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Abstract: This paper describes, based on both numerical and experimental bases, the evolution of
chaotic and, in some cases, hyperchaotic attractors within mathematical models of two two-port
analog functional blocks commonly used inside radio-frequency systems. The first investigated
electronic circuit is known as the cascoded class C amplifier and the second network represents a
resonant amplifier with Darlington’s active part. For the analysis of each mentioned block, funda-
mental configurations that contain coupled generalized bipolar transistors are considered; without
driving force or interactions with other lumped circuits. The existence of the structurally stable
strange attractors is proved via the high-resolution composition plots of the Lyapunov exponents,
numerical sensitivity analysis and captured oscilloscope screenshots.

Keywords: auto-oscillations; cascoded amplifier; Darlington pair; chaotic circuit; chaotic oscillator;
hyper chaos; resonant amplifier; self-excited attractor; strange attractor

1. Introduction

A unique nonlinear phenomenon currently denoted as chaos and hyper chaos has
been intensively studied in the lumped electronic circuits for nearly four decades. The
motivation of such research is to explain the complex movement of dynamical systems,
where extreme sensitivity of system solutions to tiny changes and/or uncertainties of
the initial conditions cooperates with some folding mechanism. Therefore, the vector
field needs to be arranged such that there are subspaces where nearby trajectories are
separated and regions where these are folded back, resulting in a bounded dense attractor.
During this research, chaos turned from preliminary theories into mature knowledge with
many successful contributions and problems solved. Let us shorten the extensive list
of publications oriented to chaos in the analog circuits and show only a small, but very
interesting, number of examples.

The oldest and, at the same time probably one of the simplest, chaotic oscillators is
based on connection between the parallel LC resonant tank, timing network and nonlinear
active resistor. This two-terminal element can be considered with either piecewise linear [1]
or low-order polynomials, usually cubic [2,3] ampere-voltage characteristics. After the
discovery of the so-called Chua’s oscillator, many papers were devoted to the analysis of
this circuit. Some researchers were focused on providing a rigorous proof of the existence
of the chaotic solution [4], some authors were fascinated by the rich gallery of the strange
attractors that can be generated by such simple circuits [5]. Formation of the typical chaotic
attractors can be explained by showing geometrical aspects of the vector field [6], analysis
of eigenspaces associated with equilibrium points [7], revealing various hidden attractors
and demonstrate associated methodology [8], and showing topological entropy [9]. In
past years, Chua’s circuit received significant attention from the application point of view.
For example, a bidirectional secure communication system is described in Reference [10].
Spread spectrum communication via chaos modulation is explained in a comprehensive
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study [11]. None of the other chaotic circuits attract such massive attention as Chua’s
oscillator does.

The genesis of Chua’s oscillator began in the 1980s with the desire to develop a ro-
bust generator of the double-scroll chaotic attractor. Stretching of a state space volume
mentioned above is achieved by the unstable fixed points while the folding mechanism is
covered by suitable flow transitions between individual regions of the state space (for a
piecewise linear case). However, chaos was recognized as the natural behavior of conven-
tional analog building blocks dedicated for continuous-time signal processing. For example,
chaotic dynamics within a second-order phase locked loop operating as a frequency modu-
lated demodulator that has realistic parameters is demonstrated in study [12]. The presence
of dense strange attractors in a DC-DC buck converter driven by a constant amplitude
pulse width modulation signal is the topic of paper [13]. During intensive research on many
reputable workplaces, it turns out that chaotic waveforms can be revealed in the global
dynamics of almost all power electronic systems. For a comprehensive review focused
on this topic, paper [14] can be recommended to interested readers. Robust chaos can be
observed within conventional analog building blocks primarily dedicated for a genera-
tion of harmonic waveforms as well as relaxation generators. For example, chaos was
reported inside the Colpitts oscillator [15], Hartley topology [16], and Wien bridge-based
oscillator [17], the structure having only passive RC feedback [18], and other typical config-
urations of oscillators. It is somehow logical since the limit cycle is a predecessor of almost
all strange attractors. Of course, the evolution of chaos is successfully investigated in a
large variety of atypical electronic systems, including those having the fractional order (FO)
circuit elements, mem-elements, or the combination of both [19]. Quite recently, spiral-type
chaos was reported from a static multi-state memory cell; details can be found in work [20].
Driven dynamical systems could be also a subject of chaotic dynamics, as is proved for
frequency filters in paper [21].

Chaos and hyper chaos can be effectively distinguished from regular, geometrically
much simpler forms of dynamic motion by adopting a suitable flow quantifier. In [22]
the author suggests a chaos localization method by considering numerical values of LE
established from data sequences obtained during simulation and/or measurement of
the Colpitts oscillator. However, the used principle is described very briefly without
routine implementation details and threshold specification. The same author proposed an
approach for identifying deterministic chaos using the return maps. Again, the topology
of the Colpitts oscillator has been adopted, for more details, the short work [23] can be
addressed. Reference [24] clearly belongs to the inspirational one, since the authors use a
cut-and-try heuristic method to find many original chaotic networks containing only two
bipolar transistors. Although still using a stochastic-inspired optimization routine, a much
more sophisticated searching-for-chaos algorithm can be found in [25]. The authors use
two-step calculation of the objective function; first step check basic requirements for chaos
evolution expressed in terms of the fixed points and numerical eigenvalues; second step
covers estimation of Kaplan–Yorke dimension (KYD) of the strange attractors generated for
the remaining individuals in the population. As an optimization tool, the authors propose a
combination of differential evolution and particle swarm optimization. The topology of the
strange attractor belongs to key features for finding optimal values of parameters leading
to the robust chaotic behavior, as demonstrated in paper [26]. To this end, it should be
noted that dozens of other lumped analog circuits exhibit robust chaotic and hyperchaotic
motion, many of them with several different sets of the internal parameters. Moreover,
some of these sets can be rather close to the common operation in standard application.

