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Abstract: In this paper, we study contact magnetic geodesics in a 3-dimensional Lie group G endowed
with a left invariant almost cosymplectic structure. We distinguish the two cases: G is unimodular,
and G is nonunimodular. We pay a careful attention to the special case where the structure is
cosymplectic, and we write down explicit expressions of magnetic geodesics and corresponding
magnetic Jacobi fields.
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1. Introduction

The study of magnetic trajectories has its origin in physics, where a magnetic field is
given by a divergence-free vector field. Magnetic curves in physics represent the trajectories
of charged particles moving on a Riemannian manifold under the influence of magnetic
forces. The Landau–Hall problem refers to the study of the motion of charged particles
on a Riemannian surface in the presence of a constant and static magnetic field. Later on,
the problem was extended for higher dimensions. Since on a 3-dimensional Riemannian
manifold vector fields and differential 2-forms may be identified, a magnetic field can be
thought as a closed 2-form. Magnetic fields and their corresponding trajectories represent
an important field of study, since this topic is situated at the interplay of Riemannian
geometry and dynamical systems. Magnetic trajectories generalize geodesics (and for this
reason they are also known as magnetic geodesics); therefore, they are used as a tool for
better understanding of the geometry of ambient spaces. As a matter of fact, one of the
most beautiful and difficult problems in dynamical systems on manifolds is finding closed
trajectories. The existence of closed trajectories is closely related to topology and geometric
structures of the manifolds.

The structure of this paper is the following. Sections 2 and 3 give some basic aspects
on the geometry of (almost)cosymplectic manifolds, magnetic trajectories, and magnetic
Jacobi fields. Theorem 1, due to Perrone, is the result that inspired us to write this paper. In
Section 4, we study magnetic geodesics in a 3-dimensional Lie group G. For this purpose,
we distinguish two cases: G is unimodular and G is nonunimodular. Particular attention is
paid to the case when the almost contact metric structure is cosymplectic. In the unimodular
case, we write the expression of contact magnetic geodesics in Euclidean motion group Ẽ2.
Moreover, we obtain magnetic Jacobi fields in Lie group G(λ0, λ0). In the nonunimodular
case, we study contact magnetic geodesics and the corresponding magnetic Jacobi fields
in Lie group G(α, 0). We consider a multiplication low on semidirect product RnR2,
obtaining a nonunimodular Lie group, and we write the expression of contact magnetic
geodesics corresponding to the cosymplectic structure naturally defined on this group.

2. Homogeneous Almost Cosymplectic 3-Manifolds

Let M be a smooth manifold. On M, consider the following geometric objects:
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• a (1, 1) tensor field ϕ, such that ϕ2 = −I + η ⊗ ξ, where I is the identity,
• a vector field ξ,
• a 1-form η,

satisfying the conditions:
ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1.

Consequently, the dimension of M is odd; let it be 2n + 1. Then, (M, ϕ, ξ, η) is an almost
contact manifold. When a Riemannian metric g, compatible with the almost contact structure
defined above, is considered, manifold M is called an almost contact metric manifold. The
compatibility condition writes as

g(ϕX, ϕY) = g(X, Y)− η(X)η(Y), ∀X, Y ∈ X(M).

An almost contact metric structure on an orientable (2n + 1)-dimensional manifold M is
a reduction in the structure group of M to U(n)× 1. An almost contact metric manifold
(M, ϕ, ξ, η, g) is said to be homogeneous if there exists a connected Lie group G of isometries
acting transitively on M and leaving η invariant.

The fundamental 2-form Φ on M is defined by:

Φ(X, Y) = g(X, ϕY), ∀X, Y ∈ X(M).

An almost contact Riemannian manifold (M, ϕ, ξ, η, g) with dη = 0 and dΦ = 0 is an almost
cosymplectic manifold. The almost contact structure is called normal if Nϕ + 2dη ⊗ ξ = 0,
where Nϕ is the Nijenhius tensor defined by:

Nϕ(X, Y) = [ϕX, ϕY]− ϕ[ϕX, Y]− ϕ[X, ϕY] + ϕ2[X, Y], ∀X, Y ∈ X(M).

If an almost cosymplectic structure is normal, we obtain a cosymplectic manifold. The notion
of cosymplectic manifold was independently introduced by Blair (in his Ph.D. thesis [1])
and by Ogiue (in [2]) under the name cocomplex. The authors in [3] showed that the
cosymplectic structure is characterized among the almost contact metric structures, by the
parallelism of ϕ, that is, ∇ϕ = 0, where ∇ is the Levi-Civita connection on M. It follows
that η and ξ are also parallel.

Recall the following important result:

Theorem 1 ([4]). Let M be a simply connected homogeneous almost cosymplectic 3-manifold. Then
M is

(1) either one of the product Riemannian symmetric spaces

S2(c̄)×R and H2(c̄)×R,

where S2(c̄) and H2(c̄) are the sphere of curvature c̄ > 0 and the hyperbolic plane of curvature
c̄ < 0, respectively,

(2) or M is a Lie group equipped with a left invariant almost cosymplectic structure.

Magnetic curves in S2 ×R and H2 ×R are investigated in [5,6]. See also [7]. The study
of magnetic Jacobi fields in 3-dimensional cosymplectic manifolds (in particular in S2 ×R
and H2 ×R) was developed in a very recent paper [8].

In this paper, we study magnetic curves and magnetic Jacobi fields in a Lie group of
dimension 3 endowed with a left invariant almost cosymplectic structure. All the necessary
tools to understand the ambient space (the case 2 of Theorem 1) are described in the same
paper [4].
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3. Magnetic Jacobi Fields

Magnetic curves represent an important topic in differential geometry not only because
the problem originates from physics (in 3-dimensional Euclidean ambient), but also because
a magnetic curve is a natural generalization of a geodesic. A magnetic field on M is defined
by a closed 2-form F on M. A curve γ : I → M is called a magnetic curve or a magnetic
geodesic if it is a solution of Lorentz equation

D
ds

γ′(s) = φγ′(s),

where
D
ds

stands for the covariant derivative along γ, and φ is the Lorentz force corre-

sponding to the magnetic field F defined as g(φ·, ·) = F. Since any magnetic geodesic has
constant speed, it is natural to work with arc-length parametrized magnetic curves; the
case when γ is known as a normal magnetic geodesic.

