation of sample data.

Table 1. Dependence between entries in Φ and row vectors in T. For example, 1, 2, 3, p means
element φp3, at row p column 3 in Φ depends on the first, second, third and pth row vectors in T.

col1 col2 col3 . . . colp-1 colp

row1 0 0 0 . . . 0 0
row2 1, 2 0 0 . . . 0 0
row3 1, 3 1, 2, 3 0 . . . 0 0

...
...

...
...

...
...

...

rowp 1, p 1, 2, p 1, 2, 3, p . . . 1, 2, 3, . . . ,
p − 1, p 0
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Due to the definition of translation between matrices T and Φ, according to our study,
the data order affects Φ element-wise. Furthermore, there is no way of transforming a
new angle matrix under the new data order back to its previous one only by rearranging
elements. In other words, a change of the order will give a different set of values for Φ. The
regression model on Φ elements would have different parameter estimates under varied
data order. Furthermore, even the model assumption may vary according to the data order.
In that sense, we say the current HPC method is order dependent. As the conclusion, under
both interpretations, the HPC method is permutation variate both in terms of the Φ matrix
and models for variance components.

4. Alternative Hyper-Sphere Decomposition Method

We notice that the order dependency of the HPC method is caused by the definition of
the translation between two coordinate systems, the Cartesian coordinate system for matrix
T and a unique angular coordinate system for Φ. We now propose a new definition of matrix
Φ inspired by spherical parameterization [11], which would improve the relationship
between matrices R and Φ. Then eventually the newly proposed alternative Hyper-sphere
decomposition (AHPC) would be permutation invariant.

4.1. The AHPC Model

The AHPC method differs from HPC in a new definition on Φ, the lower triangular
matrix with diagonal elements equal to 0. Instead of being angles between hyper-planes in
HPC, here we define our elements in Φ as angles between row vectors ~T(j)s, as illustrated
in Figure 2,

φjk =< ~T(j),~T(k) > 1 < k < j ≤ p, (9)

where φjk ∈ [0, π) to ensure the uniqueness.

Figure 2. A geometric representation of AHPC when p = 3. The φjks are angles between ~T(j) and
~T(k), respectively.

For dimension p ≥ 3, there is a three-dimensional restriction. Any pairs of vectors
Ti and Tj must be in a two-dimensional plan, the angle φij ∈ [0, π) between ~T(i) and ~T(j),
to guarantee the uniqueness. Furthermore, for angles between three vectors, there are
only two proper situations. The first one is φjk = φji + φik when vector ~T(i), ~T(j) and ~T(k)

are in the same plane, and ~T(i) is sitting between ~T(j) and ~T(k). The second scenario is
φjk < φji + φik where three vectors are not in the same plane. Consequently, for any three
vectors ~T(i), ~T(j) and ~T(k), angles between each pair of vectors must satisfy that the sum of
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any two angles be not less than the third one and the difference between any two angles be
not greater than the third one,

φjk ≤ φji + φik and φjk ≥ φji − φik, k < i < j, (10)

where φji = φij. Thus for the restriction on angles between vectors in three-dimensional
spaces, the model assumption must satisfy the constraint φjk ≤ φij + φik. This is not only
due to the geometric fact but also is sufficient for positive semi-definiteness of correlation
matrix R. When φjk = φji + φik, Ti, Tj and Tk must be on the same plane, which suggests
that there must exist constants a and b such that Ti = aTj + bTk. As a result, in the ith row
of correlation matrix R,

ρih = T′i Th = (aTj + bTk)
′Th = aT′j Th + bT′kTh 1 ≤ j ≤ p,

which indicates the ith, jth and kth rows are linearly dependent; then the corresponding
correlation matrix R would be positive semi-definite, det(R) = 0. On the other hand, if
φjk < φji + φik, R would be positive definite.

We model the variance components by:

log σ2
j = h′jλ, φjk = g(ωjk), (11)

where g(ωjk) should be a monotonic decreasing function for stationary data whose correla-
tion only depends on absolute distances between covariates ωjk = ||Locationj− Locationk||.
For angles between three vectors ~T(i), ~T(j) and ~T(i), the distance ωjk is less than ωji + ωik;
then φjk = g(ωjk) ≤ g(ωji) + g(ωik) = φji + φik. Another option is optimization with
nonlinear programming (NLP). We can use NLP methods [12], with nonlinear inequal-
ity constraints,

g(ωjk)− g(ωji)− g(ωik) + s2
jk = 0, j < i < k,

|g(ωji)− g(ωik)| − g(ωjk) + s2
jk = 0, j < i < k,

(12)

to calculate the maximum likelihood estimator. The sjk are slack parameters in the Karush–
Kuhn–Tucker (KKT) condition for NLP to translate inequality constraints into equality
ones. Libraries like fmincon in MATLAB and program LINGO could deal with this NLP
problem as well. However, this is more of a mathematical issue than a statistical problem.
So no details on NLP will be offered and studied in this paper.

