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Abstract: The rough set model for dual universes and multi granulation over dual universes is an
interesting generalization of the Pawlak rough set model. In this paper, we present a pessimistic
multigranulation roughness of a fuzzy set based on soft binary relations over dual universes. Firstly,
we approximate fuzzy set w.r.t aftersets and foresets of the finite number of soft binary relations.
As a result, we obtained two sets of fuzzy soft sets known as the pessimistic lower approximation
of a fuzzy set and the pessimistic upper approximation of a fuzzy set—the w.r.t aftersets and the
w.r.t foresets. The pessimistic lower and pessimistic upper approximations of the newly proposed
multigranulation rough set model are then investigated for several interesting properties. This article
also addresses accuracy measures and measures of roughness. Finally, we give a decision-making
algorithm as well as examples from the perspective of application.

Keywords: fuzzy set; roughness; soft set; soft binary relations; multigranulations

1. Introduction

We come across various problems in our surroundings that involve some uncertainties.
For example, the notion of beautiful guys is imprecise (uncertain), because we cannot
uniquely classify all beautiful guys into two classes: beautiful guys and not beautiful guys.
Thus the beauty is not exact but rather an uncertain (vague) concept. For this reason,
uncertainty is important to philosophers, mathematicians, and recently also computer
scientists have turned their interest to these vague (uncertainty) concepts. There are several
theories for dealing with uncertainty, including probability theory, vague set theory, and
interval mathematics. Each approach has its advantages and disadvantages.

Zadeh [1] developed the concept of a fuzzy set, which was the first successful approach
to imprecision. Sets are defined by partial membership in this technique, as opposed to
exact membership in the classical set. It can deal with problem uncertainties and solve
the problems of decision-making. Each of these theories is well-known and frequently
beneficial for characterizing imprecision, but each of them has its own number of difficulties,
as indicated in [2]. In 1999, a Russian mathematician Molodtsov [2] presented a novel
mathematical framework to deal with impression. This novel approach is know as soft
set theory (SST). SST is a new technique that avoids the problems that present in existing
theories. This theory has wider applications. Maji et al. [3,4] provided the first practical
implementations of soft theory, as well as establishing many operations and a theoretical
study on SST. Ali et al. [5] introduces various additional operations on SS and improves
the concept of a SS complement. To solve a problem in soft sets theory, the parameters are
usually ambiguous phrases or sentences involving vague terms. Maji et al. [6] defined a
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fuzzy soft set (FSS) as a combination of (FS) and (SS). FSS can deal with the problems of
DM in real life. Roy and Maji [7] discussed an FSS theoretic approach towards a discussion
DM, Yang et al. [8] presented the notion of interval valued FSS, and the interval valued
FSS is being used to examine a DM problem, Bhardwaj et al. [9] recently discussed an
advanced uncertainty measure based on FSS, as well as its application to DM problems.
Yang et al. [10] presented the notion of FS matrices and their applications. Petchimuthu
et al. [11] discussed the mean operators and generalized products of fuzzy soft matrices
and their applications in MCGDM. They also discussed the adjustable approaches to
multi-criteria group decision making based on inverse fuzzy soft matrices in [12].

Another mathematical method for dealing with problem containing imprecision is
the rough set theory (RST), which was presented by Pawlak in 1982 [13]. RST is a fre-
quently used method for dealing with imprecision. Similar to FST, it is not an alternative
to traditional set theory, but rather an integrated part of it. RST has the advantage of
requiring no preliminary or supplemental data knowledge, such as statistical probability.
Many applications of RST have been discovered. Machine learning, information acquisi-
tion, decision making, knowledge production from databases, expert systems, inductive
reasoning, and pattern recognition are just a few examples. The rough set technique is
crucial in artificial intelligence and cognitive sciences [13–15]. Partition is the foundation
of Pawlak’s RST. Many application are restricted by such a partition, because it can only
deal with complete data. To address these issues, tolerance relations, similarity relations,
general binary relations, neighborhood systems, and others are used in place of partitions.
Feng et al. [16] combined SS with FS and RS, the RSS and SRS are investigated in [17–19],
the rough set approximation based on SBr and knowledge bases was discussed by Li et
al. [20], Meng et al. [21] discussed SRFS and SFRS, Zhang et al. [22] presented novel
FRS models and corresponding applications to MCDM. Many authors have blended the
concepts of FS and RS in various ways, as demonstrated in [23–26].

In many practical situations, the usual RS model is built on a single equivalence
relation, which has difficulties when dealing with multi-granulation information. To
address these issue, Qian et al. [27–29] proposed a multi-granulation rough sets (MGRS)
model to approximate a set in w.r.t finite number of equivalence relations rather than a
single equivalence relation, Qaian et al. [30] also presented Pessimistic RS based decisions,
a fusion strategy. Many scholars from all around the world have been drawn to MGRS
and have contributed significantly to their development and applications. Xu et al. [31,32]
discussed two types of MGRSs based on ordered and tolerance relations, FMGRS can be
found in [33–35], new types of dominance based MGRS and their applications in conflict
analysis problems were described by Ali et al. [36]. Xu et al. [37] created two new forms
of MGRS., Lin, et al. [38] discussed neighborhood-based MGRS, MGCR was discussed
by Liu et al. [39], Kumar et al [40] proposed a OMGRS based classification for medical
diagnostics, and Huang et al. [41] combined the idea of MGRS and intuitionistic FS and
defined intuitionistic FMGRSs.

In reality, many practical problems, such as disease symptoms and medications used
in disease diagnostics, contain multiple universes of objects. The Pawlak RS model deals
with the problems of a single universe. To address these issue, the RS model over dual
universes was presented by Liu [42] and Yan et al. [43], establishing a relationship between
the RS model over a single universe, and the RS model over dual universes was discussed.
To measure the uncertainty of knowledge, Ma and Sun [44] proposed probabilistic RS
over dual universes, the graded RS model based on dual universes and its features were
addressed by Liu et al. [45], Shabir et al. [46] discussed approximation of a set based on
SBr over dual universes and their application in the reduction of an information system,
Zhang et al. [47] generalized FRS to dual universes with interval valued data, Wu et al. [48]
discussed FR approximation over dual universes, and Sun et al. [49] presented MGRS
over dual universes of objects. MGRS in two universes is a well-structured framework for
dealing with a variety of decision-making problems. It has become a hot topic in the field
of multiple decision problems, attracting a wide spectrum of theoretical and application
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studies. Zhang et al. [50] described the Pythagorean FMGRS and its applications in
mergers and acquisitions, Sun et al. [51,52] described the MGFRS over dual universes
and its application to DM and three way GDM. Multigranulation vague rough set and
diversified binary relation based FMGRS over dual universes and application to multiple
attribute GDM can be found in [53,54], Zhang et al. [55] proposed a steam turbine defect
diagnostic model based on an interval valued hesitant FMGRS over dual universes, and
Tan et al. [56] presented granulation selection and DM with MGRS over dual universes.

Qian et al. [27–30], presented the notion of MGRS based on multi equivalence relations
over an universe, Sun et al. [49] generalized this notion and introduced optimistic and
pessimistic MGRS over dual universes, replacing equivalence relations with general binary
relations from an universe set U to V. On the other hand, Shabir et al. [46], generalized
these concepts of RS and replaced relation by SBr from an universal U to V. The MGRS
based on SBr was recently presented by Shabir et al. [57]. This paper mainly focuses on
pessimistic MGRFS based on BSr over dual universes U and V and approximates an FS
λ ∈ F(V) by using the aftersets of SBr and approximates an FS γ ∈ F(U) by using foresets
of SBr, where λ, γ are fuzzy sets in U, V respectively. F(U) and F(V) represent a set of all
fuzzy sets in U, V respectively. After that, we looked at some of the algebraic properties of
our proposed model.

The rest of the paper is laid out as follows. Section 2 recalls the basic concepts of FS,
Pawlak RS, MGRSs, SBr, and FSS. Section 3 presents the pessimistic MGR of a FS over dual
universes by two SBrs and their basic algebraic properties and examples. Section 4 presents
the pessimistic MGR of an FS over dual universes by multi SBrs and their basic algebraic
properties. In Section 5 the accuracy measures of the pessimistic MGFSS are presented. In
Section 6 we focus on algorithms and a practical example about DM problems. Finally, in
Section 7 we conclude the paper.

2. Preliminaries

This section introduces the fuzzy set, rough set, multi-granulation rough set, soft set,
soft binary relation, and fuzzy soft set concepts that will be used in subsequent sections.

Definition 1 ([1]). A membership mapping λ : U → [0, 1] is known as an fuzzy set, where U 6= ∅
is a set of objects. The value λ(x) is known as the membership grade of the object x ∈ U. Let λ and
γ be two FSs in U. Then λ ≤ γ if λ(x) ≤ γ(x), for all x ∈ U. Moreover λ = γ if λ ≤ γ and
γ ≥ λ. An FS λ in U is know as null FS if λ(x) = 0 for all x ∈ U. An FS λ in U is known as a
whole FS, if λ(x) = 1 for all x ∈ U. We usually denote the null FS by 0 and the whole FS by 1.