This paper can be roughly considered a continuation of three recently published papers
providing its significant extension and new results. In work [27], a circuit element marked as
the generalized bipolar transistor (GBT) was defined as the two-port device described by a
2× 2 admittance matrix with forward trans-conductance given by a third order polynomial
function. Input admittance was considered as a free parameter while output admittance is
fixed to zero. Thus, GBT is biased to work as a current source. GBT has been considered
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as the only active element in the negative resistance oscillator based on the lambda diode
in paper [28]. Using a nature-inspired stochastic optimization technique, three different
sets of internal system parameters leading to topologically different strange attractors were
discovered, and the robustness of generated strange attractors was numerically analyzed.
A two-stage resonant amplifier having a pair of similarly biased GBT was addressed in
paper [29]. In this case, a numerical search algorithm reveals several chaotic attractors and
parameter regions with associated strong hyperchaotic behavior.

This paper is organized as follows. The next section is focused on the derivation
process toward the mathematical models of two conventional analog autonomous signal
processing blocks: the first one represents a cascoded interconnection of bipolar transistors
with the parallel resonant tank considered as a load, and the second circuit is the resonant
amplifier with Darlington-type formation of bipolar transistors. Initial mathematical
models are subsequently simplified by considering GBT mentioned above, together with
the reduction of internal system parameters which is needed to successfully start the
chaos localization routine. The third section provides a thorough numerical investigation
of the analyzed dynamical system using standard tools such as high-resolution multi-
dimensional plots of LE, bifurcation diagrams, sensitivity analysis, energy distribution,
basins of attraction, entropy, and so forth. It is shown that the suitable coupling of two
GBT can result in a very complex motion having all fingerprints typical of chaotic behavior:
positive largest LE, sensitive dependance of system solution to tiny changes of initial
conditions, dense strange attractors, significant entropy of generated chaotic signals and
a very low degree of future time predictability. In all cases, smooth polynomial vector
fields are addressed. The fourth part of this paper is focused on the transparent, easy-to-
follow and reproducible design of a fully analog chaotic oscillator with off-the-shelf circuit
elements and dynamics that are flow-equivalent to previously addressed mathematical
models. Of course, computer-aided simulation results are supported by true experimental
verification, that is, gallery of the oscilloscope screenshots is provided to prove the “long-
time” structural stability of observed strange attractors. Undoubtedly, due to the chosen
time constants and momentum of the human eye, the captured oscilloscope screenshots
cannot be long transients or numerical artifacts. Finally, concluding remarks and future
possible research topics are provided.

2. Mathematical Models

In this section, we will consider very fundamental network topologies of two differ-
ent analog functional blocks that are commonly used in continuous-time radiofrequency
systems. The so-called cascoded resonant amplifier is the first interesting case because the
cascoding technique is used for the unilaterization of the transistor stage, that is for the elim-
ination of the unwanted feedback. The second circuit to be investigated is the conventional
Darlington formation of two bipolar transistors if loaded by the parallel resonant tank.
In practice, Darlington’s topology is usually used to significantly boost the amplification
factor of the composite transistor since final current transfer ratio β is a product of two
contributions β1·β2 of the respective transistors. Both circuits will be considered as the
isolated systems, that is, the driving force will be iin(t) = 0. The trans-conductance of first
and second GBT can be approximated by the cubic polynomial function without offset and
quadratic term (odd-symmetry distortion), that is, by the form:

y21(v) = a·v3 + b·v ,
=
y21(v) =

=
a ·v3 +

=
b ·v , (1)

where a < 0, b > 0,
=
a < 0,

=
b > 0 are real-valued parameters defining the saturation-type

shape of a forward trans-conductance of individual GBT.

2.1. Cascoded Class C Amplifier

For starters, let us assume the principal schematic of the cascoded resonant amplifier
provided in Figure 1a. The primary task of the cascoding (local feedback) transistor stage
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is to minimize its reverse transfer, which is commonly marked as the unilaterization of
two-port. However, in further text, two GBT instead of the conventional bipolar transistors
will be considered. As mentioned before, GBT can be modelled using a two-port 2 × 2
admittance matrix where both input admittance y11 and backward trans-conductance y12
are positive real constants, that is, value independent on the amplitude of the processed
signal. Forward trans-conductance y21 is a scalar nonlinear function allowing the evolution
of complex dynamics. The initial set of the first-order ordinary differential equations that
describe the cascoded resonant amplifier (see Figure 1b) where both bipolar transistors are
modelled by full admittance matrix can be expressed as

Cbe
d
dt v1 = −y11·v1 − y12·v2 + iin(t) ,

=
Cbe

d
dt v2 = −y21(v1)−

(
y22 +

=
y11 +

=
y12 +

=
y22

)
·v2 +

(
=
y12 +

=
y22

)
·v3 −

=
y21(v2) ,

C d
dt v3 =

=
y22·v2 −

=
y22·v3 +

=
y21(v2)− iL , L d

dt iL = v3 ,

(2)

where a state vector is x = (v1, v2, v3, iL)T. Single and double lines placed above individual
symbols indicate parameters associated with first and second bipolar transistors respec-
tively. Obviously, all independent node voltages are oriented towards zero, that is, ground
potential. For our autonomous situation and GBT mentioned above, this mathematical
model simplifies into the dynamical system that will be addressed in this paper, namely:

d
dt v1 = −y11·v1 − y12·v2 , d

dt v2 = y21(v1)−
(
=
y11 +

=
y12

)
·v2 +

=
y12·v3 −

=
y21(v2) ,

d
dt v3 =

=
y21(v2)− iL , d

dt iL = v3 .
(3)

Figure 1. Simplified schematic of analyzed networks: (a) concept of driven cascaded resonant stage
with non-ideal generalized bipolar transistors, (b) isolated circuit dedicated for calculations with
equivalent models of generalized transistors.