Under the new definition of Φ, we have a direct relation between R and Φ:

ρjk = ρkj = cos(φjk), (13)

where φjk is in [0, π]. This is the key to guarantee permutation invariance. Comparing with
Equation (6), ρjk in AHPC only depends on one corresponding component φjk instead of
depending on a series of φjks in a triangular area over j + 1 rows in HPC. The translations
between T and Φ are

cos(φjk) = cjk = cos < ~T(j),~T(k) >= ~T′(j)
~T(k) =

k

∑
l=1

tjltkl j > k, (14)

and

tjk =



cj1 j > k = 1[
cjk − (∑k−1

l=1 tjltkl)
]
/(tkk) j > k > 1

1 j = k = 1[
1− (∑k−1

l=1 t2
jl)
]1/2

j = k > 1

, (15)

where tjks are elements in T.
When changing R into R∗ by re-ordering Y in matrix form, actually we apply a

transformation matrix A on R such that:
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ARAT = R∗,

in which R and R∗ are non-negative definite symmetric and A is a square matrix. Under
this setting, finding A solves the unique form of the algebraic Riccati equation

ACT
1 C1 A = R∗ + FT A + AF, (16)

where CT
1 C1 = R, which means C1 is the Cholesky decomposition of R and setting F = 0.

Consequently, there must exist a transformation matrix A such that ARAT = R∗.
Meanwhile, based on the definition of the permutation matrix, P, when changing the

order of rows in matrix R from 1, 2, 3, 4 to R∗ with new order 4, 1, 3, 2,

PRPT = R∗, (17)

where P is a permutation matrix. Thus, permutation matrix P is a solution of transformation
matrix A. In that sense, after Cholesky decomposition R = LLT and R∗ = L∗L∗T , the
equation below is true:

PRPT = PLLT PT = L∗L∗T = R∗. (18)

Eventually, we have PL = L∗, noting that we need to simplify PL into a lower
triangular matrix. We turn PL into a lower-triangular matrix, equivalent to selecting a new
set of the coordinate axis. Furthermore, that is what makes L∗ differ from L.

In the alternative hyper-sphere decomposition method, there is a direct link between
correlation ρjk and its corresponding coefficient φjk in function (13). Only in the proof
below, we use the symmetric Φ f = Φ + ΦT instead of the lower triangular one. Thus, we
can have:

PRPT = Pcos(Φ f )PT = cos(PΦ f PT) = cos(Φ∗f ) = R∗,

which also means PΦ f PT = Φ∗f , where Φ∗f is the angle matrix under the new order. For
example, changing 1, 2, 3, 4 into 4, 1, 2, 3:

PΦ f PT =


0 φ41 φ43 φ42

φ14 0 φ13 φ12
φ34 φ31 0 φ32
φ24 φ21 φ23 0

 = Φ∗f .

We can observe that entries in Φ f and Φ∗f are identical with locations rearranged. This
guarantees the Φ matrix in AHPC is permutation invariant.

Make model assumption on variance components as in (2) with covariate matrices
Ω and H. After changing into the new order, correspondingly we rearrange our new Ω∗f
as Ω∗f = PΩ f PT . As proven before, the value of φjk remains the same. Its corresponding
ωjk and hj under the model assumption also remains the same. We can see that the model
assumption and the estimators λ̂ & γ̂ will remain the same after any change of the order.

As shown above, from both the aspect of entries in Φ and the model for variance
components, the AHPC method is permutation invariant.