Definition 2 ([1]). Let λ and γ be two FSs in U. Then their intersection and union are defined
as follows

(λ ∩ γ)(x) = λ(x) ∧ γ(x),

(λ ∪ γ)(x) = λ(x) ∨ γ(x),

for all x ∈ U, where ∧ and ∨ means minimum and maximum, respectively.

Definition 3 ([1]). For a number 0 < α ≤ 1, the α cut of an FS λ in U is λα = {x ∈ U : λ(x) ≥ α}
which is a subset of U.

Definition 4 ([13]). Let ρ be an equivalence relation on U. The Pawlak lower and upper approxi-
mations for any M ⊆ U w.r.t ρ are defined by

ρ(M) = {x ∈ U : [x]ρ ⊆ M}
ρ(M) = {x ∈ U : [x]ρ ∩M 6= ∅}.

where [x]ρ is the equivalence class of x w.r.t ρ. The set BNρ(M) = ρ(M)− ρ(M), is the boundary
region of M. If BNρ(M) = ∅ then we say that M is definable (exact), otherwise, M is rough w.r.t
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ρ. To measure the exactness of a set M the accuracy measure is defined by αρ(M) =
|ρ(M)|
|ρ(M)| and

roughness measure by ρρ(M) = 1− αρ(M).

Qian et al. [27,30] extended the Pawlak RS model to an MGRS model, in which set
approximations are established by multi-equivalence relations on the universe.

Definition 5 ([27]). Let ρ̂1, ρ̂2, . . . , ρ̂m be m equivalence relations on U and M ⊆ U. Then the
lower and upper approximations of M are defined as

M∑m
i=1 ρ̂i

= {x ∈ U : [x]ρ̂i ⊆ M f or some i, 1 ≤ i ≤ m},

M∑m
i=1 ρ̂i = (Mc

∑m
i=1 ρ̂i

)c.

Definition 6 ([30]). Let ρ̂1, ρ̂2, . . . , ρ̂m be m equivalence relations on an universal set U and
M ⊆ U. Then the pessimistic lower and upper approximations of M are defined as

M∑m
i=1 ρ̂i

= {x ∈ U : [x]ρ̂i ⊆ M f or all i, 1 ≤ i ≤ m},

M∑m
i=1 ρ̂i = (Mc

∑m
i=1 ρ̂i

)c.

Definition 7 ([2]). A soft set over U is a pair (ρ, A), where ρ is a mapping given by ρ : A→ P(U),
U 6= ∅ finite set and A ⊆ E (set of parameters), where P(U) is a power set of U.

Definition 8 ([58]). If (ρ, A) is a soft set over U ×U, then (ρ, A) is referred to as a soft binary
relation on U.

SBr(U) will be used to represent the collection of all soft binary relations on U.

Li et al. [20] modified the notion of an SBr over a set U to include a SBr from U to V.

Definition 9 ([20]). If (ρ, A) is a soft set over U ×V, then (ρ, A) is a soft binary relation (SBr)
from U to V.

We shall denote the collection of all soft binary relations from U to V by SBr(U, V).

Definition 10 ([7]). Let F(U) be the set of all FSs on U. Then the pair (ρ, A) is known as FSS
over U, where A ⊆ E (set of parameters)

Definition 11 ([7]). Let (ρ1, A) and (ρ2, B) be two FSSs over a common universe, (ρ1, A) is a
fuzzy soft subset of (ρ2, B) if A ⊆ B and ρ1(e) is a fuzzy soft subset of ρ2(e) for each e ∈ A. The
fuzzy soft sets (ρ1, A) and (ρ2, B) are equal if and only if (ρ1, A) is a fuzzy soft subset of (ρ2, B)
and (ρ2, B) is a fuzzy soft subset of (ρ1, A).

3. Pessimistic Roughness of a Fuzzy Set over Two Universes Based on Two Soft
Binary Relations

In this section, we discuss the pessimistic roughness of an FS by two SBrs and approxi-
mate an FS of universe V in universe U and an FS of universe U in universe V by using
aftersets and foresets of SBr from U to V, respectively. As a result, we have two FSSs that
correspond to the FS in V(U).
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Definition 12. Let (ρ1, A) and (ρ2, A), be two SBrs from U to V and λ be an FS in V. The
pessimistic lower approximation (PLAP) ρ1 + ρ2

λ
p

and pessimistic upper approximation (PUAP)
pρ1 + ρ2

λ, of FS λ w.r.t aftersets of (ρ1, A) and (ρ2, A) are defined as

pρ1 + ρ2
λ(e)(u) =

{∧{λ(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
}, if uρ1(e) ∩ uρ2(e) 6= ∅

0, otherwise.

pρ1 + ρ2
λ(e)(u) =

{∨{λ(v) : v ∈
(
uρ1(e) ∪ uρ2(e)

)
}, if uρ1(e) ∪ uρ2(e) 6= ∅

0, otherwise.

where uρ1(e) = {v ∈ V : (u, v) ∈ ρ1(e)}, uρ2(e) = {v ∈ V : (u, v) ∈ ρ2(e)} are aftersets of u
for u ∈ U and e ∈ A.
Obviously

(
pρ1 + ρ2

λ, A
)

and
(

pρ1 + ρ2
λ, A

)
are two FSSs over U.

Definition 13. Let (ρ1, A) and (ρ2, A), be two SBrs from U to V and γ be an FS in U. The
pessimistic lower approximation (PLAP) γρ1 + ρ2 p

and pessimistic upper approximation (PUAP)
γρ1 + ρ2

p, of FS γ w.r.t foresets of (ρ1, A) and (ρ2, A) are defined as

γρ1 + ρ2 p
(e)(v) =

{∧{γ(u) : u ∈
(
ρ1(e)(v) ∩ ρ2(e)(v)

)
}, if ρ1(e)(v) ∩ ρ2(e)(v) 6= ∅

0, otherwise.

γρ1 + ρ2
p(e)(v) =

{∨{γ(u) : u ∈
(
ρ1(e)(v) ∪ ρ2(e)(v)

)
}, if ρ1(e)(v) ∪ ρ2(e)(v) 6= ∅

0, otherwise.

where ρ1(e)v = {u ∈ U : (u, v) ∈ ρ1(e)}, ρ2(e)v = {u ∈ U : (u, v) ∈ ρ2(e)} are foresets of v
for v ∈ V and e ∈ A.

Obviously
(

γρ1 + ρ2 p
, A
)

and
(

γρ1 + ρ2
p, A

)
are two fuzzy soft sets over V.

Moreover pρ1 + ρ2
λ : A → F(U), pρ1 + ρ2

λ : A → F(U) and γρ1 + ρ2 p
: A →

F(V), γρ1 + ρ2
p : A→ F(V) and we say that (U, V, {ρ1, ρ2}) is a generalized Soft Approxi-

mation Space (GSAS).
Next we add an example to elaborate the above defined concepts.

Example 1. A franchise X wants to select the best allrounder for their team and there are 15
top allrounders who are available for the tournament. These allrounders are categorized into two
groups—platinum and diamond. Ghe set U = {p1, p2, p3, p4, p5, p6, p7, p8} represents the players
of the platinum group and V = {p′1, p′2, p′3, p′4, p′5, p′6, p′7} represents the players of the diamond
group. Let A = {e1, e2} be the set of parameters, where e1 represents the batsmen and e2 represents
the bowler. Let the two different teams of coaches analyze and compare these players based on their
performance in the different leagues these players play throughout the world, from these comparisons,
we have,

ρ1 : A→ P(U ×V) represents the comparison of the first team of coaches as defined by:

ρ1(e1) ={(p1, p′2), (p1, p′3), (p2, p′2), (p2, p′5), (p3, p′4), (p3, p′5), (p4, p′1), (p4, p′3), (p5, p′1), (p5, p′6),

(p7, p′4), (p7, p′7)},
ρ1(e2) ={(p1, p′3), (p1, p′6), (p2, p′1), (p2, p′4), (p3, p′1), (p4, p′5), (p4, p′7), (p5, p′2), (p5, p′7),

(p7, p′3), (p7, p′6), (p8, p′1), (p8, p′7)},

where ρ1(e1) compares the batting performance of the players and ρ1(e2) compares the bowling
performance of the players.