Magnetic geodesics are solutions of a variational problem, i.e., they are the critical
points of the Landau–Hall functional LH (on C∞([a, b]))

LH(γ) = E(γ)− q
b∫

a

A(γ′(s))ds,

where E(γ) =
b∫

a

1
2

g(γ′(s), γ′(s))ds is the Dirichlet energy of γ and A is the potential 1-form

generating the magnetic field F. A second variational formula for integral LH gives rise
to the concept of a magnetic Jacobi field. W is a magnetic Jacobi field along the magnetic
geodesic γ if it satisfies the following second-order differential equation:

D2

ds2 W − R(γ̇, W)γ̇− φ

(
D
ds

W
)
− (∇Wφ)γ̇ = 0. (1)

Here, R denotes the Riemannian curvature tensor of M. See, e.g., [9,10].
To solve the magnetic Jacobi equation is a true challenge. The major difficulty is the

presence of the last term in (1). When the covariant derivative of the Lorentz force has a
particular concrete expression, we can think about solving Equation (1).

Let us indicate some particular situations.

• A first example of a magnetic Jacobi field is velocity vector field γ′(s) of a magnetic
geodesic γ(s) (see, e.g., [11]).

• In a Kähler manifold (M, g, J), one considers (Kähler) magnetic fields that are uniform,
meaning that Lorentz force φ = qJ, q ∈ R is parallel; thus, the last term in (1) vanishes
(see, e.g., [12,13]).

• In a Sasakian manifold (M, ϕ, ξ, η, g), covariant derivative ∇φ can be expressed by
a concrete formula. More precisely, The Lorentz force is defined by φ = qϕ and
(∇X ϕ)Y = g(X, Y)ξ − η(Y)X. The classification of nonuniform Jacobi magnetic fields
is given in [14,15].

• In a cosymplectic manifold (M, ϕ, ξ, η, g), the magnetic field is again uniform. The
Lorentz force φ = qϕ is parallel; hence, the last term of the Equation (1) vanishes.
See [8].

In the case when the magnetic field is uniform, that is, the Lorentz force φ is parallel,
i.e., ∇ϕ = 0, we retrieve the equation of a magnetic Jacobi field given by Gouda in [10]

D2

ds2 W − R(γ̇, W)γ̇− φ

(
D
ds

W
)
= 0. (2)
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In [8], the authors solved (2) in order to find all uniform magnetic fields in 3-dimensional
cosymplectic space forms. In the same paper [8], a characterization of magnetic Jacobi fields
in the product spaces S2 ×R and H2 ×R was also given. Equation (2) is still of interest
to study the magnetic Jacobi fields in three-dimensional Lie groups endowed with a left
invariant (almost) cosymplectic structure.

4. Magnetic Geodesics in a 3-Dimensional Lie Group

Let M = G be a Lie group of dimension 3. In fact, Lie group G is diffeomorphic to
M via map π : G → M, a 7→ ax0, where x0 is a certain fixed point of M. All geometric
structures can be moved from M to G via π∗ (and π∗); hence, we consider M as the Lie
group G endowed with a left invariant almost cosymplectic structure (ϕ, ξ, η, g). We have
h = ϕ∇ξ, where ∇ is the Levi-Civita connection of g and h := 1

2Lξ ϕ. We know from [4]
that h commutes with left invariant translations, and the eigenvectors of h are left invariant.
Indeed, if g ≡ Tx0 G (the Lie algebra of G) and ex0 ∈ g such that hx0 ex0 = λex0 , it follows
that vector field ex = (La)∗,x0 ex0 , where x = ax0, is left invariant and satisfies hxex = λex.
As a consequence, eigenvalues λ and −λ of h are constant.

Due to Milnor [16], Lie group G can be either unimodular or nonunimodular. A Lie
group G is called unimodular if its left invariant Haar measure is also right invariant. In
terms of Lie algebra g, Lie group G is unimodular if and only if linear transformation adX
is traceless for any X ∈ g.

4.1. Unimodular Case

We can consider an orthonormal basis {e1, e2 = ϕe1, e3 = ξ} of g given by a ϕ basis,
such that he1 = λe1, he2 = −λe2, which satisfies

[e1, e2] = λ3e3, [e2, e3] = λ1e1, [e3, e1] = λ2e2,

where λ1, λ2 are constants. Since the structure is almost cosymplectic, we must have λ3 = 0.
Therefore, from now on, we denote G by G(λ1, λ2). The Lie brackets are now given by

[e1, e2] = 0, [e2, e3] = λ1e1, [e3, e1] = λ2e2. (3)

The Levi-Civita connection on G(λ1, λ2) is expressed by
∇e1 e1 = 0, ∇e1 e2 = − λ1−λ2

2 e3, ∇e1 e3 = λ1−λ2
2 e2,

∇e2 e1 = − λ1−λ2
2 e3, ∇e2 e2 = 0, ∇e2 e3 = λ1−λ2

2 e1,

∇e3 e1 = λ1+λ2
2 e2, ∇e3 e2 = − λ1+λ2

2 e1, ∇e3 e3 = 0.

(4)

Remark 1. ξ is parallel if and only if λ1 = λ2.

We can compute the eigenvalue λ of h:

he1 = ϕ∇e1 ξ = ϕ(
λ1 − λ2

2
e2) =

λ2 − λ1

2
e1.

It follows λ = λ2−λ1
2 and hence ||h||2 = (λ1−λ2)

2

2 .
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For later use, we give the expressions of Riemannian curvature R, Ricci tensor Ric,
and Ricci operator Q:

R(e1, e2)e1 = − (λ1−λ2)
2

4 e2, R(e1, e2)e2 = (λ1−λ2)
2

4 e1,

R(e1, e3)e1 = − (λ1−λ2)(λ1+3λ2)
4 e3, R(e1, e3)e3 = (λ1−λ2)(λ1+3λ2)

4 e1,

R(e2, e3)e2 = (λ1−λ2)(3λ1+λ2)
4 e3, R(e2, e3)e3 = − (λ1−λ2)(3λ1+λ2)

4 e2,

R(e1, e2)e3 = 0, R(e1, e3)e2 = 0, R(e2, e3)e1 = 0,

(5)


Ric(e1e1) =

λ2
1−λ2

2
2 , Ric(e1, e2) = 0, Ric(e1, e3) = 0

Ric(e2, e2) = −
λ2

1−λ2
2

2 , Ric(e2, e3) = 0, Ric(e3, e3) = − (λ1−λ2)
2

2 ,
(6)

Qe1 =
λ2

1 − λ2
2

2
e1, Qe2 = −

λ2
1 − λ2

2
2

e2, Qe3 = − (λ1 − λ2)
2

2
e3. (7)

Remark 2. The metric g is flat if and only if λ1 = λ2.

Remark 3. The basis {e1, e2, e3} diagonalizes the Ricci operator Q.

The covariant derivative of ϕ is given by
(∇e1 ϕ)e1 = λ2−λ1

2 e3, (∇e1 ϕ)e2 = 0, (∇e1 ϕ)e3 = λ1−λ2
2 e1,

(∇e2 ϕ)e1 = 0, (∇e2 ϕ)e2 = λ1−λ2
2 e3, (∇e2 ϕ)e3 = − λ1−λ2

2 e2,

(∇e3 ϕ)e1 = 0, (∇e3 ϕ)e2 = 0, (∇e3 ϕ)e3 = 0.