4.2. Estimation Method for AHPC

We use the two algorithms to get the maximum likelihood estimator of mean parameter
β and covariance components γ and λ jointly. Giving response Yp×n = (Y1, Y2, . . . , Yn)

′

that with p measurements and each measurement has n observations, under the linear
model assumption, we have:

Y− Xβ ∼ MVN(0, Σ), (19)

where X is a design matrix, and β is an unknown parameter vector. In AHPC without loss of
generality, we can set up a joint regression model for mean and covariance components as:

µj = x′jβ, log σ2
j = h′jλ, φjk = ω′jkγ, (20)
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where µj and σj (j = 1, 2, . . . , p) are, respectively, the mean and standard deviation for the
jth measurement Yj. Moreover, φjks ∈ [0, π] (1 < k < j ≤ p) are angles in matrix Φ. Dimen-
sions for β, λ and γ are qβ, qλ, qγ, respectively. Ignoring the constant −(np/2) log (2π), the
minus twice log-likelihood function has the following representation:

−2l = n log |DRD|+ ∑n
i=1 r′i D

−1R−1D−1ri
= n log |DRD|+ ∑n

i=1 ξ ′iξi,
(21)

where ris are residuals ri = Yi − µ and ξi = T−1D−1ri. In AHPC we have

log |DRD| = log |DTT′D| = 2 log |D|+ 2 log |T| = ∑
p
j=1(log σ2

j + 2 log tjj),

where tjjs are diagonal elements in T. We define ∆ as a p× p matrix, and ∆(
∂ρjk

∂γm
) means

the elements of this matrix are
∂ρjk

∂γm
s (1 ≤ j, k ≤ p ; m = 1, 2, . . . , qγ). Since ∆(

∂ρjk

∂γm
) is sym-

metric as R, ∆(
∂ρjk

∂γm
) = ∆′(

∂ρjk

∂γm
). Taking the first derivative of the log-likelihood function

above with respect to β, λ and γ separately, we can obtain the following score functions:

−2
∂l
∂β

= 2 ∑n
i=1 X′i Σ

−1ri,

−2
∂l
∂λ

= n ∑
p
l=1 hl −∑n

i=1 ∑
p
l=1 ξij ∑

j
k=1 alkrk

hk
σk

,

−2
∂l

∂γm
= ntr(R−1∆(

∂ρjk

∂γm
))−∑n

i=1 tr(r′i D
−1R−1∆(

∂ρjk

∂γm
)R−1D−1ri),

(22)

where ξ jk (1 ≤ j ≤ n ; 1 ≤ k ≤ p) is the kth element in ξ j, alks are the (l, k)th elements in T−1.

Based on model assumption (20),
∂ρjk

∂γm
= −sin(φjk)ωjkm, where ωjkm is the mth element

in vector ωjk; and ∂l/∂γ = (∂l/∂γ1, ∂l/∂γ2, . . . , ∂l/∂γqγ)
′. Set score functions above or

equal to zero to get the estimator of parameters. In general, the score function does not
have explicit solutions. Numerical optimization procedures such as the Newton–Raphson
algorithm can be used here.

By calculating the second derivatives of the log-likelihood function with respect to β,
λ and γ we can have the Fisher-information matrix I,

I =

 Iββ′ Iβλ′ Iβγ′

I′βλ′ Iλλ′ Iλγ′

I′βγ′ I′λγ′ Iγγ′

. (23)

in which,

Iββ′ =
∂2l

∂β∂β′
= nX′Σ−1X. (24)

The expected Fisher-information matrix of λ is as follows:

Iλλ′ = −E(
∂2l

∂λ∂λ′
) =

n
4

p

∑
l=1

l

∑
k1=1

l

∑
k2=1

alk1 alk2 ρk1k2(hk1 h′k1
+ hk2 h′k1

). (25)
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Similarly to how we deal with the score function for γ,

− Iγγ′ =



∂2l
∂γ1∂γ′1

∂2l
∂γ1∂γ′2

. . .
∂2l

∂γ1∂γ′qγ

∂2l
∂γ2∂γ′1

∂2l
∂γ2∂γ′2

. . .
∂2l

∂γ2∂γ′qγ

...
...

. . .
...

∂2l
∂γqγ ∂γ′1

∂2l
∂γqγ ∂γ′2

. . .
∂2l

∂γqγ ∂γ′qγ


(26)

We have:

−2
∂2l

∂γm1 ∂γ′m2

= n× tr
(

R−1∆(
∂ρjk

∂γm2

)R−1∆(
∂ρjk

∂γm1

)

)
+∑n

i=1 tr
(

r′i D
−1R−1∆(

∂ρjk

∂γm1

+
∂ρjk

∂γm2

)R−1∆(
∂ρjk

∂γm1

+
∂ρjk

∂γm2

)R−1D−1ri

) (27)

We use the same method to find the cross section parts with γ:

Iγm β = Iβγm = −∑n
i=1 tr

(
∂r′i
∂β

D−1R−1∆(
∂ρjk

∂γm
)R−1D−1ri

)
= ∑n

i=1 tr
(

X′D−1R−1∆(
∂ρjk

∂γm
)R−1D−1ri

)
.