ρ2 : A→ P(U ×V) represents the comparison of the second team of coaches as defined by:
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ρ2(e1) ={(p1, p′2), (p2, p′3), (p2, p′5), (p3, p′4), (p4, p′3), (p4, p′5), (p4, p′6), (p5, p′4), (p6, p′7), (p7, p′3), (p7, p′7),

(p8, p′2), (p8, p′5)},
ρ2(e2) ={(p1, p′3), (p1, p′4), (p2, p′3), (p2, p′4), (p2, p′7), (p3, p′1), (p3, p′6), (p4, p′2), (p4, p′4), (p5, p′2), (p6, p′5),

(p7, p′6), (p8, p′1), (p8, p′3)},

where ρ1(e1) compares the batting performance of the players and ρ1(e2) compares the bowling
performance of the players.

From these comparisons, we get two SBrs from U to V. Now the aftersets are:

p1ρ1(e1) = {p′2, p′3}, p1ρ1(e2) = {p′3, p′6}, p1ρ2(e1) = {p′2}, p1ρ2(e2) = {p′3, p′4}
p2ρ1(e1) = {p′2, p′5}, p2ρ1(e2) = {p′1, p′4}, p2ρ2(e1) = {p′3, p′5}, p2ρ2(e2) = {p′3, p′4, p′7}
p3ρ1(e1) = {p′4, p′5}, p3ρ1(e2) = {p′1}, p3ρ2(e1) = {p′4}, p3ρ2(e2) = {p′1, p′6}
p4ρ1(e1) = {p′1, p′3}, p4ρ1(e2) = {p′5, p′7}, p4ρ2(e1) = {p′3, p′5, p′6}, p4ρ2(e2) = {p′2, p′4}
p5ρ1(e1) = {p′1, p′6}, p5ρ1(e2) = {p′2, p′7}, p5ρ2(e1) = {p′4}, p5ρ2(e2) = {p′2}
p6ρ1(e1) = ∅, p6ρ1(e2) = ∅, p6ρ2(e1) = {p′7}, p6ρ2(e2) = {p′5}
p7ρ1(e1) = {p′4, p′7}, p7ρ1(e2) = {p′3, p′6}, p7ρ2(e1) = {p′3, p′7}, p7ρ2(e2) = {p′6}
p8ρ1(e1) = ∅, p8ρ1(e2) = {p′1, p′7}, p8ρ2(e1) = {p′2, p′5}, p8ρ2(e2) = {p′1},

where piρj(e1) represents all those players of the diamond group whose batting performance is similar
to pi, and piρj(e2) represents all those players of the diamond group whose bowling performance is
similar to pi. The foresets are:

ρ1(e1)p′1 = {p4, p5}, ρ1(e2)p′1 = {p2, p3, p8}, ρ2(e1)p′1 = ∅, ρ2(e2)p′1 = {p3, p8}
ρ1(e1)p′2 = {p1, p2}, ρ1(e2)p′2 = {p5}, ρ2(e1)p′2 = {p8}, ρ2(e2)p′2 = {p4, p5}
ρ1(e1)p′3 = {p1, p4}, ρ1(e2)p′3 = {p7}, ρ2(e1)p′3 = {p2, p4, p7}, ρ2(e2)p′3 = {p1, p2}
ρ1(e1)p′4 = {p7}, ρ1(e2)p′4 = {p2}, ρ2(e1)p′4 = {p3, p5}, ρ2(e2)p′4 = {p1, p4}
ρ1(e1)p′5 = {p2, p3}, ρ1(e2)p′5 = {p4}, ρ2(e1)p′5 = {p2, p4, p8}, ρ2(e2)p′5 = {p6}
ρ1(e1)p′6 = {p5}, ρ1(e2)p′6 = {p1, p7}, ρ2(e1)p′6 = {p4}, ρ2(e2)p′6 = {p3, p7}
ρ1(e1)p′7 = {p7}, ρ1(e2)p′7 = {p4, p5, p8}, ρ2(e1)p′7 = {p6, p7}, ρ2(e2)p′7 = {p2},

where ρj(e1)p′i represents all those players of the platinum group whose batting performance
is similar to p′i, and ρj(e2)p′i represents all those players of the platinum group whose bowling
performance is similar to p′i

Define λ : V → [0, 1], which represents the preference of the players given by franchise X such that

λ(p′1) = 0.9, λ(p′2) = 0.8, λ(p′3) = 0.4, λ(p′4) = 0, λ(p′5) = 0.3, λ(p′6) = 0.1, λ(p′7) = 1 and

Define γ : U → [0, 1], which represents the preference of the players given by franchise X such that

γ(p1) = 0.2, γ(p2) = 1, γ(p3) = 0.5, γ(p4) = 0.9, γ(p5) = 0.6, γ(p6) = 0.7, γ(p7) =
0.1, γ(p8) = 0.3. Therefore, the pessimistic lower and upper approximations of λ (the w.r.t aftersets
of ρ1 and ρ2) are:

pρ1 + ρ2
λ(e1) =

0.8
p1

+
0.3
p2

+
0
p3

+
0.4
p4

+
0
p5

+
0
p6

+
1
p7

+
0
p8

pρ1 + ρ2
λ(e1) =

0.8
p1

+
0.8
p2

+
0.3
p3

+
0.9
p4

+
0.9
p5

+
1
p6

+
1
p7

+
0.8
p8

pρ1 + ρ2
λ(e2) =

0.4
p1

+
0
p2

+
0.9
p3

+
0
p4

+
0.8
p5

+
0
p6

+
0.1
p7

+
0.9
p8

pρ1 + ρ2
λ(e2) =

0.4
p1

+
1
p2

+
0.9
p3

+
1
p4

+
1
p5

+
0.3
p6

+
0.4
p7

+
1
p8

.
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Hence, pρ1 + ρ2
λ(ei)(pi) gives the exact degree of the performance of the player to λ as a

batsman and bowler and, pρ1 + ρ2
λ(ei)(pi) gives the possible degree of the performance of the

player to λ as a batsman and bowler w.r.t aftersets.
The pessimistic lower and upper approximations of γ (with respect to the foresets of ρ1 and ρ2) are:

γρ1 + ρ2 p
(e1) =

0
p′1

+
0
p′2

+
0.9
p′3

+
0
p′4

+
1
p′5

+
0
p′6

+
0.1
p′7

γρ1 + ρ2
p(e1) =

0.9
p′1

+
1
p′2

+
1
p′3

+
0.6
p′4

+
1
p′5

+
0.9
p′6

+
0.7
p′7

γρ1 + ρ2 p
(e2) =

0.3
p′1

+
0.6
p′2

+
0
p′3

+
0
p′4

+
0
p′5

+
0.1
p′6

+
0
p′7

γρ1 + ρ2
p(e2) =

1
p′1

+
0.9
p′2

+
1
p′3

+
1
p′4

+
0.9
p′5

+
0.5
p′6

+
1
p′7

.

Hence, γρ1 + ρ2 p
(ei)(p′i) gives the exact degree of the performance of the player to γ as a

batsman and bowler and, γρ1 + ρ2
p(e2)(p′i) gives the possible degree of the performance of the

player to γ as a batsman and bowler w.r.t foresets.

Next we study some properties of the above defined approximations.

Proposition 1. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U ×V) and ρ2 : A→ P(U ×V). Then, the following holds.

(1) pρ1 + ρ2
1(e) = 1 for all e ∈ A if uρ1(e) ∩ uρ2(e) 6= ∅

(2) pρ1 + ρ2
1(e) = 1 for all e ∈ A if uρ1(e) 6= ∅ or uρ2(e) 6= ∅

(3) pρ1 + ρ2
0(e) = 0 = pρ1 + ρ2

0(e)

Proof.

(1) Consider pρ1 + ρ1
1(e)(u) = ∧{1(v) : v ∈ uρ1(e) ∩ uρ1(e)} = ∧{1 : v ∈ uρ1(e) ∩

uρ1(e)} = 1 because uρ1(e) ∩ uρ1(e) 6= ∅.
(2) Consider pρ1 + ρ1

1(e)(u) = ∨{1(v) : v ∈ uρ1(e) ∪ uρ1(e)} = ∨{1 : v ∈ uρ1(e) ∪
uρ1(e)} = 1 because uρ1(e) 6= ∅ or uρ1(e) 6= ∅.

(3) Straightforward.

Proposition 2. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U ×V) and ρ2 : A→ P(U ×V). Then, the following holds.

(1) 1ρ1 + ρ2 p
(e) = 1 for all e ∈ A if ρ1(e)v ∩ ρ2(e)v 6= ∅

(2) 1ρ1 + ρ2
p(e) = 1 for all e ∈ A if ρ1(e)v 6= ∅ or ρ2(e)v 6= ∅

(3) 0ρ1 + ρ2 p
(e) = 0 = 0ρ1 + ρ2

p(e).

Proof. The proof is similar to the proof of Proposition 1.

Proposition 3. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U ×V) and ρ2 : A→ P(U ×V) and λ ∈ F(V). Then pρ1 + ρ2

λ ≤ pρ1 + ρ2
λ.