(8)

Proposition 1. G(λ1, λ2) is cosymplectic if and only if λ1 = λ2.

The previous Formula (8) can be summarized as

(∇X ϕ)Y = g(hX, Y)ξ − η(Y)hX, (9)

for all X, Y tangent to M. See also [17].
Recall also the following fact due to Olszak [17].

Proposition 2. An almost contact Riemannian 3-manifold is cosymplectic if and only if ξ is parallel.

As a matter of fact, recall an interesting result obtained in [18].

Proposition 3. The almost cosymplectic unimodular Lie group G(λ1, λ2) has vanishing charac-
teristic Jacobi operator ` = R(•, ξ)ξ if and only if λ1 = λ2.

4.1.1. Contact Magnetic Geodesics in G(λ1, λ2)

We study arc-length parametrized curves γ : I → G(λ1, λ2) in the almost cosymplectic
Lie group G(λ1, λ2), which satisfy the Lorentz equation

∇γ̇γ̇ = qϕγ̇, q ∈ R \ {0}.

First, we decompose γ̇ in basis {e1, e2, e3}, that is,

γ̇ = T1e1 + T2e2 + T3e3,
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where T1, T2 and T3 are smooth functions on I. Second, we compute the acceleration of γ
using (4)

∇γ̇γ̇ = (T′1 − λ2T2T3)e1 + (T′2 + λ1T1T3)e2 + (T′3 + (λ2 − λ1)T1T2)e3.

Thus, the Lorentz equation can be written as the following ordinary differential equation
(ODE) system: 

T′1 = λ2T2T3 − qT2,

T′2 = −λ1T1T3 + qT1,

T′3 = (λ1 − λ2)T1T2.

(10)

Remark 4. The contact angle θ, which is the angle between the velocity vector γ̇(s) and the
characteristic vector ξ(γ(s)), is not automatically constant. However, if λ1 = λ2, then contact
angle θ is constant (see also [7]).

Remark 5. The first curvature of a normal contact magnetic curve in an almost cosymplectic
manifold is κ1 = |q| sin θ. Hence, it is not always constant. A normal contact magnetic curve in a
cosymplectic manifold is a helix (see also [7]).

In the sequel, we study this system by distinguishing two cases:
Case U1 λ1 = λ2 := λ0. The unimodular Lie group G(λ0, λ0) is locally isometric

either to Ẽ2 (when λ0 6= 0), or to the Euclidean space E3 (when λ0 = 0).
One obtains that T3 = cos θ; hence, T2

1 (s) + T2
2 (s) = sin2 θ. Then, the first two

equations in (10) become {
T′1(s) = −(q− λ0 cos θ)T2(s),

T′2(s) = (q− λ0 cos θ)T1(s).

Denote ω := q− λ0 cos θ. It follows that the solution of the system above is{
T1(s) = c1 cos(ωs) + c2 sin(ωs),

T2(s) = c1 sin(ωs)− c2 cos(ωs),
(11)

where c1, c2 ∈ R such that c2
1 + c2

2 = sin2 θ.
Case U2 λ1 6= λ2 As we saw, the Lie group G(λ1, λ2) is not a cosymplectic manifold.

The possible situations are

• the Heisenberg group H3 when the Perrone invariant p vanishes;
• the universal covering Ẽ(2) of the group motions of Euclidean 2-space, when p > 0;
• the group E(1, 1) of rigid motions of Minkowski 2-space when p < 0.

The Perrone invariant is defined by

p := ||Lξ h|| − 2||h||2 = |λ1 − λ2|
(√

λ2
1 + λ2

2 − |λ1 − λ2|
)

.

In ODE System (10), multiply the first equation by λ1T1, and the second by λ2T2; then,
add the two obtained equations to obtain

λ1T1T′1 + λ2T2T′2 = −(λ1 − λ2)qT1T2.

Using the third equation in (10), we get

1
2
(
λ1T2

1 + λ2T2
2
)′

= −qT′3.
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Hence, the expression 1
2
(
λ1T2

1 + λ2T2
2
)
+ qT3 is constant. Denote it by 1

2

(
λ1+λ2

2 + c0

)
.

Taking into account the arc-length condition, we immediately obtain
T2

1 =
1

λ1 − λ2

[
λ2T2

3 − 2qT3 +
λ1 − λ2

2
+ c0

]
,

T2
2 =

1
λ2 − λ1

[
λ1T2

3 − 2qT3 +
λ2 − λ1

2
+ c0

]
.

(12)

T3 = cos θ and can be obtained by integration from the third equation of System (10), which
can be written in the following form:

T′3(s) =
√

P(T3(s)), (13)

where P is a polynomial of degree four if λ1λ2 6= 0, respectively of degree three if λ1λ2 = 0.
The integration in (13) involves elliptic functions that are not easy to work with.

Remark 6. Milnor’s table shows that G(λ1, λ2) is represented by the Heisenberg group when
λ1 = 0 or λ2 = 0 (but not both). The Heisenberg group can carry one almost contact structure
that leads to a Sasakian space form, and another almost contact structure that leads to an almost
cosymplectic manifold (see, e.g., [18] Example 5.3). Analogously, the space Sol3 admits both a left
invariant contact metric structure and a left invariant almost cosymplectic structure.

We already indicated that a magnetic curve in a cosymplectic 3-manifold is slant, that
is, its contact angle θ is constant. Moreover, it is a helix, meaning that curvatures κ1 and κ2
are also constant. Since Case U1 leads to a cosymplectic structure on G(λ0, λ0), we are in-
terested to obtain the situations when a magnetic curve in G(λ1, λ2) (with λ1 6= λ2) is slant.
If this is the case, we must locally have T1T2 = 0. This leads to the following possibilities:

(i) γ′(s) = ±e3;
(ii) γ′(s) = ± sin θe1 + cos θe3 and q = λ1 cos θ, θ 6= 0, π;
(iii) γ′(s) = ± sin θe2 + cos θe3 and q = λ2 cos θ, θ 6= 0, π.

As a consequence, we can easily prove the following proposition.

Proposition 4. Let γ be a slant contact normal magnetic curve in the almost cosymplectic unimod-
ular Lie group G(λ1, λ2) (with λ1 6= λ2). Then

(i) either γ is an integral curve of ξ case when it is a geodesic,
(ii) or γ is a helix with curvatures κ1 = |q| sin θ and κ2 = 1

2 |λ2 + λ1 cos 2θ|,
(iii) or γ is a helix with curvatures κ1 = |q| sin θ and κ2 = 1

2 |λ1 + λ2 cos 2θ|.