(28)

and

Iγmλ = Iλγm = −∑n
i=1 tr

(
r′i

∂D−1

∂λ
R−1∆(

∂ρjk

∂γm
)R−1D−1ri

)
= 2 ∑n

i=1 tr
(

r′i D
−1HR−1∆(

∂ρjk

∂γm
)R−1D−1ri

) , (29)

where H = (h1, h2, . . . , hp)′. We can show that the expectations of off block diagonal
matrices Iβλ and Iβγ are equal to 0. Detail of derivation of score functions and expected
Fisher-information matrix can be found in Supplementary Materials.

Giving the expected Fisher-information matrix in the form:

I =

 Iββ′ 0 0
0 Iλλ′ Iλγ′

0 I′λγ′ Iγγ′

,

The Fisher-scoring algorithm can be applied here. This algorithm conveniently gives us
the asymptotic covariance matrix of the estimator β̂, λ̂ and γ̂, the inverse Fisher-information
matrix evaluated at the MLEs.

We propose the simple regression algorithm based on the direct relationship between
ρjk and φjk as in function (13). We can use sample variance and the correlation matrix to
estimate covariance coefficients λ and γ, even if the sample covariance matrix is singular.
This approach cannot be applied to the HPC method for the requirement that the correlation
matrix be positive-definite for the necessity of Cholesky decomposition. Otherwise there is
no direct way to translate R into Φ.

This estimation method is more computationally efficient compared to the Newton–
Raphson algorithm. Since we use LSE and GWLSE, there is no optimal searching problem,
and also the grand optimality is guaranteed. As we prove before, parameter β in the
mean model is independent of the covariance coefficients λ and γ, so there is no problem
separating the estimation procedures as above.
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Algorithm 1: Newton–Raphson Algorithm
Input: Initial value β0, λ0 and γ0

1 repeat
2 Create the starting covariance matrix Σ0 using λ0 and γ0
3 Using the update functions:

β1 = β0 + I−1
ββ′(∂l/∂β)β=β0 , (30)

and (
λ1
γ1

)
=

(
λ0
γ0

)
+

(
Iλλ′ Iλγ′

I′λγ′ Iγγ′

)−1(
∂l/∂λ
∂l/∂γ

)
γ=γ0,λ=λ0

(31)

to update parameter estimate β1, λ1 and γ1
4 Set new initial value as β1, λ1 and γ1
5 until Convergence for all parameters β, λ and γ

Algorithm 2: Simple Regression Algorithm

1 Calculate sample mean Ȳ and initial residual ri = Yi − Ȳ
2 repeat
3 Calculate sample standard diviation matrix D = diag(σi) and correlation R

with residual ri
4 Transform R into Φ by φjk = arccos(ρjk). And use D and Φ to find the LSE

λ̂(1) and γ̂(1)

5 Create estimator Σ̂ with λ̂(1) and γ̂(1). And find the Generalized Weighted
Least Squares Estimator (GWLSE) of β̂

6 Use β̂ to update Ȳ and ri
7 until Convergence of β̂, λ̂ and γ̂ is reached

5. Asymptotic Property

In this section, consistency and asymptotic normality of AHPC estimators under standard
situation p < n are proven, similar to the proof in [10], under some regularity conditions.

Theorem 1. Under the regularity conditions when sample size n goes to ∞, the maximum likelihood
estimator β̂, λ̂ and γ̂ is consistent with the true value, (β̂′, λ̂′.γ̂′)′ a.s−→ (β′0, λ′0, γ′0)

′.

We already have the score functions for β, λ and γ. Based on the consistency of MLEs
β̂, λ̂ and γ̂ in Theorem 1 , we then have:

E(
∂l
∂β

)β̂ = 0, E(
∂l
∂λ

)λ̂ = 0, E(
∂l
∂γ

)γ̂ = 0.

By simple calculation, we can prove that:

E(
∂l
∂β

∂l
∂β′

) = −E(
∂2l

∂β∂β′
), E(

∂l
∂β

∂l
∂λ′

) = −E(
∂2l

∂β∂λ′
),

E(
∂l
∂β

∂l
∂γ′

) = −E(
∂2l

∂β∂γ′
), E(

∂l
∂λ

∂l
∂λ′

) = −E(
∂2l

∂λ∂λ′
),

E(
∂l
∂λ

∂l
∂γ′

) = −E(
∂2l

∂λ∂γ′
), E(

∂l
∂γ

∂l
∂γ′

) = −E(
∂2l

∂γ∂γ′
).