Note that the parasitic base-emitter capacitances of both GBT are considered significant,
working accumulation elements. For the upcoming analysis, the normalized values of all
accumulation elements were chosen as unity. Equilibrium structures are all real solutions
of nonlinear equation dx/dt = 0. This calculation can be carried out easily, and we obtain
either single or three solutions:

x1
eq =


0
0
0
0

, x2,3
eq = ±


− y12

y11
·γ

γ
0

=
a ·γ3 +

=
b ·γ

 , (4)
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depending on the signum of square root argument inside auxiliary variable:

γ = y11·

√√√√√=
b ·y11 − b·y12 + y11·

(
=
y11 +

=
y12

)
a·y3

12 −
=
a ·y3

11

. (5)

For upcoming search-for-chaos procedure, only characteristic polynomial associated
with fixed point located at origin should be evaluated symbolically,

det
[
λ·E− J

(
x1

eq

)]
= λ4 +

(
y11 +

=
y11 +

=
y12 +

=
b
)
·λ3

+

[
y11·

(
=
y11 +

=
y12 +

=
b
)
− y12·b−

=
y12·

=
b + 1

]
·λ2

+

[
=
b ·
(

1− y11·
=
y12

)
+ y11 +

=
y11 +

=
y12

]
·λ + y11·

(
=
y11 +

=
y12 +

=
b
)
− y12·b = 0 ,

(6)

where E represents a square unity matrix and linearization matrix J
(

x1
eq

)
is calculated

near origin. A deeper analysis of polynomial (6) will reveal that a non-zero backward
trans-conductance of GBT are mandatory since y12 =

=
y12 = 0 S leads to the eigenvalues

λ1 = −y11 , λ2 = −
(
=
y11 +

=
b
)

, λ3,4 = ±j , (7)

and gives rise to stable and center manifolds associated with the equilibrium point at origin.
Obviously, dynamical system (3) can be easily modified for a non-resonant load of the

cascoded amplifier. This is close to the situation where cascoded building blocks interact
with a power amplifier that forms a final stage. Doing so, the number of state variables is
reduced by one such that we are experiencing a third-order autonomous dynamical system
of the form:

d
dt v1 = −y11·v1 − y12·v2 ,

d
dt v2 = −y21(v1)−

(
=
y11 +

=
y12

)
·v2 +

=
y12·v3 −

=
y21(v2) , d

dt v3 =
=
y21(v2)− v3

R ,
(8)

where R represents a normalized value of the load resistor. In this case, y12 > 0 S,
=
y12 > 0 S

are essential for a self-excited attractor driven by the unstable fixed point located at the ori-
gin. For zero backward trans-conductance, the origin becomes a stable node characterized
by the eigenvalues:

λ1 = −y11 , λ2 = −
(
=
y11 +

=
b
)

, λ3 = − 1
R

. (9)

Note that the existence of the stable equilibria at origin does not prevent the analyzed
dynamical system from behaving chaotically. This proposition stands for fourth order and
third order systems as well. Close neighborhoods of origin need not be part of the basin of
attraction for strange attractors.

2.2. Resonant Amplifier with Darlington’s Subcircuit

Assume a principal schematic of a resonant amplifier based on well-known Darlington
interconnection of two GBT (Figure 2a) and equivalent autonomous AC circuit provided in
Figure 2b. Straightforward analysis yields the following describing set of the first order
ordinary differential equations:
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Cbe
d
dt v1 = −y11·v1 + (y11 + y12)·v2 − y12·v3 + iin(t),

=
Cbe

d
dt v2 = y11·v1 −

(
y11 + y12 + y22 +

=
y11

)
·v2 +

(
y12 + y22 −

=
y12

)
·v3 − y21(v1 − v2) ,

C d
dt v3 = y22·v2 −

(
y22 +

=
y22

)
·v3 − y21(v1 − v2)−

=
y21(v2)− iL ,L d

dt iL = v3 .

(10)

Figure 2. Simplified schematic of analyzed networks: (a) concept of driven resonant Darlington’s
stage with non-ideal GBT (non-integrated, discrete form of implementation), (b) isolated circuit with
equivalent models of generalized transistors.

Because of uniform circuit denotation, the state vector is again x = (v1, v2, v3, iL)T.
Note that the parasitic base-emitter capacitances are large and contribute to the main time
domain process. Now let us consider the autonomous case of this circuit and two-port
admittance parameters associated with both GBT. The starting set of ordinary differential
Equation (10) transforms into:

d
dt v1 = −y11·v1 + (y11 + y12)·v2 − y12·v3 ,

d
dt v2 = y11·v1 −

(
y11 + y12 +

=
y11

)
·v2 +

(
y12 −

=
y12

)
·v3 − y21(v1 − v2) ,

d
dt v3 = y21(v2 − v1)−

=
y21(v2)− iL , d

dt iL = v3 .

(11)

Note that all accumulation elements, including parasitic ones, are considered as
working and their normalized values equal unity. In practice, this situation can be actual

in high-frequency applications or if Cbe ,
=
Cbe are utilized to set-up the biasing point. This

dynamical system possesses one or three fixed points, that is, solutions of dx/dt = 0, namely:

x1
eq =


0
0
0
0

, x2,3
eq = ±



(
1 + y12

y11

)
·γ

γ
0

−
(

a +
=
a
)
·
(

y12
y11
·γ
)3
−
(

b +
=
b
)
·
(

y12
y11
·γ
)

 , (12)

where auxiliary variable

γ =
y11

y3
12·a
·
√
−a·y3

12·
[
y12·

(
y2

11 + b
)
− y11·

·
y11

]
. (13)

Local vector field geometry near equilibrium located at origin can be determined
by the eigenvalues, that is, the roots of characteristic polynomials. Therefore, for future
investigations involving system stability near zero, this fourth order polynomial should be
evaluated in symbolic form:
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det
[
λ·E− J

(
x1

eq

)]
= λ4 +

(
2·y11 +

=
y11 + b

)
·λ3 +

[
1 + y11·

=
y11 +

=
y12

(
b−

=
b
)
− y12

(
2·b + y11

)]
·λ2+{

2·y11 +
=
y11 + b·

[
1− y12·

(
=
b +

=
y11 +

=
y12

)]
−

=
b ·y11·

(
y12 +

=
y12

)}
·λ + y11·

(
=
y11 − y12

)
− y12·b = 0 ,

(14)

where E and J
(

x1
eq

)
represent the unity matrix and linearization of the flow respectively.