Proof. Case 1: If uρ1(e) ∩ uρ2(e) = ∅, then it is obvious.
Case 2: If uρ1(e) ∩ uρ2(e) 6= ∅, then pρ1 + ρ2

λ(e)(u) = ∧{λ(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
}

≤ ∨{λ(v) : v ∈
(
uρ1(e) ∪ uρ2(e)

)
} = pρ1 + ρ2

λ(e)(u). Hence pρ1 + ρ2
λ ≤ pρ1 + ρ2

λ

Proposition 4. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U ×V) and ρ2 : A→ P(U ×V) and γ ∈ F(U). Then γρ1 + ρ2 p

≤ γρ1 + ρ2
p.

Proof. The proof is similar to the proof of Proposition 3.
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Proposition 5. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U ×V) and ρ2 : A→ P(U ×V) and λ, λ1, λ2 ∈ F(V). Then the following properties hold the
w.r.t aftersets.

(1) If λ1 ≤ λ2 then pρ1 + ρ2
λ1 ≤ pρ1 + ρ2

λ2 ,

(2) If λ1 ≤ λ2 then pρ1 + ρ2
λ1 ≤ pρ1 + ρ2

λ2

(3) pρ1 + ρ2
λ1∩λ2 = pρ1 + ρ2

λ1 ∩ pρ1 + ρ2
λ2

(4) pρ1 + ρ2
λ1∪λ2 ≥ pρ1 + ρ2

λ1 ∪ pρ1 + ρ2
λ2
p

(5) pρ1 + ρ2
λ1∪λ2 = pρ1 + ρ2

λ1 ∪ pρ1 + ρ2
λ2

(6) pρ1 + ρ2
λ1∩λ2 ≤ pρ1 + ρ2

λ1 ∩ pρ1 + ρ2
λ2

Proof.

(1) Since λ1 ≤ λ2 so pρ1 + ρ2
λ1(e)(u) = ∧{λ1(v) : v ∈

(
uρ1(e) ∩ uρ2(e)

)
} ≤ ∧{λ2(v) :

v ∈
(
uρ1(e) ∩ uρ2(e)

)
} = pρ1 + ρ2

λ2(e)(u). Hence pρ1 + ρ2
λ1 ≤ pρ1 + ρ2

λ2 .

(2) Since λ1 ≤ λ2, so pρ1 + ρ2
λ1(e)(u) = ∨{λ1(v) : v ∈

(
uρ1(e) ∪ uρ2(e)

)
} ≤ ∨{λ2(v) :

v ∈
(
uρ1(e) ∪ uρ2(e)

)
} = pρ1 + ρ2

λ2(e)(u). Hence pρ1 + ρ2
λ1 ≤ pρ1 + ρ2

λ2 .
(3) Consider pρ1 + ρ2

λ1∩λ2(e)(u) = ∧{(λ1 ∧ λ2)(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
} =

∧{λ1(v) ∧ λ2(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
} = (∧{λ1(v) : v ∈

(
uρ1(e) ∩ uρ2(e)

)
})∧

(∧{λ2(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
})

= (pρ1 + ρ2
λ1(e)(u))

∧
(pρ1 + ρ2

λ2(e)(u)).
Hence pρ1 + ρ2

λ1∩λ2 = pρ1 + ρ2
λ1 ∩ pρ1 + ρ2

λ2 .
(4) Since λ1 ≤ λ1 ∪ λ2 and λ2 ≤ λ1 ∨ λ2, we have by part (1) pρ1 + ρ2

λ1 ≤ pρ1 + ρ2
λ1∪λ2

and
pρ1 + ρ2

λ2 ≤ pρ1 + ρ2
λ1∪λ2 ⇒ pρ1 + ρ2

λ1 ∪ pρ1 + ρ2
λ2 ≤ pρ1 + ρ2

λ1∪λ2 .

(5) Consider pρ1 + ρ2
λ1∪λ2(e)(u) = ∨{(λ1 ∪ λ2)(v) : v ∈

(
uρ1(e) ∪ uρ2(e)

)
} =

∨{λ1(v) ∨ λ2(v) : v ∈
(
uρ1(e) ∪ uρ2(e)

)
} = {∨{λ1(v) : v ∈

(
uρ1(e) ∪ uρ2(e)

)
}} ∪

{∨{λ2(v) : v ∈
(
uρ1(e) ∪ uρ2(e)

)
}}

= { pρ1 + ρ2
λ1(e)(u)} ∪ {pρ1 + ρ2

λ2(e)(u)}. Hence pρ1 + ρ2
λ1∪λ2 = pρ1 + ρ2

λ1 ∪
pρ1 + ρ2

λ2 .
(6) Since λ1 ≥ λ1 ∩ λ2 and λ2 ≥ λ1 ∩ λ2, we have by part (2) pρ1 + ρ2

λ1 ≥ pρ1 + ρ2
λ1∩λ2

and
pρ1 + ρ2

λ2 ≥ pρ1 + ρ2
λ1∩λ2 ⇒ pρ1 + ρ2

λ1 ∩ pρ1 + ρ2
λ2 ≥ ρ1 + ρ2

λ1∩λ2 .

Proposition 6. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, that is ρ1 : A →
P(U × V) and ρ2 : A → P(U × V) and γ, γ1, γ2 ∈ F(U). Then, the following hold the
w.r.t foresets.

(1) If γ1 ≤ γ2 then γ1 ρ1 + ρ2 p
≤ γ1 ρ1 + ρ2 p

,

(2) If γ1 ≤ γ2 then γ1 ρ1 + ρ2
p ≤ γ2 ρ1 + ρ2

p

(3) γ1∩γ2 ρ1 + ρ2 p
= γ1 ρ1 + ρ2 p

∩ γ2 ρ1 + ρ2 p

(4) γ1∪γ2 ρ1 + ρ2 p
≥ γ1 ρ1 + ρ2 p

∪ γ2 ρ1 + ρ2 p

(5) γ1∪γ2 ρ1 + ρ2
p = γ1 ρ1 + ρ2

p ∪ γ2 ρ1 + ρ2
p

(6) γ1∩γ2 ρ1 + ρ2
p ≤ γ1 ρ1 + ρ2

p ∩ γ2 ρ1 + ρ2
p

Proof. The proof is similar to the proof of Proposition 5.

The following example shows that the equality does not hold in parts 4 and 6 of
Propositions 5 and 6, generally.

Example 2. Suppose U = {u1, u2, u3, u4} and V = {v1, v2, v3, v4} are universes, (ρ1, A) and
(ρ2, A) are two SBrs from U to V, whose aftersets are given below:
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u1ρ1(e1) = {v1, v2, v4}, u1ρ1(e2) = {v2}, u1ρ2(e1) = {v2, v3, v4}, u1ρ2(e2) = {v1}
u2ρ1(e1) = {v2}, u2ρ1(e2) = {v4}, u2ρ2(e1) = {v2}, u2ρ2(e2) = {v2, v4}
u3ρ1(e1) = {v3, v4}, u3ρ1(e2) = {v1}, u3ρ2(e1) = {v4}, u3ρ2(e2) = {v2, v4}
u4ρ1(e1) = ∅, u4ρ1(e2) = {v2}, u4ρ2(e1) = {v2, v3}, u4ρ2(e2) = {v1, v2}

and the foresets are:

ρ1(e1)v1 = {u1}, ρ1(e2)v1 = {u3}, ρ2(e1)v1 = ∅, ρ2(e2)v1 = {u1, u4}
ρ1(e1)v2 = {u1, u2}, ρ1(e2)v2 = {u1, u4}, ρ2(e1)v2 = {u1, u2, u4}, ρ2(e2)v2 = {u2, u3, u4}
ρ1(e1)v3 = {u3}, ρ1(e2)v3 = ∅, ρ2(e1)v3 = {u1, u4}, ρ2(e2)v3 = ∅

ρ1(e1)v4 = {u1, u3}, ρ1(e2)v4 = {u2}, ρ2(e1)v4 = {u1, u4}, ρ2(e2)v4 = {u2, u3}

Let λ1, λ2, λ1 ∪ λ2, λ1 ∩ λ2 ∈ F(V) be defined as follows:

λ1 =
0.2
v1

+
0.7
v2

+
0.3
v3

+
0
v4

λ2 =
0.3
v1

+
0.5
v2

+
0
v3

+
0.6
v4

λ1 ∪ λ2 =
0.3
v1

+
0.7
v2

+
0.3
v3

+
0.6
v4

λ1 ∩ λ2 =
0.2
v1

+
0.5
v2

+
0
v3

+
0
v4

,

and γ1, γ2, γ1 ∪ γ2, γ1 ∩ γ2 ∈ F(U) are defined as follows:

γ1 =
0.1
u1

+
0.2
u2

+
0.3
u3

+
0.5
u4

γ2 =
0.5
u1

+
0
u2

+
0.3
u3

+
0
u4

γ1 ∪ γ2 =
0.5
u1

+
0.2
u2

+
0.3
u3

+
0.5
u4

γ1 ∩ γ2 =
0.1
u1

+
0
u2

+
0.3
u3

+
0
u4

.