Then, similar to the proof in [13], we have the asymptotic normality of estimators.

Theorem 2. Based on the regularity conditions and Liapounov form of the multivariate central
limit theorem, (β̂′, λ̂′, γ̂′)′ is asymptotically normally distributed with variance I(β0, λ0, γ0)

−1:
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√
n

 β̂− β0
λ̂− λ0
γ̂− γ0

 d
=⇒ MVN(~0, I(β0, λ0, γ0)

−1).

Theorems 1 and 2 indicate the asymptotic consistency and normality of AHPC estima-
tors (β̂′, λ̂′, γ̂′)′, respectively. Regularity conditions and the proof of theorems above are
included in Supplementary Materials.

6. Example Studies

In this section we set up several numerical examples to test the order-dependence
of HPC and permutation invariance of AHPC. We directly decompose and model the
correlation matrix R0 using both methods instead of making estimations by fitting sample
data. In this way we isolate the permutation variation, which is the main difference between
the two methods, from randomness.

6.1. Order-Dependency of Entries in Φ of HPC

Giving a set of Yj j = 1, 2, 3, 4, 5, 6, assume there is no nature order for Yjs. Then, under
order Y1, Y2, Y3, Y4, Y5, Y6, we will have HPC decomposition of R0 as R0 = T0T′0 and the
corresponding Φ0 matrix,

T0 =

 1 0 0 0 0 0
0.980 0.198 0 0 0 0
0.921 0.321 0.219 0 0 0
0.696 0.387 0.218 0.562 0 0
0.169 −0.028 −0.223 −0.399 0.872 0
−0.588 −0.596 −0.467 −0.265 −0.093 0.013

, Φ0 =

 0 0 0 0 0 0
0.2 0 0 0 0 0
0.4 0.6 0 0 0 0
0.8 1.0 1.2 0 0 0
1.4 1.6 1.8 2.0 0 0
2.2 2.4 2.6 2.8 3.0 0

.

First, we change the order into Y1, Y2, Y5, Y4, Y3, Y6 by switching the position between
Y3 and Y5. That will make R0 into R3/5 by relocating entries’ positions in the dark
shaded area:

R0

 1 0.980 0.921 0.696 0.169 −0.588
0.980 1 0.966 0.759 0.160 −0.695
0.921 0.966 1 0.814 0.098 −0.836
0.696 0.759 0.814 1 −0.166 −0.892
0.169 0.160 0.098 −0.166 1 0.046
−0.588 −0.695 −0.836 −0.892 0.046 1

, R3/5

 1 0.980 0.169 0.696 0.921 −0.588
0.980 1 0.160 0.759 0.966 −0.695
0.169 0.160 1 −0.166 0.098 0.046
0.696 0.759 −0.166 1 0.814 −0.892
0.921 0.966 0.098 0.814 1 −0.836
−0.588 −0.695 0.046 −0.892 −0.836 1


The HPC decomposition of R3/5 is as follows:

T3/5 =

 1 0 0 0 0 0
0.980 0.198 0 0 0 0
0.169 −0.028 0.985 0 0 0
0.696 0.387 −0.277 0.535 0 0
0.921 0.321 −0.049 0.063 0.204 0
−0.588 −0.596 0.131 −0.401 −0.345 0.013

, Φ3/5 =

 0.0 0.0 0 0 0 0
0.2 0.0 0 0 0 0
1.4 1.6 0 0 0 0
0.8 1.0 2.048 0 0 0
0.4 0.6 1.8 1.268 0 0
2.2 2.4 1.328 2.429 3.103 0

.

The values of entries on the left-hand side of the vertical line remain the same. Only
the location of the entries changes accordingly. For the reasons we stated before, on the
right-hand side are all new values, except 0s. This simple simulation study testifies that the
HPC method on the correlation matrix is order dependent in terms of entries in Φ. Further
numeric example studies are in Supplementary Materials.