For this moment, assume that the backward trans-conductances of both GBT are zero,
y12 =

=
y12 = 0 S. In this specific case, eigenvalues associated with fixed point x1

eq are

λ1,2 = −y11 −
=
y11
2
− b

2
±

√
4·y11·b + b

2
+ 2·b·=y11 + 4·y2

11 +
=
y

2
11

2
, λ2,3 = ±j . (15)

By definition, parameters y11,
=
y11, b,

=
b are greater than zero. Therefore, origin is the

non-repelling fixed point and cannot generate self-excited complex attractors.
Now, let us suppose the non-resonant amplifier with a Darlington-type cell without

an input signal. It means that the resistor instead of the inductor is connected in parallel
with the output capacitor. Therefore, a new system has only three degrees of freedom and
is described by the following set of ordinary differential equations:

d
dt v1 = −y11·v1 + (y11 + y12)·v2 − y12·v3 ,

d
dt v2 = y11·v1 −

(
y11 +

=
y11

)
·v2 −

=
y12·v3 + y21(v1 − v2) , d

dt v3 = y21(v2 − v1)−
=
y21(v2)− v3

R ,
(16)

where R is a normalized value of load resistor. For this moment only, assume that backward
trans-conductances of both GBT are zero, that is, y12 =

=
y12 = 0 S. In this specific case,

the eigenvalues associated with the fixed point x1
eq are given by formula (15) and λ3 = 0.

Because of non-zero positive values of y11,
=
y11, b,

=
b , the origin is the non-repelling fixed

point. Therefore, the presence of backward trans-conductances of both GBT are essential
for the evolution of chaos and hyperchaos excited by the unstable equilibrium point.
However, it is still possible that the analyzed dynamical system exhibits multi-stability
and/or generates one or several hidden strange attractors, that is, attractors not connected
to the unstable fixed points.

3. Numerical Analysis

In the previous section, mathematical models of analyzed circuits are defined and
treated symbolically, that is, without the knowledge of numerical values of internal param-
eters and initial conditions that leads to the robust chaotic and hyperchaotic oscillations.
Both analog functional blocks defined above undergo the searching for chaos algorithm
based on a two-step nature-inspired optimization technique. In the initial form, up to
fourteen internal system parameters form hyperspace dedicated for optimization, namely

the following set: Cbe,
=
Cbe, C, L, y11, y12 , y22 , a, b,

=
y11,

=
y12 ,

=
y22 ,

=
a ,

=
b . Clearly, this

represents too many possible combinations for a full-grid calculation as well as for the
heuristic approach. Let us find how to reduce this dimension and shrink mentioned hyper-
space, preferably by introducing some physically reasonable presumptions for numerical
values of circuit parameters. However, reduction needs to be chosen about maintaining the
possibility of robust chaos and/or hyperchaos evolution.

Of course, all parameters are positive real values. Firstly, since accumulation elements
represent the frequency scaling factors, these can be removed from investigated parameters
and assumed to be unity. As will be proved later, normalized inductance L = 1 H and the

equivalency of normalized capacitances Cbe =
=
Cbe = 1F still allow us to find robust chaotic

behavior within this autonomous fourth order circuit. To further reduce this dimension,
both GBT provides zero output admittances, that is, y22 =

=
y22 = 0 S. At this moment,

the hyperspace that undergoes the searching algorithm becomes eight dimensional. To
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speed-up the searching procedure, the mentioned hyperspace should be further reduced by
excluding areas with an inappropriate combination of numerical values of circuit parame-
ters. To be more specific, the sought strange attractors belong to the self-excited, excited
by unstable fixed point located at the state space origin. Therefore, the unstable nature of
these equilibria (with either one- or two-dimensional unstable manifold) should always
be preserved. The latter case, that is the existence of the saddle-focus local geometry of
vector field near origin, is tested by the calculation of roots of characteristic polynomials
during each iteration step of stochastic optimization. Inappropriate configuration is fully
discarded, and the dynamic behavior of the corresponding individual is not quantified.
Note that the origin is the equilibrium point for all possible combinations of circuit parame-
ters. Here is the right place to emphasize that these restrictions are not introduced with
respect to the physical meaning of the analyzed circuit. The biasing of individual transistors
is hypothetical and biasing circuitry is not part of the analyzed electronic system. Finally,
the numerical values of the sought system parameters are encoded into the population
individual up to two decimal places (without sign definition). Speaking in terms of the
optimization routine, subset of the crummy individuals is attracted toward each positive
value of the largest LE that occurs within the actual population. Independent numeric
evaluation of LE for arbitrary system parameters leaves the place for the parallelization of
population calculations. Around local maxima (LM), another population with movement
restricted to the vicinity of LM is generated, with a searching procedure that follows the
rules of genetics.

Of course, many alternative searching-for-chaos methods can be found in the available
literature. Curious readers are recommended to perform a deep internet search. Despite the
good results of our method described above, other optimization approaches, even different
dynamical flow quantifiers (objective function), can lead to success.

Initial conditions do not form the edges of optimization hyperspace since these are
randomly generated in the neighborhood of a state space origin. It is because only the
so-called self-excited strange attractors are addressed.