Remark 7. In the case (ii) of the previous proposition, curvature κ2 may be rewritten as
κ2 =

∣∣∣q cos θ − λ1−λ2
2

∣∣∣. In Case (iii), we rewrite κ2 =
∣∣∣q cos θ + λ1−λ2

2

∣∣∣. See the analogy
with the expression of the curvature κ2 obtained in [7].

Remark 8. The study in [19] is an interesting survey on slant curves in 3-dimensional almost
contact metric geometry where the slant curves in 3-dimensional solvable Lie groups equipped with
natural left invariant almost contact metric structure are studied as well. Slant magnetic curves in
almost cosymplectic space Sol3 are studied in [20]. Lie group Sol3 may be realized as the unimodular
Lie group with λ2 = −λ1 6= 0 (see, for example, §3 in [21]).

We continue our investigation in the Lie group G(λ0, λ0) endowed with its cosymplec-
tic structure. In [7], we focused on cosymplectic manifolds M2 ×R, where M2 is a complex
space form of complex dimension 1. In particular, we obtained important geometric
properties for normal contact magnetic curves in S2 ×R and H2 ×R (see also [5,6]).
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Example 1 (Contact magnetic geodesics in the Euclidean space E3). For λ0 = 0, the Lie
group G(0, 0) is nothing but the Euclidean 3-space E3. If we denote the global coordinates by x, y
and z, the multiplication law is the standard one:

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)

and the left invariant vector fields (that appear, previously, in the general description) are

e1 =
∂

∂x
, e2 =

∂

∂y
and e3 =

∂

∂z
.

Thus, we find ω = q and

γ̇(s) = (c1 cos(qs) + c2 sin(qs), c1 sin(qs)− c2 cos(qs), cos θ),

with c1 + c2 = sin2 θ.
Setting γ(0) = (0, 0, 0) and γ̇(0) = (u0, v0, cos θ), such that u2

0 + v2
0 = sin2 θ, we immedi-

ately find

γ(s) =
(

u0

q
sin(qs)− v0

q
(1− cos(qs)),

u0

q
(1− cos(qs)) +

v0

q
sin(qs), s cos θ

)
.

See also [22].

4.1.2. Contact Magnetic Geodesics in the Euclidean Motion Group Ẽ2

This space is realized as R3, on which we denote the global coordinates by x, y, z and
set the multiplication

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2 cos z1 − y2 sin z1, y1 + x2 sin z1 + y2 cos z1, z1 + z2).

Let a, b, c > 0 and define three left invariant vector fields

e1 =
1
a

(
cos z

∂

∂x
+ sin z

∂

∂y

)
, e2 =

1
b

(
− sin z

∂

∂x
+ cos z

∂

∂y

)
, e3 =

1
c

∂

∂z
,

whose Lie brackets are given by

[e1, e2] = 0, [e2, e3] =
a
bc

e1, [e3, e1] =
b
ca

e2.

Hence, the Lie group Ẽ2 is the unimodular Lie group G(λ1, λ2) with λ1 = a
bc and λ2 = b

ca .
The dual basis is given by

η1 = a(cos zdx + sin zdy), η2 = b(− sin zdx + cos zdy), η = cdz.

The left invariant metric g is determined by the condition that {e1, e2, e3} is an orthonormal
basis with respect to it, and it can be expressed as

g = η1 ⊗ η1 + η2 ⊗ η2 + η ⊗ η.

Defining ξ = e3 and ϕ as before, i.e., ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0, we obtain a homoge-
neous almost contact structure which is almost cosymplectic. It can be easily check that
(Ẽ2, ϕ, ξ, η, g) is cosymplectic if and only if b = a. In this case the metric g is flat and takes
an easier form

g = a2(dx2 + dy2) + c2dz2.

In order to obtain an explicit expression for contact normal magnetic geodesics γ : I → Ẽ2,
γ(s) = (x(s), y(s), z(s)) we need to express velocity vector γ̇ in terms of the basis {e1, e2, e3}
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and then to use the obtained results in Case U1. For this end, we consider b = a; hence, Ẽ2
is obtained as G(λ0, λ0) with λ0 = 1

c 6= 0. Then we obtain

γ̇ = a(ẋ cos z + ẏ sin z)e1 + a(−ẋ sin z + ẏ cos z)e2 + cże3,

where we denoted ẋ = dx
ds , ẏ = dy

ds and so on. Subsequently, component functions x, y and z
satisfy the following ordinary differential equation system:

ẋ cos z + ẏ sin z = 1
a
(
c1 cos(ωs) + c2 sin(ωs)

)
,

−ẋ sin z + ẏ cos z = 1
a
(
c1 sin(ωs)− c2 cos(ωs)

)
,

ż = cos θ
c ,

(14)

where c2
1 + c2

2 = sin2 θ and ω = q− λ0 cos θ.
ODE System (14) can be rewritten as

ẋ = 1
a
[
c1 cos

(
ωs + z(s)

)
+ c2 sin

(
ωs + z(s)

)]
,

ẏ = 1
a
[
c1 sin

(
ωs + z(s)

)
− c2 cos

(
ωs + z(s)

)]
,

z = cos θ
c s + z0, z0 := z(0).

Taking into account that ω + cos θ
c = q, we obtain

ẋ = 1
a [c1 cos(qs + z0) + c2 sin(qs + z0)],

ẏ = 1
a [c1 sin(qs + z0)− c2 cos(qs + z0)],

z = cos θ
c s + z0.

(15)

Setting initial conditions γ(0) = (0, 0, 0), γ̇(0) = (u0, v0, 1
c cos θ), with u2

0 + v2
0 = 1

a2 sin2 θ,
we conclude with the explicit expression for the magnetic curve

γ(s) =
(

u0

q
sin(qs)− v0

q
(1− cos(qs)),

u0

q
(1− cos(qs)) +

v0

q
sin(qs), λ0s cos θ

)
.

See the analogy with the expression of magnetic geodesics in Euclidean space E3.