6.2. Order Dependency of Covariance Model of HPC

Next, we study how the change of order under HPC would affect model assumption.
Setting dimension p = 50, and a cubic linear model for correlation component φjk:

φjk = γ1 + γ2ωjk + γ3ω2
jk + γ4ω3

jk, (32)

where ωjk = |j − k| (1 < k < j ≤ p). Under the starting sequential order 1, 2, . . . , 50,
γnull = (1.671,−1.004× 10−03,−4.982× 10−04, 9.967× 10−06)′. Based on model (32) and
γnull we can have Φnull , Tnull and Rnull . We plot φjks out against their corresponding ωjks;
we can see they form a smooth cubic line in Figure 3a. Then we switch the order 1 and
50; under the new order 50, 2, 3, . . . , 49, 1 we can have the new correlation matrix R1/50 by
re-allocating some relevant elements. By applying the HPC method, we have T1/50 and
Φ1/50. Then we rearrange the design matrix Ω1/50 according to the new order. Again we
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plot Φ1/50 against their corresponding Ω1/50 in Figure 3b. It can be observed that all values
are different since the order changed.

We fit a new cubic liner model on the φjks under the new order. As a result, new γ̂1/50

is generated, γ̂1/50 = (1.614594, 1.503461× 10−03,−3.527650× 10−04, 5.440070× 10−06)′. It
is obvious that γ̂1/50 in Figure 3a is quite different from the original γnull , which is plotted
in Figure 3b.

(a) (b)

Figure 3. Plot of φjks against their corresponding ωjks. (a) Plot of φjks against their corresponding
ωjks, with γnull under sequential order 1, . . . , 50, and the solid line in the true model. (b) Plot of φjk
against ωjk under new order 50, 2, . . . , 49, 1 in dots. The solid line is the fitted line with γ̂1/50, while
the dotted line stands for the γnull model.

Even worse, when using γ̂1/50 to create an estimate R̂1/50, we find R̂1/50 is a poor
estimator of R1/50 with a large sum of the absolute difference (SAD), the Frobenius norm
||R1/50 − R̂1/50|| = 60.91713. That implies that the model assumption based on the original
order may not even be appropriate under the new order. Furthermore, to test how the
HPC method reacts to different kinds of order changes, we do a series of simulations as
described below.

Algorithm 3: HPC Reactions to Different Permutation Changes

1 Switch order j and k. And get real Rj/k by reallocating elements in Rnull .
2 Apply HPC method on Rj/k to get true value for Tj/k and Φj/k. And rearrange Ω

into Ωj/k under the changed order.
3 Fit a cubic liner model on Φj/k against Ωj/k to get estimator γ̂j/k. And use γ̂j/k to

create estimator Φ̂j/k, T̂j/k and R̂j/k.
4 Record the Frobenius norms ||Rj/k − R̂j/k||, ||Tj/k − T̂j/k|| and ||Φj/k − Φ̂j/k||.

First, we test how the distance between the pair of data we switch would affect the
SAD between the estimator and true value. Here we do 49 times different switches between
order 1 and k (k = 2, 3, . . . , 50). The results can be seen in Figure 4, from which we can
observe the SAD between estimators and the true value getting bigger with the increase
of distance between switched positions. That indicates that the further position being
switched, the more significantly biased the estimator becomes.

Second, we test how the first position we switch would affect the estimators. This time
we also use the procedure above, while setting j = 1, 2, 3, . . . , 49 and k = j + 1. Then we
have Figure 5, from which we can see the bias decrease as further change happens from
the first order. Furthermore, comparing with Figure 4, we can see the effect of distance
between the pair of switched positions is much stronger than that of the minimum number
being changed.
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Figure 4. Plot of the difference between estimators and true value when switching order 1 and k
(k = 2, 3, . . . , 50).

(a) sum(|Φest −Φtrue|). (b) sum(|Test − Ttrue|). (c) sum(|Rest − Rtrue|).

Figure 5. Plot of differences before and after switching order j and j + 1 (j = 1, 2, 3, . . . , 49).

6.3. Permutation Invariance of Entries in Φ in AHPC

Now we apply the same simulation study on AHPC. Giving the same starting correla-
tion matrix R0 as above, after Cholesky decomposition on R0, the same T0 as the one before
is generated. Based on Equation (14) we have Φ̃0 for the AHPC. Then we swap positions
3 and 5, which gives R3/5 and T3/5 as those in HPC. According to the new proposed
definition of the translation between Φ and T in AHPC, we have Φ̃3/5 for AHPC:

Φ̃0 =

 0 0 0 0 0 0
0.2 0 0 0 0 0
0.4 0.259 0 0 0 0
0.8 0.707 0.619 0 0 0
1.4 1.409 1.472 1.737 0 0
2.2 2.339 2.561 2.674 1.524 0

, Φ̃3/5 =

 0 0 0 0 0 0
0.2 0 0 0 0 0
1.4 1.409 0 0 0 0
0.8 0.707 1.737 0 0 0
0.4 0.259 1.472 0.619 0 0
2.2 2.339 1.524 2.674 2.561 0

.

all those gray shaded parts have positions re-allocated, but the value remains the same
as the original Φ̃0 for AHPC. We can see that, after the order changes, all values in matrix
Φ under AHPC remain the same; only their position changes to fit the new order. In that
sense, we say AHPC is order invariant in terms of matrix Φ.