Numerical analysis provided in the upcoming subsections is based on fourth order
Runge–Kutta integration method with fixed step size. The normalized numerical values
discovered for two GBT-based cascoded as well as Darligton-based resonant amplifier
are provided. Each system is subsequently analyzed with respect to LE, KYD, energy
distribution, and sensitivity.

3.1. Cascoded Class C Amplifier

The Matlab routine for chaos localization mentioned above and supplemented by
a CPU-based multi-core parallel processing recognized the robust chaotic movement of
cascoded resonant amplifier for following set of free parameters:

y11 = 4 S, y12 = 6.6 S, a = −5.1 A3·V−1, b = 9.02 S ,
=
y11 = 4 S,

=
y12 = 1.5 S,

=
a = −4 A3·V−1,

=
b = 3.76 S. (17)

During the search algorithm, two topologically distinct strange attractors located on a

plane fragment b vs.
=
b were discovered. By keeping the remaining parameters the same as

those provided in group (17), the linear coefficients of the forward trans-conductance can be

changed to combination b = 4.75 S,
=
b = 0.98 S, for the second type and b = 0.6 S,

·
b = 4.31 S

for the last case discovered, the third type of a chaotic attractor, respectively. In general,
dynamical system (3) turns into simple set of differential equations:

d
dt v1 = −4·v1 − 6.6·v2 ,

d
dt v2 = −9.02 <

4.75
0.6
·v1 − 9.76 <

6.48
9.81

·v2 + 1.5·v3 + 5.1·v3
1 + 4·v3

2 ,

d
dt v3 = 3.76 <

0.98
4.31

·v2 − 4·v3
2 − iL , d

dt iL = v3 ,

(18)
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where symbol < introduces alternative numerical values for the second and third types of
the strange state attractor. In fact, this deterministic dynamical system represents a new
chaotic system with an interesting shape of strange attractor.

Figure 3 provides a numerical analysis of dynamical system (18). Three typical strange
attractors were numerically integrated using Mathcad 15 and uniform initial conditions
x0 = (0.1, 0, 0, 0)T, final time 1000 s and time step 10 ms. This figure demonstrates the
sensitivity of the system solution to the tiny changes of the initial conditions. Group of 104

uniformly distributed initial states with deviation 0.01 are spread around the origin. Then,
the final states after 1 s (green), 10 s (blue), and 100 s (red) of elapsed time are stored and
visualized. For each evolution, the time step is set to 10 ms. For a system having a first set
of parameters (Figure 3a–c), the initial conditions x0 = (1,−0.6,−0.5,−2)T were adopted.
For the second set of parameters (Figure 3f–h) the initial conditions are x0 = (0.1, 0, 0, 0)T.
Finally, for the last subset of internal system parameters (Figure 3j–l) initial conditions were
chosen as x0 = (1.2,−0.7,−9,−12)T.

Figure 3. Cascoded resonant amplifier considered as fourth order dynamical system, parameter

case b = 9.02 S and
=
b = 3.76 S, generated strange attractor projected in: (a) subspace v1-v2-v3,
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(b) subspace v2-v3-iL, and (c) subspace v1-iL-v3. Sensitivity analysis: (d) group of 104 initial conditions
with uniform distribution, (e) evolution of states for different time scales, see text for details. System

case b = 4.75 S and
=
b = 0.98 S, generated the strange attractor projected in: (f) subspace v1-v2-v3,

(g) subspace v2-v3-iL, and (h) subspace v1-iL-v3, associated sensitivity analysis: (i) evolution of states

for different time scales. System case b = 0.6 S and
=
b = 4.31 S, generated strange attractor projected in:

(j) subspace v1-v2-v3, (k) subspace v2-v3-iL, and (l) subspace v1-iL-v3, associated sensitivity analysis:
(m) evolution of states for different time scales.

Figure 4 provides energy distribution over the state space of the investigated dynami-
cal system and all three discovered sets of the internal coefficients. Note that all available
plane projections are chosen for visualization. Dynamical energy is defined as:

Ed(x0) =

√
(φx − x0)

2 +
(
φy − y0

)2
+ (φz − z0)

2 + (φw − w0)
2 , Es(x0) = |φ(x0)| − |x0| , (19)

where Es(x0) is static energy loss (curved black lines in Figure 4), symbol | . | denotes
the Euclidean norm, x0 = (x0, y0, z0, w0)

T is the starting point in state space, φ(x0) is the
endpoint of a state vector after fundamental time evolution (10 ms, chosen time step 10 µs).
In addition to this, divergency of vector field associated with fourth order F4 and third
order F3 mathematical models can be calculated as:

∇·F4(x0) =
∂ f1

∂v1
+

∂ f2

∂v2
+

∂ f3

∂v3
+

∂ f4

∂iL
,∇·F3(x0) =

∂ f1

∂v1
+

∂ f2

∂v2
+

∂ f3

∂v3
, (20)

where fk is the right-hand side of k-th first order differential equation. For negative val-
ues of divergence, the vector field is losing its strength in the close neighborhood of
the investigated point. Within Figure 4, quantity Ed(x0) is visualized by using rainbow
scaled contour plots. The red color means very large energy and this energy decreases
through yellow and green down to the very low dynamic energy represented by blue
color. Note that this figure also contains all plane projections of evolved typical chaotic
attractors. Zoomed areas shown in the individual plots in Figure 4a,d,e are focused on
the central volume cube v1 ∈ (−0.5, 0.5) V, v2 ∈ (−0.5, 0.5) V, v3 ∈ (−0.5, 0.5) V,
and iL ∈ (−0.5, 0.5) A. Zoomed areas visible inside Figure 4g,i,k are focused on the
volume cube given by v1 ∈ (−0.1, 0.1) V, v2 ∈ (−0.1, 0.1) V, v3 ∈ (−0.1, 0.1) V, and
iL ∈ (−0.1, 0.1) A.