Then,

pρ1 + ρ2
λ1(e1) =

0
u1

+
0.7
u2

+
0
u3

+
0
u4

pρ1 + ρ2
λ1(e1) =

0.7
u1

+
0.7
u2

+
0.3
u3

+
0.7
u4

pρ1 + ρ2
λ2(e1) =

0.5
u1

+
0.5
u2

+
0.6
u3

+
0
u4

pρ1 + ρ2
λ2(e1) =

0.6
u1

+
0.5
u2

+
0.6
u3

+
0
u4

pρ1 + ρ2
λ1∪λ2(e1) =

0.6
u1

+
0.7
u2

+
0.6
u3

+
0
u4

pρ1 + ρ2
λ1∩λ2(e1) =

0.5
u1

+
0.5
u2

+
0
u3

+
0.5
u4
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and

γ1 ρ1 + ρ2 p
(e1) =

0
v1

+
0.1
v2

+
0
v3

+
0.1
v4

γ1 ρ1 + ρ2
p(e1) =

0.1
v1

+
0.5
v2

+
0.5
v3

+
0.5
v4

γ2 ρ1 + ρ2 p
(e1) =

0
v1

+
0
v2

+
0
v3

+
0.5
v4

γ2 ρ1 + ρ2
p(e1) =

0.5
v1

+
0.5
v2

+
0.5
v3

+
0.5
v4

γ1∪γ2 ρ1 + ρ2 p
(e1) =

0
v1

+
0.2
v2

+
0
v3

+
0.5
v4

γ1∩γ2 ρ1 + ρ2
p(e1) =

0.1
v1

+
0.1
v2

+
0.3
v3

+
0.3
v4

.

Hence

pρ1 + ρ2
λ1(e1)(u1) ∨ pρ1 + ρ2

λ2(e1)(u1) = 0.5 � 0.6 = pρ1 + ρ2
λ1∪λ2(e1)(u1)

pρ1 + ρ2
λ1(e1)(u1) ∧ pρ1 + ρ2

λ2(e1)(u1) = 0.6 � 0.5 = pρ1 + ρ2
λ1∩λ2(e1)(u1),

and

γ1 ρ1 + ρ2 p
(e1)(v2) ∨ γ2 ρ1 + ρ2 p

(e1)(v2) = 0.1 � 0.2 = γ1∪γ2 ρ1 + ρ2 p
(e1)(v2)

γ1 ρ1 + ρ2
p(e1)(v3) ∧ γ2 ρ1 + ρ2

p(e1)(v3) = 0.5 � 0.3 = γ1∩γ2 ρ1 + ρ2
p(e1)(v3)

In the next definition we define the level set or α − cut of lower approximation

pρ1 + ρ2
λ(e) and upper approximation pρ1 + ρ2

λ(e). Approximations in Definitions 12
and 13 are pairs of FSS. If we associate α− cut of an fuzzy set, we can make a description
of the lower approximation

(
pρ1 + ρ2

λ(e)
)

α
and upper approximation

(
pρ1 + ρ2

λ(e)
)

α
.

Definition 14. Let U and V be two non-empty universes, and λ ∈ F(V). Let (ρ1, A) and (ρ2, A)
be two SBrs from U to V. For any 0 < α ≤ 1, the α− cut of lower approximation pρ1 + ρ2

λ and

upper approximation pρ1 + ρ2
λ of λ w.r.t aftersets are defined, respectively, as follows:(

pρ1 + ρ2
λ
p
(e)
)

α
= {u ∈ U : pρ1 + ρ2

λ(e)(u) ≥ α}(
pρ1 + ρ2

λ(e)
)

α
= {u ∈ U : pρ1 + ρ2

λ(e)(u) ≥ α}.

These are soft sets over U.

Definition 15. Let U and V be two non-empty universes, and γ ∈ F(U). Let (ρ1, A) and (ρ2, A)
be two SBrs from U to V. For any 0 < α ≤ 1, the α− cut of lower approximation γρ1 + ρ2 p

and

upper approximation γρ1 + ρ2
p of λ w.r.t foresets are defined, respectively, as follows:(

γρ1 + ρ2 p
(e)
)

α
= {v ∈ V : γρ1 + ρ2 p

(e)(v) ≥ α}(
γρ1 + ρ2

p(e)
)

α
= {v ∈ V : γρ1 + ρ2

p(e)(u) ≥ α}.

These are soft sets over V.

Proposition 7. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, λ ∈ F(V) and
0 < α ≤ 1. Then, the following properties hold the w.r.t aftersets:

(1) pρ1 + ρ2
(λα)(e) =

(
pρ1 + ρ2

λ(e)
)

α
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(2) pρ1 + ρ2
(λα)(e) =

(
pρ1 + ρ2

λ(e)
)

α

Proof.

(1) Let λ ∈ F(V) and 0 < α ≤ 1. For the crisp set λα, we have

pρ1 + ρ2
(λα)(e) = {u ∈ U :

(
uρ1 ∩ uρ2

)
⊆ λα}

= {u ∈ U : λ(v) ≥ α f or all v ∈
(
uρ1(e) ∩ uρ2(e)

)
}

= {u ∈ U : ∧{λ(v) : v ∈
(
uρ1(e) ∩ uρ2(e)

)
} ≥ α}

=
(

pρ1 + ρ2
λ(e)

)
α
.

(2) Let λ ∈ F(V) and 0 < α ≤ 1. For the crisp set λα, we have

pρ1 + ρ2
(λα)(e) = {u ∈ U : (uρ1 ∪ uρ2) ∩ λα 6= ∅}

= {u ∈ U : λ(v) ≥ α f or some v ∈
(
uρ1(e) ∪ uρ2(e)

)
}

= {u ∈ U : ∨{λ(v) : v ∈
(
uρ1(e) ∪ uρ2(e)

)
} ≥ α}

=
(

pρ1 + ρ2
λ(e)

)
α
.

Proposition 8. Let (ρ1, A) and (ρ2, A) be two SBrs from universe U to V, γ ∈ F(U) and
0 < α ≤ 1. Then, the following properties hold the w.r.t foresets:

(1) (γα)ρ1 + ρ2 p
(e) =

(
γρ1 + ρ2 p

(e)
)

α

(2) (γα)ρ1 + ρ2
p(e) =

(
(γρ1 + ρ2

p(e)
)

α

Proof. The proof is similar to the proof of Proposition 7.

4. Pessimistic Roughness of a Fuzzy Set over Two Universes Based on Multi Soft
Binary Relations

In this section, we generalize the concept of the pessimistic multigranulation roughness
(PMGR) of an FS based on two SBr to pessimistic multigranulation roughness (PMGR) of
an FS based on multi SBrs.

Definition 16. Let U, V be two non-empty finite universes and θ be a family of SBrs from U to V.
Then, we say (U, V, θ) a multigranulation generalized soft approximation space (MGGSAS) over
two universes.

It is easy to see that the multigranulation generalized soft approximation space (MGGSAS)
(U, V, θ), is a generalization of soft approximation space over two universes (U, V, ρ).

Definition 17. Let (U, V, θ) be a multigranulation generalized soft approximation space over two
universes and λ be a fuzzy set in V. The pessimistic lower approximation p∑m

i=1 ρi
λ and pessimistic

upper approximation p∑m
i=1 ρi

λ
, of FS λ w.r.t aftersets of SBrs (ρi, A) ∈ θ are defined as

p

m

∑
i=1

ρi

λ

(e)(u) =

{
∧{λ(v) : v ∈ ∩m

i=1uρi(e)}, if ∩m
i=1 uρi(e) 6= ∅

0, otherwise.

p
m

∑
i=1

ρi

λ

(e)(u) =

{
∨{λ(v) : v ∈ ∪m

i=1uρi(e)}, if uρi(e) 6= ∅, f or some i
0, otherwise.

where uρi(e) = {v ∈ V : (u, v) ∈ ρi(e)}, are the aftersets of u for u ∈ U and e ∈ A.

(p∑m
i=1 ρi

λ, A) and (p∑m
i=1 ρi

λ
, A) are two FSSs over U.



Mathematics 2022, 10, 541 12 of 21

Definition 18. Let (U, V, θ) be a multigranulation generalized soft approximation space over two
universes and γ be a fuzzy set in U. The pessimistic lower approximation γ∑m

i=1 ρi p
and pessimistic

upper approximation γ∑m
i=1 ρi

p
, of FS γ w.r.t foresets of SBrs (ρi, A) ∈ θ are defined as

γ
m

∑
i=1

ρi

p

(e)(v) =

{
∧{γ(u) : u ∈ ∩m

i=1ρi(e)(v)}, if ∩m
i=1 ρi(e)(v) 6= ∅

0, otherwise.