6.4. Permutation Invariance of Covariance Model in AHPC

Then to find out how the AHPC modeling reacts to the order change, we implement
the same γnull and cubic linear model assumption (32) under sequential order 1, 2, . . . , 50.
Applying the AHPC method and under the model assumption, we have Φ∗null , T∗null and
R∗null . After switching the order between 1 and 50, applying AHPC we have R∗1/50 , T∗1/50
and Φ∗1/50. This time we can see all values in Φ∗1/50 are as same as those in Φ∗null . Plotting
φjks against their corresponding ωjks, we have Figure 6.
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Furthermore, we fit a cubic linear model to φjk that, under the new order, against their
corresponding ωjks, involves entries from Ω1/50. Then we get an estimator γ̂1/50 = γnull .
Moreover, the R̂∗1/50 also has zero bias from R∗1/50. In conclusion, the AHPC is order
invariant in terms of both value in Φ∗ and covariance modeling.

Figure 6. Plots of φ∗jks in the AHPC method against ωjks under the original sequential order and
switched order.

The model assumptions under HPC and AHPC are not compatible. Continue the
simulation above; under the cubic linear model assumption, when correlation matrix
RHPC is generated from HPC, we decompose RHPC by AHPC and end up with a plot of
φ∗jk against ωjk in Figure 7a. The other way around, when correlation matrix RAHPC is
created by AHPC we decompose RAHPC by HPC and plot Figure 7b. As we can see, the
model assumptions in HPC and AHPC are not compatible with each other. Based on the
asymptotic research, the consistency only holds when the model assumption is correct.
Thus there is no point to doing the cross method estimation comparison under one identical
model assumption.

(a) (b)

Figure 7. Cross method results. (a) φjks against ωjks from RHPC de-composited by the AHPC method.
(b) φjks against ωjks from RMHPC de-composited by the HPC method.

7. Real Data Analysis

In this section, we analyze a set of weather data by HPC and AHPC. We focus on
comparing the estimators of the correlation matrix. Furthermore, there is no natural order
in this weather data set. In this section, jmcm package in R [5] is used for estimations of
the HPC method. Function lm is applied in R to do the linear regression for AHPC. These
weather data are collected from the UK government public web page, Met Office. We
select p = 5 different weather stations in the UK. They are allocated in Ballypartick Forest,
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Cambridge, Lewick, Leuchars and Sheffield. We cut off the data before 1962 and make this
data set balance, leaving us with n = 660 sample size. There is no missing value in this
data set. The average minimum temperature in each month is recorded in Celsius degrees.

For comparison between HPC and AHPC, our interest is on the estimator of correlation
matrices. Thus, sample variance σ̃i is used as the estimator of the variance for station i. We
set the initial order alphabetically: Ballypartick Forest, Cambridge, Lewick, Leuchars and
Sheffield. Then we shift this initial order by relocating the Sheffield station to the beginning.
Meanwhile, based on the non-parametric analysis of Φ under both methods with respect to
distances dij between climate stations i and j, solid lines are plotted in Figure 8. Combined
with the consideration of AIC and BIC, we assume three different polynomial models for
φ in HPC and AHPC under two orders, respectively.

For φijs of the HPC method, we assume a linear model under the initial order and a
quadratic one under the shifted order. On the other hand, to keep the model monotonic
decreasing, we model angle parameters (1/φij)s in AHPC instead of φijs. We assume a
linear model under both orders.

Under both orders, by applying HPC and AHPC, we can get four regression re-
sults. The fitted models are plotted with dot lines in Figure 8. Cross comparison of these
results with the sample correlation matrices under these two orders, by their relative er-
rors defined as Relative Error = ||RS − R̂||/||RS||, where ||.|| is Euclidean norm, and RS
and R̂ are the sample and estimated correlation matrix, respectively. We should notice
that the norm of sample correlations remains the same, ||Rinitial || = ||Rshi f ted|| = 11.055,
and the norm of the difference between sample correlation matrices under both is order
||Rinitial − Rshi f ted|| = 13.69.