4.1.3. Magnetic Jacobi Fields on G(λ0, λ0)

We have at least two advantages in considering Lie group G(λ0, λ0) (endowed with
its homogeneous almost cosymplectic structure defined before) as the background for this
study. The first is the parallelism of Lorentz force φ = qϕ, since the space is cosymplectic.
The second is the flatness of the metric. Therefore, the Jacobi magnetic equation reduces a
lot. More precisely, if W(s) is a magnetic Jacobi field along the normal contact magnetic
geodesic γ(s), then it satisfies the following ODE:

D2W
ds2 − qϕ

DW
ds

= 0. (16)

To find explicit solutions of this equation, we use basis {e1, e2, e3}.
Let DW

ds = A1e1 + A2e2 + A3e3, where A1, A2, A3 are smooth functions on I. Even if
velocity vector γ̇(s) does not appear explicitly in the Equation (16), it is obtained from (11)
togeher with the condition for γ of being slant. Equation (16) becomes

A′1(s) = −ωA2(s),

A′2(s) = ωA1(s),

A′3(s) = 0,
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where ω = q− λ0 cos θ, as before. The general solution of this system is

A1(s) = a1 cos(ωs) + a2 sin(ωs), A2(s) = a1 sin(ωs)− a2 cos(ωs), A3(s) = a3,

where a1, a2, a3 are real constants.
To find magnetic Jacobi field W(s) = W1(s)e1 + W2(s)e2 + W3(s)e3, where W1, W2, W3

are smooth function on I, we integrate equation DW
ds = A1e1 + A2e2 + A3e3. We have

W ′1(s)− λ0 cos θ W2(s) = A1(s),

W ′2(s) + λ0 cos θ W1(s) = A2(s),

W ′3(s) = A3(s).

It is straightforward to show that the solution of this system is given by
W1(s) = 1

q
(
a1 sin(ωs)− a2 cos(ωs)

)
+ ζ1 cos(λ0s cos θ) + ζ2 sin(λ0s cos θ),

W2(s) = − 1
q
(
a1 cos(ωs) + a2 sin(ωs)

)
− ζ1 sin(λ0s cos θ) + ζ2 cos(λ0s cos θ),

W3(s) = a3s + ζ3,

where ζ1, ζ2 and ζ3 are real constants.

Remark 9. In the special case when ω = q
2 , equivalently to ω = λ0 cos θ, the above expres-

sions simplify. Moreover, functions sin(ωs), cos(ωs), sin(λ0s cos θ) and cos(λ0s cos θ) are no
longer independent.

Example 2. In the Euclidean case, we have λ0 = 0; hence, ω = q. Consequently, magnetic Jacobi
field W(s) can be expressed as

W1(s) = 1
q (a1 sin(qs)− a2 cos(qs)) + ζ1,

W2(s) = − 1
q (a1 cos(qs) + a2 sin(qs)) + ζ2,

W3(s) = a3s + ζ3,

where ζ1, ζ2 and ζ3 are real constants. See also [8] (Theorem 3.1).

Remark 10. When magnetic geodesic γ in unimodular Lie group G(λ0, λ0) is not an integral curve
of the characteristic vector field, that is, if γ̇ is not collinear to ξ, magnetic Jacobi field W(s) may
be expressed in the basis {γ̇, ϕγ̇, ξ}. It is straightforward to compute coefficients of decomposition
W(s) = A(s)γ̇ + B(s)ϕγ̇ + C(s)ξ(γ(s)). We find

sin2 θ A(s) = (c1ζ1 − c2ζ2) cos(qs) + (c1ζ2 + c2ζ1) sin(qs) + c2a1−c1a2
q

sin2 θ B(s) = (c1ζ2 + c2ζ1) cos(qs)− (c1ζ1 − c2ζ2) sin(qs)− a1c1+a2c2
q

C(s) = a3s + ζ3 − cos θA(s),

where constants c1, c2, c3, a1, a2, a3, ζ1, ζ2 and ζ3 are those obtained before. See also [8].

4.2. Nonunimodular Case

Let us now consider a (simply connected) three dimensional nonunimodular Lie
group G equipped with a left invariant almost cosymplectic structure. We briefly describe
a ϕ basis and emphasize the commutation relations in the corresponding Lie algebra g

following the construction given by Perrone [4].
A first remark is that ξ belongs to kernel u = {X ∈ g : tr adX = 0}, which is two-

dimensional and unimodular. Then, we consider an orthonormal basis {e2, e3 = ξ} of u.
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Hence, e1 := −ϕe2 belongs to orthogonal complement u⊥ of u. Since ade1 preserves u, and
taking into account that η is closed and ∇ξ ξ = 0, we obtain that

[e1, e2] = αe2, [e1, e3] = βe2, [e2, e3] = 0, (17)

where α and β are constants with α 6= 0. We denote this Lie algebra by g(α, β). Explicit de-
scriptions of g(α, β) and of corresponding simply connected Lie group G(α, β) = expg(α, β)
are presented in [18].

The Levi-Civita connection on G(α, β) is given by
∇e1 e1 = 0, ∇e1 e2 = − β

2 e3, ∇e1 e3 = β
2 e2,

∇e2 e1 = −αe2 − β
2 e3, ∇e2 e2 = αe1, ∇e2 e3 = β

2 e1,

∇e3 e1 = − β
2 e2, ∇e3 e2 = β

2 e1, ∇e3 e3 = 0.

(18)

Remark 11. Characteristic vector field ξ is parallel if and only if β = 0.

We give the expressions of operator h, Riemannian curvature R, Ricci tensor Ric and
Ricci operator Q:

he1 = − β

2
e1, he2 =

β

2
e2, he3 = 0, (19)

R(e1, e2)e1 =
(

α2 − β2

4

)
e2 + αβe3, R(e1, e2)e2 = −

(
α2 − β2

4

)
e1,

R(e1, e2)e3 = −αβe1, R(e1, e3)e1 = αβe2 +
3β2

4 e3,

R(e1, e3)e2 = −αβe1, R(e1, e3)e3 = − 3β2

4 e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = − β2

4 e3, R(e2, e3)e3 = β2

4 e2,

(20)

 Ric(e1, e1) = −
(
α2 + β2

2
)
, Ric(e1, e2) = 0, Ric(e1, e3) = 0,

Ric(e2, e2) =
β2

2 − α2, Ric(e2, e3) = −αβ, Ric(e3, e3) = − β2

2 ,
(21)

Qe1 = −
(

α2 +
β2

2

)
e1, Qe2 =

( β2

2
− α2

)
e2 − αβe3, Qe3 = −αβe2 −

β2

2
e3. (22)

Remark 12. Since α 6= 0, the metric g cannot be flat.

Remark 13. The basis {e1, e2, e3} diagonalizes Ricci tensor Q if and only if β = 0.

Lastly, the covariant derivatives of ϕ are computed as (∇e1 ϕ)e1 = − β
2 e3, (∇e1 ϕ)e2 = 0, (∇e1 ϕ)e3 = β

2 e1,

(∇e2 ϕ)e1 = 0, (∇e2 ϕ)e2 = β
2 e3, (∇e2 ϕ)e3 = − β

2 e2, ∇e3 ϕ = 0.
(23)

As a consequence, ϕ is parallel if and only if β = 0. Hence, we state:

Proposition 5. Almost cosymplectic nonunimodular Lie group G(α, β) is cosymplectic if and only
if β = 0.