γ
m

∑
i=1

ρi

p

(e)(v) =

{
∨{γ(u) : u ∈ ∪m

i=1ρi(e)(v)}, if ρi(e)(v) 6= ∅, f or some i
0, otherwise.

where ρi(e)v = {u ∈ U : (u, v) ∈ ρi(e)} are the foresets of v for v ∈ V and e ∈ A.
( γ∑m

i=1 ρi p
, A), and (γ∑m

i=1 ρi
p
, A) are two fuzzy soft sets over V.

Moreover p∑m
i=1 ρi

λ : A → F(U), p∑m
i=1 ρi

λ
: A → F(U) and γ∑m

i=1 ρi p
: A →

F(V), γ∑m
i=1 ρi

p
: A→ F(V).

Proposition 9. Let (U, V, θ) be a multigranulation generalized soft approximation space over two
universes. The following properties hold the w.r.t aftersets.

(1) p∑m
i=1 ρi

1(e) = 1 for all e ∈ A if ∩uρi(e) 6= ∅.

(2) p∑m
i=1 ρi

1
(e) = 1 for all e ∈ A if uρi(e) 6= ∅ for some i ≤ m

(3) p∑m
i=1 ρi

0(e) = 0 = p∑m
i=1 ρi

0
(e).

Proof. The proof is similar to the proof of Proposition 1.

Proposition 10. Let (U, V, θ) be a multigranulation generalized soft approximation space over
two universes. The following properties hold the w.r.t forersets.

(1) 1∑m
i=1 ρi p

(e) = 1 for all e ∈ A if ∩ρi(e)v 6= ∅.

(2) 1∑m
i=1 ρi

p
(e) = 1 for all e ∈ A, if ρi(e)v 6= ∅ for some i ≤ m

(3) 0∑m
i=1 ρi p

(e) = 0 = 0∑m
i=1 ρi

p
(e).

Proof. The proof of this is similar to the proof of Proposition 1.

Proposition 11. Let (U, V, θ) be a multigranulation generalized soft approximation space over
two universes and λ, λ1, λ2 ∈ F(V). The following properties hold the w.r.t aftersets.

(1) If λ1 ≤ λ2, then p∑m
i=1 ρi

λ1 ≤ p∑m
i=1 ρi

λ2 ,

(2) If λ1 ≤ λ2, then p∑m
i=1 ρi

λ1 ≤ p∑m
i=1 ρi

λ2

(3) p∑m
i=1 ρi

λ1∩λ2 = p∑m
i=1 ρi

λ1 ∩ p∑m
i=1 ρi

λ2

(4) p∑m
i=1 ρi

λ1∪λ2 ≥ p∑m
i=1 ρi

λ1 ∪ p∑m
i=1 ρi

λ2

(5) p∑m
i=1 ρi

λ1∪λ2
= p∑m

i=1 ρi
λ1 ∪ p∑m

i=1 ρi
λ2

(6) p∑m
i=1 ρi

λ1∩λ2 ≤ p∑m
i=1 ρi

λ1 ∩ p∑m
i=1 ρi

λ2

Proof. The proof is similar to the proof of Proposition 5.

Proposition 12. Let (U, V, θ) be a multigranulation generalized soft approximation space over
two universes and γ, γ1, γ2 ∈ F(U). The following properties hold the w.r.t foresets.

(1) If γ1 ≤ γ2, then γ1 ∑m
i=1 ρi p

≤ γ2 ∑m
i=1 ρi p

,

(2) If γ1 ≤ γ2, then γ1 ∑m
i=1 ρi

p ≤ γ2 ∑m
i=1 ρi

p

(3) γ1∩γ2 ∑m
i=1 ρi p

= γ1 ∑m
i=1 ρi p

∩ γ2 ∑m
i=1 ρi p

(4) γ1∪γ2 ∑m
i=1 ρi p

≥ γ1 ∑m
i=1 ρi p

∪ γ2 ∑m
i=1 ρi p
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(5) γ1∪γ2 ∑m
i=1 ρi

p
= γ1 ∑m

i=1 ρi
p ∪ γ2 ∑m

i=1 ρi
p

(6) γ1∩γ2 ∑m
i=1 ρi

p ≤ γ1 ∑m
i=1 ρi

p ∩ γ2 ∑m
i=1 ρi

p

Proof. The proof is similar to the proof of Proposition 5.

Proposition 13. Let (U, V, θ) be a multigranulation generalized soft approximation space over
two universes and λ1, λ2, λ3, · · · λn ∈ F(V), be such that λ1 ⊆ λ2 ⊆ λ3 ⊆ · · · ⊆ λn. Then, the
following properties hold the w.r.t aftersets.

(1) p∑m
i=1 ρi

λ1 ⊆ p∑m
i=1 ρi

λ2 ⊆ p∑m
i=1 ρi

λ3 ⊆ · · · ⊆ p∑m
i=1 ρi

λn

(2) p∑m
i=1 ρi

λ1 ⊆ p∑m
i=1 ρi

λ2 ⊆ p∑m
i=1 ρi

λ3 ⊆ · · · ⊆ p∑m
i=1 ρi

λn

Proof. Straightforward.

Proposition 14. Let (U, V, θ) be a multigranulation generalized soft approximation space over
two universes and γ1, γ2, γ3, · · · γn ∈ F(U), be such that γ1 ⊆ γ2 ⊆ γ3 ⊆ · · · ⊆ γn. Then, the
following properties hold the w.r.t foresets.

(1) γ1 ∑m
i=1 ρi p

⊆ γ2 ∑m
i=1 ρi p

⊆ γ3 ∑m
i=1 ρi p

⊆ · · · ⊆ γn ∑m
i=1 ρi p

(2) γ1 ∑m
i=1 ρi

p ⊆ γ2 ∑m
i=1 ρi

p ⊆ γ3 ∑m
i=1 ρi

p ⊆ · · · ⊆ γn ∑m
i=1 ρi

p

Proof. Straightforward.

Definition 19. Let (U, V, θ) be a multi-granulation generalized soft approximation space over two
universes, λ ∈ F(V). For any 0 < α ≤ 1, the α cut set of lower approximation p∑m

i=1 ρi
λ and

upper approximation p∑m
i=1 ρi

λ
of λ are defined, respectively, as follows:

(p

m

∑
i=1

ρi

λ

(e))α = {u ∈ U : p

m

∑
i=1

ρi

λ

(e)(u) ≥ α}

(p
m

∑
i=1

ρi

λ

(e))α = {u ∈ U : p
m

∑
i=1

ρi

λ

(e)(u) ≥ α}.

These are the soft sets over U.

Definition 20. Let (U, V, θ) be a multi-granulation generalized soft approximation space over two
universes, γ ∈ F(U). For any 0 < α ≤ 1, the α cut set of lower approximation γ∑m

i=1 ρi p
and

upper approximation γ∑m
i=1 ρi

p
of γ about the α are defined, respectively, as follows:

(γ
m

∑
i=1

ρi

p

(e))α = {v ∈ V : γ
m

∑
i=1

ρi

p

(e)(v) ≥ α}

(γ
m

∑
i=1

ρi

p

(e))α = {v ∈ V : γ
m

∑
i=1

ρi

p

(e)(u) ≥ α}.

These are soft sets over V.

Proposition 15. Let (U, V, θ) be a multi-granulation generalized soft approximation space over
two universes, λ ∈ F(V). For 0 < α ≤ 1,. The following properties hold the w.r.t aftersets:

(1) p∑m
i=1 ρi

(λα)(e) = (p∑m
i=1 ρi

λ(e))α

(2) p∑m
i=1 ρi

(λα)
(e) = (p∑m

i=1 ρi
λ
(e))α

Proof. The proof is similar to the proof of Proposition 7.
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Proposition 16. Let (U, V, θ) be a multi-granulation generalized soft approximation space over
two universes, γ ∈ F(U). For 0 < α ≤ 1,. The following properties hold the w.r.t foresets:

(1) (γα)∑m
i=1 ρi p

(e) = (γ∑m
i=1 ρi p

(e))α

(2) (γα)∑m
i=1 ρi

p
(e) = ((γ∑m

i=1 ρi
p
(e))α

Proof. The proof is similar to the proof of Proposition 7.

5. Measures of Pessimistic Multigranulation Roughness of a Fuzzy Set

In this section, we discuss the accuracy measure and rough measure of pessimistic
multigranulation roughness of fuzzy sets with respect to aftersets and foresets and their
basic properties.