Figure 5 illustrates basins of attraction calculated for the fourth order dynamical
system (18). A numerical investigation was performed using uniform steps of the initial
conditions 10−3 (in volts and amperes respectively), final time 103 s and time step 10 ms.
Individual plots in Figure 5a–f have edges given by v1 ∈ (−5, 5) V, v2 ∈ (−5, 5) V,
v3 ∈ (−5, 5) V, and iL ∈ (−5, 5) A. Obviously, only three types of attractors were detected,
namely fixed point (marked by yellow in plots), chaotic attractor (green) and unbounded
trajectory (blue). However, higher resolution grid of the initial conditions can reveal other
types ofω-limit sets.

Figure 6 can be considered as the specification of areas with chaotic behavior associated
with the analyzed dynamical system. In reality, the mentioned parameter space is eight-
dimensional. This figure shows only a two-dimensional fragment of this hyperspace
where the largest LE is calculated. Optimization, that is, the search-for-chaos algorithm
contains an area zooming feature as it is visualized by means of individual plots. Up to
five “chaotic areas” were localized. Note that “chaotic regions” are surrounded by the limit

cycle solution. For specific values of parameters b and
=
b movement tends to the infinity, as

depicted by the missing color in the first plot. Based on the “most zoomed” plot, dynamical
system (18) exhibits a dense strange attractor with KYD approximately 2.022, 2.015, and
2.029 for individual numerically integrated state trajectories in Figure 3.
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Figure 4. Cascoded resonant amplifier considered as a fourth order autonomous dynamical system.
Kinetic energy distribution over the state space visualized in all available plane projections and

for: (a–f) parameter set b = 9.02 S,
=
b = 3.76 S, (g–l) b = 4.75 S,

=
b = 0.98 S, and (m–q) b = 0.6 S,

=
b = 4.31 S. In each plot, only two state variables are swept while remaining state variables are kept
zero. See text for the better understanding of the individual plots.

Figure 4. Cascoded resonant amplifier considered as a fourth order autonomous dynamical system.
Kinetic energy distribution over the state space visualized in all available plane projections and

for: (a–f) parameter set b = 9.02 S,
=
b = 3.76 S, (g–l) b = 4.75 S,

=
b = 0.98 S, and (m–q) b = 0.6 S,

=
b = 4.31 S. In each plot, only two state variables are swept while remaining state variables are kept
zero. See text for the better understanding of the individual plots.
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Figure 5. Cascoded resonant amplifier assumed as fourth order dynamical system. Colored basins
of attraction, the plane fragments are defined as: (a) v1 vs. v2, (b) v1 vs. v3, (c) v1 vs. iL, (d) v2

vs. v3, (e) v2 vs. iL, and (f) v3 vs. iL. The rest of plots represent zoomed areas focused on the
interesting boundaries between different system solutions. Magnified areas have following ranges
of the state variables: (g) v1 ∈ (−3, −2) V, v2 ∈ (2, 3) V, (h) v1 ∈ (−2.35, −2.32) V, v2 ∈ (2.34, 2.37) V,
(i) v1 ∈ (−2343, −2340) mV, v2 ∈ (2354, 2357) mV, (j) v1 ∈ (0.8, 2) V, v3 ∈ (2, 3.2) V.



Mathematics 2022, 10, 532 13 of 25Mathematics 2022, 10, 532 13 of 25

Figure 6. Cascoded resonant amplifier, fourth order system. Rainbow-scaled surface-contour
plot of the largest LE, parameter step varies such that each plot contains equally spaced grid of
101 × 101 = 10,201 points. Zooming procedure: (a)-(b)-(c)-(d), (a)-(e)-(f)-(g), (a)-(h)-(m), (a)-(h)-(i)-(j).

Let us remember the important question raised in the previous section: can chaos be
detected in the non-resonant case of the cascoded amplifier. This dilemma can be positively
answered using the numerical search algorithm addressed within this manuscript. For
dynamical system (8), optimal values for first GBT are:

y11 = 0.78 S, y12 = 0.85 S, a = −1.53 A3·V−1, b = 4.4 S ,
=
y11 = 0.2 S,

=
y12 = 1.5 S,

=
a = −0.22 A3·V−1,

=
b = 1.55 S. (21)

A typical strange attractor generated by mathematical model (8) having parameter
set (21) is visualized in Figure 7. The numerical integration process was performed for a
final time of 1000 s, time step 10 ms, and initial conditions x0 = (2.1,−3,−8)T. For basins
provided in Figure 7d,e, ranges of the state variables are v1 ∈ (−5, 5) V and v2 ∈ (−5, 5)
V, the horizontal plane is defined by v3 = −8 V (Figure 7d) and v3 = 8 V (Figure 7e). The
generated strange attractor belongs to the class of hidden attractors and was revealed
accidentally. Due to the vector field symmetry, there are two mirrored chaotic attractors
with the same geometrical shape, thence characterized by the same flow quantifiers. The
calculated KYD is about 2.054. Neighborhood trajectories diverge very slowly, and the
basin of attraction is quite narrow. Figure 7f shows positions of mirrored attractors in the
state space, rising for sets of the initial conditions x0 = ±(2.1,−3,−8)T, namely in v2 vs. v1

Figure 6. Cascoded resonant amplifier, fourth order system. Rainbow-scaled surface-contour
plot of the largest LE, parameter step varies such that each plot contains equally spaced grid of
101 × 101 = 10,201 points. Zooming procedure: (a)-(b)-(c)-(d), (a)-(e)-(f)-(g), (a)-(h)-(m), (a)-(h)-(i)-(j).