In analogy with Proposition 3 we recall the following result obtained in [18].

Proposition 6. Almost cosymplectic nonunimodular Lie group G(α, β) has a vanishing character-
istic Jacobi operator if and only if β = 0.
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4.2.1. Contact Magnetic Geodesics in G(α, β)

We study arc-length parametrized curves γ : I → G(α, β) in almost cosymplectic Lie
group G(α, β) that satisfies Lorentz equation

∇γ̇γ̇ = qϕγ̇, q ∈ R \ {0}.

In order to compute the acceleration of γ, we need to decompose its speed γ̇ in basis
{e1, e2, e3} as

γ̇ = T1e1 + T2e2 + T3e3, T1, T2, T3 ∈ C∞(I).

Thus, we write

∇γ̇γ̇ = (T′1 + αT2
2 + βT2T3)e1 + (T′2 − αT1T2)e2 + (T′3 − βT1T2)e3.

Hence, the Lorentz equation leads to the following ODE system:
T′1 + (αT2 + q)T2 + βT2T3 = 0,

T′2 − (αT2 + q)T1 = 0,

T′3 − βT1T2 = 0.

(24)

Remark 14. The contact angle θ is, as expected, not automatically constant. Nevertheless, when
β = 0, the third equation in (24) implies that T3 = cos θ is constant. This reminds us that a contact
magnetic curve in a cosymplectic manifold is slant.

Let us study Case NU1: β = 0.
A special case is furnished by the integral curves of ξ, the case in which γ is a geodesic.

Suppose now that sin θ 6= 0. Since T1(s)2 + T2(s)2 = sin2 θ it follows that there exists
(locally) a function u, such that

T1(s) = sin θ cos u(s) and T2(s) = sin θ sin u(s).

Plugging these expressions in the first two equations of (24), we obtain{ (
u′ − α sin θ sin u− q

)
sin u = 0,(

u′ − α sin θ sin u− q
)

cos u = 0.

A particular solution is u = ±π
2 which can be obtained when and only when q = ∓α sin θ.

In this situation γ̇(s) = ± sin θe2 + cos θe3.
Other constant solution (for u) may be obtained as u = u0 := − arcsin q

α sin θ ; in this
case, we need to have

∣∣ q
α sin θ

∣∣ ≤ 1.
In this situation γ̇(s) = sin θ cos u0e1 + sin θ sin u0e2 + cos θe3.
Suppose that u is not a constant function. The general solution of the ODE

u′ = α sin θ sin u + q

is u(s) = 2 arctan t(s), where

(i) if α2 sin2 θ < q2, then t(s) = ζ tan( qζs
2 + c0)− α sin θ

q , where ζ =

√
1− α2 sin2 θ

q2 ;

(ii) if q = εα sin θ, then t(s) = − 2
qs+c0

− ε, where ε = ±1;

(iii) if α2 sin2 θ > q2, then t(s) = − α sin θ
q +


either −ζ coth( qζs

2 + c0),

or ζ,

or −ζ tanh( qζs
2 + c0),

where ζ =

√
α2 sin2 θ

q2 − 1.
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Here c0 ∈ R. Hence, T1(s) = sin θ
1− t(s)2

1 + t(s)2 and T2(s) = sin θ
2t(s)

1 + t(s)2 .

Almost cosymplectic nonunimodular Lie group G(α, β) is cosymplectic if and only
if β = 0. Since every contact magnetic curve in a cosymplectic manifold is slant, we are
interested to find when a magnetic curve in G(α, β) (with β 6= 0) is slant. The third equation
in (24) yields T1T2 = 0 (locally). Thus, we obtain the following possibilities:

(i) γ̇(s) = ±e3;
(ii) γ̇′(s) = ± sin θe2 + cos θe3 and q = ∓α sin θ − β cos θ, θ 6= 0, π.

Compare with the unimodular case.
As a consequence, we can easily prove the following proposition.

Proposition 7. Let γ be a slant contact normal magnetic curve in the almost cosymplectic nonuni-
modular Lie group G(α, β) with β 6= 0. Then,

(i) either γ is an integral curve of the ξ case when it is a geodesic;
(ii) or γ is a helix with curvatures κ1 = |q| sin θ and κ2 = |q cos θ + β

2 |.

Again, it is interesting to compare κ2 from (ii) with the expression of curvature κ2,
obtained in [7].

Example 3. Let G = R3(x, y, z), on which we consider the following multiplication law:

(x, y, z) ∗ (x′, y′, z′) = (x + x′, y + eαxy′, z + z′), α ∈ R \ {0}.

In fact, G is semidirect product Rn R2. The set of left invariant vector fields on G is
generated by

∂

∂x
, eαx ∂

∂y
,

∂

∂z
.

We can also identify G with the set of all matrices of the following form:

Xα(x, y, z) :=


1 0 0 x
0 eαx 0 y
0 0 1 z
0 0 0 1

, x, y, z ∈ R, α > 0.

In this interpretation, the set of left invariant vector fields is generated by the three follow-
ing matrices:

E1 =


0 0 0 1
0 αeαx 0 0
0 0 0 0
0 0 0 0

, E2 =


0 0 0 0
0 0 0 eαx

0 0 0 0
0 0 0 0

, E3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.

Under identification R3 3 (x, y, z)↔ Xα(x, y, z), we obtain the correspondence for the left
invariant vector fields and

∂

∂x
≡ E1 , eαx ∂

∂y
≡ E2 ,

∂

∂z
≡ E3.

With no danger of confusion, we denote by

E1 =


0 0 0 1
0 α 0 0
0 0 0 0
0 0 0 0

, E2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, E3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

.
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the generators for Lie algebra g.
It is easy to check that the commuting relations are

[E1, E2] = αE2, [E2, E3] = 0, [E3, E1] = 0;

hence, G is a nonunimodular Lie group on that we can define, as usual, the cosymplectic
structure. Let us indicate that the left invariant metric is

g = dx2 + e2αxdy2 + dz2.

Consider now a normal contact magnetic geodesic γ : I → G, γ(s) = (x(s), y(s), z(s)).
Since velocity vector field γ̇ was computed, we must solve the following ODE system in
order to obtain explicit parametrization. for γ

x′(s) = T1(s),

y′(s) = eαx(s)T2(s),

z′(s) = T3 = cos θ.

(25)

The third coordinate z can be easily obtained as z(s) = z(0) + s cos θ.
Let us now obtain x(s) and y(s).
Then, we draw, in a series of figures, magnetic curve γ (in R3) and its projection on

the hyperbolic plane. We need to indicate that this model is nothing but the product space
H2(−α2)× R. The hyperbolic metric on R2(x, y) is dx2 + e2axdy2. We also consider the
upper-half plane model for the hyperbolic plane via transformation u = αy and v = eαx.
Thus, for each projection curve, we draw two pictures, one (central) lying in R2(x, y) and
one (on the right) lying in the upper-half plane model of H2(−α2) with coordinates u and
v > 0.