Definition 21. Let (ρ1, A) and (ρ2, A) be two SBrs from a nonempty universe U to V and
0 < β ≤ α ≤ 1. Then the accuracy measure (or degree of accuracy) of membership λ ∈ F(V), with
respect to α, β and the w.r.t aftersets of (ρ1, A), (ρ2, A) is defined as

PA(ρ1 + ρ2
λ(ei))(α,β) =

|(pρ1 + ρ2
λ(ei))α|

|(pρ1 + ρ2
λ(ei))β|

, f or all ei ∈ A,

where |.| means the cardinality of the set, where PA means the pessimistic accuracy measure. It is
obvious that 0 ≤ PA(ρ1 + ρ2

λ(ei))(α,β) ≤ 1. When PA(ρ1 + ρ2
λ(ei))(α,β) = 1, the FS λ ∈ F(V)

is definable with respect to the aftersets. The pessimistic rough measure is defined as

PR(ρ1 + ρ2
λ(ei))(α,β) =1− PA(ρ1 + ρ2

λ(ei))(α,β)

Definition 22. Let (ρ1, A) and (ρ2, A) be two SBrs from a non-empty universe U to V and
0 < β ≤ α ≤ 1, the accuracy measure (or degree of accuracy) of membership γ ∈ F(U), w.r.t α, β
with respect to foresets of (ρ1, A), (ρ2, A) is defined as

PA(γρ1 + ρ2(ei))(α,β) =
|(γρ1 + ρ2 p

(ei))α|

|(γρ1 + ρ2
p(ei))β|

, f or all ei ∈ A,

where |.| means the cardinality of the set, where PA means the pessimistic accuracy measure. It is
obvious that 0 ≤ PA(γρ1 + ρ2(ei))(α,β) ≤ 1. When PA(γρ1 + ρ2(ei))(α,β) = 1, the FS γ ∈ F(U)
is definable as the w.r.t foresets. The pessimistic rough measure is defined as

PR(γρ1 + ρ2(ei))(α,β) =1− PA(γρ1 + ρ2(ei))(α,β)

Example 3 (Continued from Example 1). Let (ρ1, A) and (ρ2, A) be two SBrs from a non-empty
universal set U to V as given in Example 1. Then, for λ ∈ F(V) defined in Example 1, and α = 0.4
and β = 0.2 cut sets the w.r.t aftersets are as follows, respectively.

(pρ1 + ρ2
λ(e1))0.4 ={u1, u4}

(pρ1 + ρ2
λ(e2))0.4 ={u1, u3, u5, u8}

(pρ1 + ρ2
λ(e1))0.2 ={u1, u2, u3, u4, u5, u6u7, u8}

(pρ1 + ρ2
λ(e2))0.2 ={u1, u2, u3, u4, u5, u6u7, u8}.
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The pessimistic accuracy measures for λ with respect to α = 0.4 and β = 0.2 and the w.r.t
aftersets of SBrs (ρ1, A), (ρ2, A) are calculated as

PA(ρ1 + ρ2
λ(e1))(α,β) =

|(pρ1 + ρ2
λ(e1))0.4|

|(pρ1 + ρ2
λ(e1))0.2|

=
2
8
= 0.25,

PA(ρ1 + ρ2
λ(e2))(α,β) =

|(pρ1 + ρ2
λ(e2))0.4|

|(pρ1 + ρ2
λ(e2))0.2|

=
4
8
= 0.5.

PA(ρ1 + ρ2
λ(ei))(α,β) shows the degree to which the FS λ ∈ F(V) is accurate constrained to the

parameters α = 0.4 and β = 0.2 for i = 1, 2 w.r.t aftersets. Similarly for γ ∈ F(U) defined in
Example 1, the α = 0.4 and β = 0.2 cut sets with respect to foresets are as follows, respectively.

(γρ1 + ρ2 p
(e1))0.4 ={v3}

(γρ1 + ρ2 p
(e2))0.4 ={v1},

and

(γρ1 + ρ2
p(e1))0.2 ={v1, v2, v3, v4, v5, v6v7}

(γρ1 + ρ2
p(e2))0.2 ={v1, v2, v3, v4, v5, v6v7}.

The pessimistic accuracy measures for γ ∈ F(U) with respect to α = 0.4 and β = 0.2 and the
w.r.t foresets of SBrs (ρ1, A), (ρ2, A) are calculated as

PA(γρ1 + ρ2(e1))(α,β) =
|(γρ1 + ρ2 p

(e1))0.4|

|(γρ1 + ρ2
p(e1))0.2|

=
1
8
= 0.125,

PA(γρ1 + ρ2(e2))(α,β) =
|(γρ1 + ρ2 p

(e2))0.4|

|(γρ1 + ρ2
p(e2))0.2|

=
1
8
= 0.125.

PA(γρ1 + ρ2(ei))(α,β) shows the degree to which the FS γ ∈ F(U) is accurately constrained to the
parameters α = 0.4 and β = 0.2 for i = 1, 2 w.r.t foresets.

Proposition 17. Let (ρ1, A) and (ρ2, A) be two SBrs from a non-empty universe U to V, λ ∈
F(V) and 0 < β ≤ α ≤ 1. Then

(1) PA(ρ1 + ρ2
λ(ei))(α,β) increases with the increase in β, if α stands fixed.

(2) PA(ρ1 + ρ2
λ(ei))(α,β) decreases with the increase in α, if β stands fixed.

Proof.

(1) Let α stand fixed and 0 < β1 ≤ β2 ≤ 1. Then we have |(pρ1 + ρ2
λ(ei))β2 | ≤

|(pρ1 + ρ2
λ (ei))β1 |. This implies that

|(pρ1+ρ2
λ(ei))α |

|(pρ1+ρ2
λ(ei))β1

|
≤ |(pρ1+ρ2

λ(ei))α |
|(pρ1+ρ2

λ(ei))β2
|
, that is

PA(ρ1 + ρ2
λ(ei))(α,β1)

≤ PA(ρ1 + ρ2
λ(ei))(α,β2)

.
This shows that PA(ρ1 + ρ2

λ(ei))(α,β) increases with the increase in β for all ei ∈ A.
(2) Let β stands fixed and 0 < α1 ≤ α2 ≤ 1. Then we have |(pρ1 + ρ2

λ(ei))α2 | ≤

|(pρ1 + ρ2
λ (ei))α1 |. This implies that

|(pρ1+ρ2
λ(ei))α2 |

|(pρ1+ρ2
λ(ei))β |

≤
|(pρ1+ρ2

λ
p
(ei))α1 |

|(pρ1+ρ2
λ(ei))β |

, that is

PA(ρ1 + ρ2
λ(ei))(α2,β) ≤ PA(ρ1 + ρ2

λ(ei))(α1,β).
This shows that PA(ρ1 + ρ2

λ(ei))(α,β) increases with the increase in α for all ei ∈ A.

�
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Proposition 18. Let (ρ1, A) and (ρ2, A) be two SBrs from a non-empty universe U to V, γ ∈
F(U) and 0 < β ≤ α ≤ 1. Then

(1) PA(γρ1 + ρ2(ei))(α,β) increases with the increase in β, if α stands fixed.
(2) PA(γρ1 + ρ2(ei))(α,β) decreases with the increase in α, if β stands fixed.

Proof. The proof is similar to the proof of Proposition 17.

Proposition 19. Let (ρ1, A) and (ρ2, A) be two SBrs from a non- empty universe U to V, 0 <
β ≤ α ≤ 1 and λ, µ ∈ F(V), with λ ≤ µ. Then the following properties hold the w.r.t aftersets.

(1) (PA(ρ1 + ρ2
λ(ei))(α,β)) ≤ PA(ρ1 + ρ2

µ(ei))(α,β), whenever (pρ1 + ρ2
λ
o )β = (pρ1 + ρ2

µ)β.
(2) (PA(ρ1 + ρ2

λ(ei))(α,β)) ≥ PA(ρ1 + ρ2
µ(ei))(α,β), whenever (pρ1 + ρ2

λ)β = (pρ1 + ρ2
µ)β.

Proof.

(1) Let 0 < β ≤ α ≤ 1 and λ, µ ∈ F(V) be such that λ ≤ µ. Then (pρ1 + ρ2
λ(ei))α ≤

(pρ1 + ρ2
µ(ei))α, that is |(pρ1 + ρ2

λ(ei))α| ≤ |(pρ1 + ρ2
µ(ei))α|. This implies that

|(pρ1+ρ2
λ(ei))α |

|(pρ1+ρ2
λ(ei))β |

≤ |(pρ1+ρ2
µ(ei))α |

|(pρ1+ρ2
µ(ei))β |

. Hence PA(ρ1 + ρλ
2 (ei))(α,β) ≤ PA(ρ1 + ρ

µ
2 (ei))(α,β)

for all ei ∈ A.
(2) Let 0 < β ≤ α ≤ 1 and λ, µ ∈ F(V) be such that λ ≤ µ. Then (pρ1 + ρ2

λ(ei))β ≤
(pρ1 + ρ2

µ(ei))β, that is |(pρ1 + ρ2
λ(ei))β| ≤ |(pρ1 + ρ2

µ(ei))β|. This implies that
|(pρ1+ρ2

λ(ei))α |
|(pρ1+ρ2

λ(ei))β |
≥ |(pρ1+ρ2

µ(ei))α |
|(pρ1+ρ2

µ(ei))β |
. Hence PA(ρ1 + ρλ

2 (ei))(α,β) ≥ PA(ρ1 + ρ
µ
2 (ei))(α,β)

for all ei ∈ A.