Let us remember the important question raised in the previous section: can chaos be
detected in the non-resonant case of the cascoded amplifier. This dilemma can be positively
answered using the numerical search algorithm addressed within this manuscript. For
dynamical system (8), optimal values for first GBT are:

y11 = 0.78 S, y12 = 0.85 S, a = −1.53 A3·V−1, b = 4.4 S ,
=
y11 = 0.2 S,

=
y12 = 1.5 S,

=
a = −0.22 A3·V−1,

=
b = 1.55 S. (21)

A typical strange attractor generated by mathematical model (8) having parameter
set (21) is visualized in Figure 7. The numerical integration process was performed for a
final time of 1000 s, time step 10 ms, and initial conditions x0 = (2.1,−3,−8)T. For basins
provided in Figure 7d,e, ranges of the state variables are v1 ∈ (−5, 5) V and v2 ∈ (−5, 5)
V, the horizontal plane is defined by v3 = −8 V (Figure 7d) and v3 = 8 V (Figure 7e). The
generated strange attractor belongs to the class of hidden attractors and was revealed
accidentally. Due to the vector field symmetry, there are two mirrored chaotic attractors
with the same geometrical shape, thence characterized by the same flow quantifiers. The
calculated KYD is about 2.054. Neighborhood trajectories diverge very slowly, and the
basin of attraction is quite narrow. Figure 7f shows positions of mirrored attractors in the
state space, rising for sets of the initial conditions x0 = ±(2.1,−3,−8)T, namely in v2 vs. v1
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(red, blue) and v3 vs. v1 (green, orange) Monge projection. In this plot, the horizontal range
is v1 ∈ (−3.5, 3.5) V, first vertical axis v2 ∈ (−5, 5) V and second axis v3 ∈ (−20, 20) V.

Figure 7. Cascoded resonant amplifier analyzed as third order dynamical system: (a) turbulent
chaotic attractor evolved for the initial conditions x0 = (2.3, −3, −8)T, (b) mirrored attractor for initial
conditions x0 = (−2.3, 3, 8)T, (c) system sensitivity to changes of initial conditions (see text for details).
Basins of attraction for both mirrored strange attractors: (d,e), unbounded solution is marked by
red color, evolution toward the strange attractor is denoted by blue color. Mutual position between
mirrored attractors: (f). For further details, consult corresponding paragraph in main text.

3.2. Resonant Amplifier with Darlington-Type Subcircuit

Let us assume that backward trans-conductance of the second GBT tends to zero,
=
y12 = 0 S. This fact is in accordance with the available integrated forms of the Darligton
composites. Utilization of processor-based parallel processing applied to a discussed
optimization routine following a set of optimized parameters was revealed:

y11 = 0.23 S, y12 = 15.3 S, a = −1.7 A3·V−1, b = 0 S ,
=
y11 = 0.93 S,

=
y12 = 0 S,

=
a = −4.8 A3·V−1,

=
b = 2 S. (22)

By substitution of numerical values (22) into dynamical system (11), we can obtain
differential equations normalized to both time and impedance, namely:

d
dt v1 = −0.23·v1 + 15.53·v2 − 15.3·v3 , d

dt v2 = 0.23·v1 − 1.16·v2 − 1.7·(v1 − v2)
3 ,

d
dt v3 = −2·v2 − iL + 1.7·(v1 − v2)

3 + 2.4·v3
2 , d

dt iL = v3 .
(23)

This configuration of the internal parameters leads to the maximally chaotic dynamical
system discovered by the numerical algorithm mentioned above. For these concretized
values of admittance parameters of GBT, dynamical system (23) has three unstable fixed
points, the single located at origin characterized by eigenvalues 1.893,−1.338,−0.972 ± j0.6
and the pair of the mirrored unstable fixed points (due to the vector field symmetry) with
local movement determined by eigenvalues 0.272 ± j4.217, −0.85, −0.435.

As already mentioned, an interesting case study associated with analyzed electronic
circuit (16) includes the replacement of inductor with resistive load. The numerical optimiza-
tion approach applied throughout this paper returns following values of GBT parameters
leading to robust chaotic attractor,

y11 =
=
y11 = 1 S,

=
y12 = 0 S, a = −1.7 A3·V−1, b = 0 S ,

=
y12 = 0 S,

=
a = −2 A3·V−1,

=
b = 4.6 S. (24)

Note that additional conditions were adopted for an optimization routine: (a) very
large value of the normalized load resistance; (b) equivalency of input admittances of both
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GBT; (c) forward transconductance shaping values a = 0 and b = 0 were fixed without
seriously affecting local vector field geometry near origin and global behavior of the
analyzed dynamical system. Each restriction simplifies the final circuitry realization of the
chaotic oscillator. In this case, the outer fixed points still exist, as well as equilibrium point
located at origin with local geometry defined by the eigenvalues 2.722,−2.861 ± j1.547, that
is, we are experiencing saddle-focus formation. In the close neighborhood of the outer fixed
points, local dynamical movement is the saddle-focus type again, but the stability index
changes (2→1). Note that the configuration of eigenvalues is like the famous double-scroll
attractor, but the geometrical shape of the evolved chaotic attractor is different. For low
values of load resistance, system dissipation grows, and chaos disappears.

Numerical integration of fourth order autonomous deterministic dynamical system
(23) results into the typical strange attractor depicted in Figure 8a–c. Numerical integration
was performed for the initial conditions x0 = (0.1, 0, 0, 0)T, final time 1000 s and time
step 100 ms. In the frame of the same figure, the sensitivity of the system evolution to the
tiny changes of the initial conditions is demonstrated. Up to 104 initial conditions were
uniformly generated within the hypercube around fixed point x0 = (0, 0, 0, 0)T with mean
deviation 10−3 (Figure 8d). Then, the final states after 1 s (green), 10 s (blue) and 100 s (red)
time evolution are stored and visualized (Figure 8e).

Figure 8. Analysis of isolated resonant amplifier with Darlington-type cell, fourth order dynamical
system: (a) subspace v1-v2-v3, (b) subspace v1-v2-iL, (c) subspace v2-v3-iL, (d) hypercube of randomly
generated sets of the initial conditions, (e) short-time system evolution. See text for clarification of
individual plots.