We have T1(s) = sin θ
1− t(s)2

1 + t(s)2 and T2(s) = sin θ
2t(s)

1 + t(s)2 .

Case (i) t(s) = ζ tan( qζs
2 + c0)− α sin θ

q , where ζ =

√
1− α2 sin2 θ

q2

Set ψ ∈ (0, π) such that cos ψ = α sin θ
q ; hence ζ = sin ψ. Then,

t(s) = −
cos(ψ + qζs

2 + c0)

cos( qζs
2 + c0)

and

T1(s) =
ζ sin θ sin(ψ + qζs + 2c0)

1 + cos ψ cos(ψ + qζs + 2c0)
.

Integrating, we obtain

x(s) = − 1
α

log
(
1 + cos ψ cos(ψ + qζs + 2c0)

)
+ c1, c1 ∈ R. (26)

Since

T2(s) = − sin θ
cos ψ + cos(ψ + qζs + 2c0)

1 + cos ψ cos(ψ + qζs + 2c0)
,

we find

y(s) = − eαc1 cot ψ

α

sin(ψ + qζs + 2c0)

1 + cos ψ cos(ψ + qζs + 2c0)
+ c2, c2 ∈ R. (27)

In Figure 1 we draw the magnetic curve in R3 (left), its corresponding projection in R2

(center) and the projection on the hyperbolic plane H2 (right).
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Figure 1. α = 2, q = 2, θ = π
3 , c0 = 0, c1 = 0, c2 = 0.

Case (ii) t(s) = − 2
qs+c0

− ε

Integrating, we obtain

x(s) = − 1
α

log
(
2(qs + c0)

2 + 4ε(qs + c0) + 4
)
+ c1, c1 ∈ R,

y(s) =
eαc1(qs + c0 + ε)

α
[
2(qs + c0)2 + 4ε(qs + c0) + 4

] + c2, c2 ∈ R.

In Figure 2 we draw the magnetic curve in R3 (left), its corresponding projection in R2

(center) and the projection on the hyperbolic plane H2 (right).

Figure 2. α = 2, ε = 1, q =
√

3, θ = π
3 , c0 = 0, c1 = 0, c2 = 0.
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Case (iii) We need to distinguish three subcases. Before this, let us introduce ψ > 0,
such that α sin θ

q = ε cosh ψ, ε = ±1 and ζ = sinh ψ.

Subcase (iii)-1 t(s) = −ζ coth( qζs
2 + c0)− α sin θ

q = − ε sinh( qζs
2 +c0+εψ)

sinh( qζs
2 +c0)

Integrating, we obtain

x(s) = − 1
α

log
(

cosh ψ cosh(εψ + qζs + 2c0)− 1
)
+ c1, c1 ∈ R

y(s) =
eαc1 coth ψ

α

sinh(εψ + qζs + 2c0)

cosh ψ cosh(εψ + qζs + 2c0)− 1
+ c2, c2 ∈ R.

As before, in Figure 3 we draw the magnetic curve in R3 (left), its corresponding projection
in R2 (center) and the projection on the hyperbolic plane H2 (right).

Figure 3. α = 2, ε = 1, q = 1, θ = π
3 , c0 = 0, c1 = 0, c2 = 0.

Subcase (iii)-2 t(s) = − α sin θ
q + ζ (this leads to a constant solution for u)

It follows that T1 6= 0 and T2 are constant; hence,

x(s) = T1s + c1, y(s) =
T2

αT1
eα(T1s+c1) + c2, c1, c2 ∈ R.

Figure 4 represents the magnetic curve in R3 (left) and its corresponding projection in R2

(center) and on the hyperbolic plane H2 (right), respectively.

Figure 4. α = 2, ε = 1, q = 1, θ = π
3 , c0 = 0, c1 = 0, c2 = 0.
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Subcase (iii)-3 t(s) = −ζ tanh( qζs
2 + c0)− α sin θ

q = − ε cosh( qζs
2 +c0+εψ)

cosh( qζs
2 +c0)

Integrating, we obtain

x(s) = − 1
α

log
(

cosh ψ cosh(εψ + qζs + 2c0) + 1
)
+ c1, c1 ∈ R

y(s) = − eαc1 coth ψ

α

sinh(εψ + qζs + 2c0)

cosh ψ cosh(εψ + qζs + 2c0) + 1
+ c2, c2 ∈ R.

Figure 5 represents the magnetic curve in R3 (left) and its corresponding projection in R2

(center) and on the hyperbolic plane H2 (right), respectively.

Figure 5. α = 2, ε = 1, q = 1, θ = π
3 , c0 = 0, c1 = 0, c2 = 0.

Remark 15. The nonunimodular Lie group G(α, 0) not.
= G(α) can be also considered as the set of

all matrices of the following form:e(1+α)x 0 yex f (x)
0 ex zex

0 0 ex

, x, y, z ∈ R, α > 0,

where f : R→ R, f (x) =


eαx−1

αx if x 6= 0

1 if x = 0.
One can obtain a simply connected Lie group G(α) whose Lie algebra g(α) is

g(α) =


(1 + α)u 0 v

0 u w
0 0 u

 ∣∣∣ u, v, w ∈ R

.

A basis in g(α) is defined by

e1 =

1 + α 0 0
0 1 0
0 0 1

, e2 =

0 0 1
0 0 0
0 0 0

, e3 =

0 0 0
0 0 1
0 0 0

,

with the property
[e1, e2] = αe2 , [e2, e3] = 0 and [e3, e1] = 0.

In fact, Lie group G(α) is simply connected Lie group exp g(α).
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Identify G(α) with R3 with global coordinates (x, y, z) and set the following geometric objects:

• the metric: dx2 +
(
αy$(x)dx + f (x)e−αxdy

)2
+ dz2, where

$(x) =

{ e−αx+αx−1
α2x2 , if x 6= 0

1
2 if x = 0;

• 1-form η = dz;
• vector field ξ = ∂

∂z .

Left invariant vector fields obtained from e1, e2 and e3 are

e1 =
∂

∂x
− αyeαx $(x)

f (x)
∂

∂y
, e2 =

eαx

f (x)
∂

∂y
, e3 =

∂

∂z
.

The construction above is from [18] (see also [23,24]).

4.2.2. Magnetic Jacobi Fields on G(α, 0)

Contrary to the unimodular case, when the metric on G(λ0, λ0) is flat, for nonunimod-
ular group G(α, 0), curvature R plays its role in the magnetic Jacobi equation. Therefore,
we must pay attention to term R(γ̇, W)γ̇, where γ is a contact normal magnetic geodesic
on G(α, 0), and W is the magnetic Jacobi field along γ. We use Equation (20) with β = 0.