Observing the results in Tables 2 and 3, it is obvious that the estimator of HPC depends
on the order of the data, while AHPC presents a consistent estimating result. Even redoing
the modeling process from the model selecting stage, we observe from the relative errors
in Table 2 that the relative errors between sample and estimated correlation generated on
γinitial&γshi f ted are different in HPC. As one conclusion, under different permutations, the
estimating results of HPC would vary. Consequentially, it is improper to use the HPC
method to model the covariance matrices of data without a natural order for its failure to
offer a permutation consistent estimator.

Table 2. Resulting HPC estimates and standard error of correlation components γ, under initial and
shifted order, respectively. Relative errors between sample and estimated correlation under different
orders are cross compared.

Data Order Initial Order Shifted Order

Estimator Standard Error Estimator Standard Error
γ0 5.847 2.598 × 10−1 −1.544 × 10−1 5.672 × 10−1

γ1 1.488 × 10−3 4.93 × 10−4 5.186 × 10−3 2.375 × 10−3

γ2 0 0 −3.480 × 10−6 2.222 × 10−6

R̂(γ̂initial) R̂(γ̂shi f ted) R̂(γ̂initial) R̂(γ̂shi f ted)

Relative Error 0.173 0.216 1.575 0.124

On the other hand, for AHPC, Table 3 shows the consistency of these estimators under
different orders. Moreover, there is an interpretation advantage in AHPC comparing to
HPC. For example, in this real data analysis, the interpretation of the relationship between
correlation ρjk and the distance between stations j and k are not obvious in the HPC model.
Meanwhile, the AHPC model for 1/φij is monotonic decreasing, suggesting φjk increases
with distance ωjk. Moreover, ρjk = cos(φjk) φjk ∈ (0, π] is a monotonic decreasing function.
Thus ρjk decreases with respect to the distance between stations.
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Table 3. Resulting AHPC estimates and standard error of correlation components γ, under initial and
shifted order, respectively. Relative errors between sample and estimated correlation under different
orders are cross compared.

Data Order Initial Order Shifted Order

Estimator Standard Error Estimator Standard Error
γ0 1.548 2.365 × 10−1 1.548 2.365 × 10−1

γ1 −1.323 × 10−3 4.488 × 10−4 −1.323 × 10−3 4.488 × 10−4

R̂(γ̂initial) R̂(γ̂shi f ted) R̂(γ̂initial) R̂(γ̂shi f ted)

Relative Error 0.347 0.347 0.347 0.347

(a) HPC-Origin (b) HPC-Shifted

(c) AHPC-Shifted (d) AHPC-Origin

Figure 8. Solid and dotted lines are non-parametric smooth and fitted model of covariance compo-
nents Φ (circles in each plots) under HPC and AHPC methods separately with respect to distances
between five stations, under initial and shifted order.

8. Conclusions and Discussion

In this paper, we addressed the permutation variation of HPC through its geometrical
interpretations. Then AHPC for covariance modeling was proposed. AHPC was proven to
improve the order-dependence issue of HPC. Furthermore, the direct relation between Φ
and R in AHPC provides an advantage in making model assumptions, parameter estima-
tions and statistical interpretations. However, due to the limitation of the relation between
angles, the model assumption for angles Φ in AHPC must satisfy an extra constraint.
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Both HPC and AHPC can only guarantee semi-positive definiteness. The reason
behind this drawback of both methods is the same. From the geometrical interpretations
above, we can see that the definition of angles in both methods can only ensure the
symmetry and diagonal elements being 1s in the correlation matrix R. By changing the
inequality constraint on angles in AHPC to strict less, we can simultaneously make sure
the correlation matrix is positive definite.

These four covariance modeling methods we mentioned in this paper have their
advantages. For the most accurate estimator, an appropriate model assumption is essential.
Thus we may use a certain decomposition method based on the data, since different
methods would generate their pattern against coefficients. Under an appropriate model
assumption, estimators in all four methods are consistent. AHPC, MCD and ACD can do
the model selection visually, while in some cases, model selection in HPC can only be based
on statistical criteria.

There are some potential researches available on this AHPC method. As we see in
simulation examples, sometimes the pattern is too complicated to fit with the linear model;
the non-parametric and semi-parametric model could be applied in the AHPC method,
similar to the studies of [14,15].
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