Proposition 20. Let (ρ1, A) and (ρ2, A) be two SBrs from a non- empty universe U to V, 0 <
β ≤ α ≤ 1 and γ, δ ∈ F(U), with γ ≤ δ. Then the following properties hold the w.r.t foresets.

(1) (PA(λρ1 + ρ2(ei))(α,β)) ≤ PA(µρ1 + ρ2(ei))(α,β), whenever (γρ1 + ρ2
p)β = (µρ1 + ρ2

p)β.
(2) PA(λρ1 + ρ2(ei))(α,β) ≥ PA(µρ1 + ρ2(ei))(α,β), whenever (γρ1 + ρ2 p

)β = (µρ1 + ρ2 p
)β.

Proof. The proof is similar to the proof of Proposition 19.

6. Decision Making

In this section, we defined an algorithm for the above-proposed model. We know that
FSS have a wide application in decision-making problems. In most cases the approaches to
decision-making based on FSS are dependent on choice value “Ck”. It is simply reasonable
to select the object with the maximum choice value as the optimal alternative. So, we
redefine the choice value Cj for the decision alternative uj of the universe U with respect to
the aftersets (foresets) of soft binary relations, to deal with decision-making problems based
on RFSS. We know the lower and upper approximations are the two most close-sets to the
approximated subsets of a universe. Therefore, we obtain two most corresponding values

p∑n
k=1 ρk

λ(ei)(uj) and P∑n
k=1 ρk

λ
(ei)(uj) w.r.t aftersets, the decision alternative uj ∈ U by

the FS lower and upper approximations of an FS λ ∈ F(V).
Here, we present two algorithms for the proposed model, which consist of the follow-

ing steps.
Flowchart for Algorithms 1 and 2.
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Algorithm 1: An algorithm for the approach to a decision-making problem of
thew.r.t aftersets is presented in the following.

Step 1: Compute the lower pessimistic multigranulation fuzzy soft set approximation

p∑n
i=1 ρi

λ and upper pessimistic multigranulation fuzzy soft set approximation
P∑n

i=1 ρi
λ

, of fuzzy set λ with respect to the aftersets.
Step 2: Compute the sum of a lower pessimistic multigranulation fuzzy soft set

approximation ∑n
j=1(p∑n

i=1 ρi
λ(ej)(ul)) and the sum of an upper pessimistic

multigranulation fuzzy soft set approximation ∑n
j=1(

P∑n
i=1 ρi

λ
(ej)(ul)),

corresponding to j with respect to aftersets.
Step 3: Compute the choice value

Cl = ∑n
j=1(p∑n

i=1 ρi
λ(ej)(ul)) + ∑n

j=1(
P∑n

i=1 ρi
λ
(ej)(ul)), ul ∈ U with respect to

the aftersets.
Step 4: The best decision is uk ∈ U if Ck = max|U|l=1Cl .

Step 5: The worst decision is uk ∈ U if Ck = min|U|l=1Cl .
Step 6: If k has more than one value, then any one of the uk may be chosen.
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Algorithm 2: An algorithm for the approach to a decision-making problem with
respect to the foresets is presented in the following.

Step 1: Compute the lower pessimistic multigranulation fuzzy soft set approximation
γ∑n

i=1 ρi p
and upper pessimistic multigranulation fuzzy soft set approximation

γ∑n
i=1 ρi

P
, of fuzzy set γ with respect to foresets.

Step 2: Compute the sum of lower pessimistic multigranulation fuzzy soft set
approximation ∑n

j=1(
γ∑n

i=1 ρiP
(ej)(vl)) and the sum of upper pessimistic

multigranulation fuzzy soft set approximation ∑n
j=1(

γ∑n
i=1 ρi

p
(ej)(vl)),

corresponding to j with respect to foresets.
Step 3: Compute the choice value

Cl = ∑n
j=1(

γ∑n
i=1 ρi p

(ej)(vl)) + ∑n
j=1(

γ∑n
i=1 ρi

P
(ej)(vl)), vl ∈ V with respect to

the foresets.
Step 4: The best decision is vk ∈ V if Ck = max|V|l=1Cl .

Step 5: The worst decision is vk ∈ V if Ck = min|V|l=1Cl .
Step 6: If k has more than one value, then any one of vk may be chosen.

An Application of the Decision-Making Approach

Example 4 (Continued from Example 1). Consider the soft binary relations of Example 1 again,
where a franchise X wants to pick a best foreign player (allrounder) for their team from the platinum
and diamond categories.

Define λ : V → [0, 1], which represents the preference of the player given by franchise X such that
λ(v1) = 0.9, λ(v2) = 0.8, λ(v3) = 0.4, λ(v4) = 0, λ(v5) = 0.3, λ(v6) = 0.1, λ(v7) = 1,

and
Define γ : U → [0, 1], which represents the preference of the player given by franchise X such that

γ(u1) = 0.2, γ(u2) = 1, γ(u3) = 0.5, γ(u4) = 0.9, γ(u5) = 0.6, γ(u6) = 0.7, γ(u7) =
0.1, γ(u8) = 0.3.

Consider Tables 1 and 2 after applying the above algorithms.

Table 1. The pessimistic result of the decision algorithm with respect to the aftersets.

pρ1 + ρ2
λ(e1) pρ1 + ρ2

λ(e2) pρ1 + ρ2
λ
(e1) pρ1 + ρ2

λ
(e2) Choice Value Ck

p1 0.8 0.4 0.8 0.4 2.4

p2 0.3 0 0.8 1 2.1

p3 0 0.9 0.3 0.9 2.1

p4 0.4 0 0.9 1 2.3

p5 0 0.8 0.9 1 2.7

p6 0 0 1 0.3 1.3

p7 1 0.1 1 0.4 2.5

p8 0 0.9 0.8 1 2.7
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Table 2. The pessimistic result of the decision algorithm with respect to the foresets.

γρ1 + ρ2 p
(e1) γρ1 + ρ2 p

(e2) γρ1 + ρ2
p
(e1) γρ1 + ρ2

p
(e2) Choice Value C

′
k

p′1 0 0.3 0.9 1 2.1

p′2 0 0.6 1 0.9 2.5

p′3 0.9 0 1 1 2.9

p′4 0 0 0.6 1 1.6

p′5 1 0 1 0.9 2.9

p′6 0 0.1 0.9 0.5 1.5

p′7 0.1 0 0.7 1 1.8

Here the choice value Cl = ∑n
j=1(p∑n

i=1 ρi
λ(ej)(ul)) + ∑n

j=1(
p∑n

i=1 ρi
λ
(ej)(ul)), ul ∈ U

with respect to aftersets and C
′
l = ∑n

j=1(
γ∑n

i=1 ρi p
(ej)(vl)) + ∑n

j=1(
γ∑n

i=1 ρi
p
(ej)(vl)), vl ∈ V

with respect to foresets.
From Table 1 it is clear that the maximum choice-value Ck = 2.7 = C5 = C8 is scored by

the players p5 and p8, and the decision is in the favor of selecting the players p5 or p8. Moreover,
player p6 is ignored. Hence franchise X will choose any one of the players p5 and p8 from the
platinum category with respect to the aftersets. Similarly, from Table 2, the maximum choice-value
C
′
k = 2 = C

′
3 = C

′
5 scored by the players p′3, p′5, and the decision is in the favor of selecting any one

of the players p′3, p′5. Moreover, player p′6 is ignored. Hence franchise X will choose any one of the
players p′3 or p′5 from the diamond category with respect to the foresets.

7. Conclusions

This article studies the pessimistic multigranulation roughness of a fuzzy set based
on SBrs over two universes. Initially, we defined the pessimistic roughness of a fuzzy set
with respect to the aftersets and foresets of two soft binary relations and approximate a
fuzzy set λ ∈ F(V) in universe U, and a fuzzy set γ ∈ F(U) in universe V, by using the
aftersets and foresets of binary relations from which we got two fuzzy soft sets over U and
over V, with respect to the aftersets and foresets. We also investigate some fundamental
properties of pessimistic multigranulation roughness of a fuzzy set. Then we generalized
these definitions to the pessimistic multigranulation roughness of a fuzzy set based on a
finite number of soft binary relations. In addition, we define the accuracy measures and
roughness measures for this proposed pessimistic multigranulation roughness. Moreover,
we presented two algorithms in decision-making with respect to the afterset and foresets.
We also give an example to apply the above algorithm. The main advantage of this approach
over other existing approaches is that we can approximate a fuzzy set of a universe in
some other universe and we are able to take decision on the basis of each parameter.
Future studies will focus on the practical applications of the proposed method in solving
a wider range of selection problems, such as disease symptoms and medications used in
disease diagnostics.
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