So, if we take W = W1e1 + W2e2 + W3e3 and γ̇ = T1e1 + T2e2 + cos θe3, we immedi-
ately find

R(γ̇, W)γ̇ = α2(T1W2 − T2W1)(T1e2 − T2e1).

This can be rewritten as
R(γ̇, W)γ̇ = α2 det(γ̇, W, ξ)ϕγ̇,

where the “det” product of the three vectors is considered with respect to the orthonormal
basis {e1, e2, e3}. Thus, the magnetic Jacobi equation becomes

D2W
ds2 − α2 det(γ̇, W, ξ)ϕγ̇− qϕ

DW
ds

= 0. (28)

We compute DW
ds = A1e1 + A2e2 + A3e3, where

A1 = W ′1 + αT2W2, A2 = W ′2 − αT2W1, A3 = W ′3 (29)

and D2W
ds2 = (A′1 + αT2 A2)e1 + (A′2 − αT2 A1)e2 + A′3e3.

Equation (28) can be written as
A′1 + αT2 A2 + α2T2(T1W2 − T2W1) + qA2 = 0,

A′2 − αT2 A1 − α2T1(T1W2 − T2W1)− qA1 = 0,

A′3 = 0.

(30)

In the following, we use (29) and (24) to obtain
W ′′1 + (2αT2 + q)W ′2 + α(2αT2 + q)(T1W2 − T2W1) = 0,

W ′′2 − (2αT2 + q)W ′1 − α2 sin2 θW2 − αq(T1W1 + T2W2) = 0,

W ′′3 = 0.

(31)

Particular solution W1 = T1, W2 = T2 and W3 = cos θ corresponds to W = γ̇.

Remark 16. Expression A1T1 + A2T2 is constant; this can be interpreted as a conservation law.
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ODE System (31) seems to be very complicated to be solved. Let us make some notations:

a = W1T1 + W2T2 and b = W2T1 −W1T2.

Compute

a′ = (A1 + qW2)T1 + (A2 − qW1)T2 = (A1T1 + A2T2) + qb,

b′ = (A2 − qW1)T1 − (A1 + qW2)T2 = (A2T1 − A1T2)− qa,

to obtain {
a′′ − qb′ = 0,

b′′ + qa′ − α2 sin2 θb = 0.
(32)

This ODE system is a simplified version of System (31).
The first equation yields a′ = qb + c0, where c0 is the constant involved in Remark 16.

Plugging a′ in the second equation of System (32), we obtain

b′′ + (q2 − α2 sin2 θ)b + c0q = 0.

The solution of this ODE depends on the sign of expression q2 − α2 sin2 θ. This sign was
also used when we classified the normal contact magnetic geodesics in G(α).

Case (i) If α2 sin2 θ < q2, let ζ =

√
1− α2 sin2 θ

q2 .

The equation becomes b′′ + q2ζ2b + c0q = 0 with the general solution

b(s) = c1 cos(qζs) + c2 sin(qζs)− c0

qζ2 , c1, c2 ∈ R.

We obtain

a(s) =
c1

ζ
sin(qζs)− c2

ζ
cos(qζs)− α2c0s sin2 θ

q2ζ2 + c3, c3 ∈ R.

Case (ii) If α2 sin2 θ = q2, we obtain

b(s) = − c0qs2

2
+ c1s + c2,

a(s) = − c0q2s3

6
+

c1qs2

2
+ (c0 + qc2)s + c3,

where c1, c2, c3 ∈ R.

Case (iii) If α2 sin2 θ > q2, let ζ =

√
α2 sin2 θ

q2 − 1.

We find

b(s) = c1 cosh(qζs) + c2 sinh(qζs) +
c0

qζ2 ,

a(s) =
c1

ζ
sinh(qζs) +

c2

ζ
cosh(qζs) +

α2c0s sin2 θ

q2ζ2 + c3,

where c1, c2, c3 ∈ R.
We obtained a and b in all the three situations. Returning to coefficients W1 and W2 is

only one more step to do, that is, we need to take into account that

W1 sin2 θ = aT1 − bT2 and W2 sin2 θ = aT2 + bT1,

where T1(s) and T2(s) should be taken keeping in mind the sign of expression q2− α2 sin2 θ.
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To finalize this section, we indicate that the third equation in (31) yielding W3 is an
affine function on s.

Remark 17. Since G(α, 0) endowed with the cosymplectic structure is a cosymplectic space form
with constant ϕ-sectional curvature c = −α2 we invite the reader to read our paper in [8].

Remark 18. In [25], the author was interested in magnetic trajectories in Lie groups equipped with
bi-invariant Riemannian metric. We add some comments on this problem. Recall that (e.g., [26])
3-dimensional Lie groups with bi-invariant metrics are: SU(2) ≡ S3, SO(3) ≡ US2 (both non-
abelian) and commutative groups S1 × S1 × S1, S1 × S1 ×R, S1 ×R2 and R3. In this regard,
three recent works studied magnetic trajectories: ref. [27] (3-dimensional Berger spheres, especially
SU(2) ≡ S3), ref. [28] (unit tangent sphere bundles, in particular US2) and ref. [29] (3-dimensional
torus T3).

5. Conclusions

The study of magnetic fields and their corresponding trajectories on different Rieman-
nian manifolds plays an important role in differential geometry, physics, and dynamical
systems. With the origin in the classical problem (in a Euclidean 3-dimensional space),
when magnetic geodesics describe trajectories of charged particles moving under the influ-
ence of a magnetic field, the problem was extended to several ambient spaces, the magnetic
fields being defined by other geometrical structure compatible with the Riemannian metric
on the manifold. The easiest example is to consider a constant vector (which is Killing) in a
3-dimensional Euclidean space that canonically defines a magnetic field. The corresponding
magnetic geodesics are helices with that vector field as axis. Because helices are important
tools in the study of the geometry of 3-dimensional spaces, many geometers have studied
the geometric properties of magnetic geodesics in different ambient spaces. The study
of magnetic geodesics in arbitrary Riemannian manifolds has developed since the 1990s,
and some early works may be found in the literature. Several classifications of magnetic
geodesics in Riemannian manifolds were obtained. The aim is a better understanding of
the geometry of the underlying space. To conclude, we choose a few works from the huge
list of papers studying this topic: [27,30–36] (see also references therein). In this paper,
we investigated magnetic geodesics in a 3-dimensional Lie group endowed with a left
invariant almost cosymplectic structure that defined the magnetic field. Explicit expressions
of magnetic geodesics and the corresponding magnetic Jacobi fields were obtained.
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