Figure 9 illustrates distribution of kinetic energy over the state space that provides
the fourth order system with (22) and the third order system with (24). For these plots,
the visualized portion of the state space is limited to a cube area occupied by the gener-
ated strange attractor, namely three voltages v1 ∈ (−550, 550) mV, v2 ∈ (−35, 35) mV,
v3 ∈ (−55, 55) mV, and current iL ∈ (−80, 80) mA with uniform state variable step size
10−2. This figure also contains all Monge projections of the dense strange attractor produced
by dynamical system (16).
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Figure 9. For both Darlington-type composites, calculation of the kinetic energy, the static energy
loss and divergency of vector field visualized in v1-v2 plane (rainbow scaling legend is included).
Fourth order system (11) with value set (22) we obtained: (a) dynamic energy loss for v3 = 0 V and
iL = 0 A, (b) static energy loss for v3 = 0 V and iL = 0 A, (c) divergency for v3 = 0 V and iL = 0 A. For
third order system (16) with values (24) we get: (d) dynamic energy for v3 = 0 V, (e) static energy loss
for v3 = 0 V, (f) vector field divergency for v3 = 0 V. Energies are related to 1 s time instance.

Figure 10 provides brief high-resolution insight into basins of attraction associated
with the analyzed dynamical system. Individual planes are in the close neighborhood of
state space origin. The following state attractors were recognized during these calculations:
fixed point (black color), limit cycle (blue color), chaos (green color), and unbounded
trajectory (red color).

Figure 10. Resonant amplifier with Darlington-type cell, analysis of fourth order system, colored
basins of attraction. See text for clarification of the individual plots.

Figure 11 provides the plane fragments of sixth-dimensional hyperspace of internal
system parameters considering b = 0 S and showing the first two LE (if sorted in de-
scending order). Each plot deals with parameter step 0.01, that is, contains 10,201 points.
Within this space, several regions (circled areas) characterized by the weakly hyperchaotic
behavior, were discovered, having KYD with a maximal value of 3.137.

Figure 9. For both Darlington-type composites, calculation of the kinetic energy, the static energy
loss and divergency of vector field visualized in v1-v2 plane (rainbow scaling legend is included).
Fourth order system (11) with value set (22) we obtained: (a) dynamic energy loss for v3 = 0 V and
iL = 0 A, (b) static energy loss for v3 = 0 V and iL = 0 A, (c) divergency for v3 = 0 V and iL = 0 A. For
third order system (16) with values (24) we get: (d) dynamic energy for v3 = 0 V, (e) static energy loss
for v3 = 0 V, (f) vector field divergency for v3 = 0 V. Energies are related to 1 s time instance.

Figure 10 provides brief high-resolution insight into basins of attraction associated
with the analyzed dynamical system. Individual planes are in the close neighborhood of
state space origin. The following state attractors were recognized during these calculations:
fixed point (black color), limit cycle (blue color), chaos (green color), and unbounded
trajectory (red color).

Figure 10. Resonant amplifier with Darlington-type cell, analysis of fourth order system, colored
basins of attraction. See text for clarification of the individual plots.

Figure 11 provides the plane fragments of sixth-dimensional hyperspace of internal
system parameters considering b = 0 S and showing the first two LE (if sorted in de-
scending order). Each plot deals with parameter step 0.01, that is, contains 10,201 points.
Within this space, several regions (circled areas) characterized by the weakly hyperchaotic
behavior, were discovered, having KYD with a maximal value of 3.137.
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Figure 11. Resonant amplifier with Darlington-type composite, fourth order system considered for
analysis. Rainbow-scaled composition of contour plots of two LE, circled areas combined filled with
orange or red color denote parameter configurations leading to distinguished hyperchaotic motion
(positive value of both first and second LE), unified color scale legend for LLE is included.

Selected results based on the numerical integration process of mathematical model (16)
by using the fourth order Runge–Kutta method having a final time of 5000 s and a fixed step
size of 10 ms are provided in Figure 12. This plot also shows sensitivity analysis in the sense
of Figure 8e. Selected plane fragments associated with calculation of the largest LE within
the hypercube of the internal system parameters are also provided within this plot. KYD
of “the most chaotic” state attractor observed during the considerably limited parameter
space investigated is about 2.199, LE averaged along the trajectory are approximately 0.33,
0, −1.66. The average value of the state variables watched over a long period of time is near
zero. This property makes this system a very good candidate for practical implementation
using the analog computer approach, as demonstrated in the upcoming section.

Figure 12. Resonant amplifier with Darlington-type topology, third order autonomous dynamical
system is considered for analysis. Perspective 3D views (black trajectory) on the typical strange
attractor including individual plane projections (orange color for v1 vs. v2, blue color denotes v1

vs. v3 and green color marks v2 vs. v3) for: (a) y12 = 6 S, (b) y12 = 6.7 S, (c) sensitivity of system
solution to the changes of the initial conditions, (d) group of 104 initial conditions generated by
following the normal distribution, (e) rainbow-scaled contour-surface plot of the largest LE calculated
for parameter range and color legend provided.

At the end of the numerical analysis section, stability issues associated with the Runge–
Kutta method should be mentioned. As pointed out in paper [30], the stability of the
integration method is related to the eigenvalues, that is, the time step should be chosen
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with respect to the abrupt changes of dynamical flow. Throughout the search-for-chaos
algorithm, the time step was chosen to be very small such that the stability is achieved for
any combination of system parameters, that is, for all possible sets of the eigenvalues.

One type of analysis still seems to be missing: the boundedness of the discovered
chaotic attractors. Some interesting papers [31,32] introduce the Lyapunov function to
determine the ultimate bound and the globally exponential attractive set for vector fields
with quadratic nonlinearities. Instead of theoretical analysis, the boundedness of the
particular state attractor was investigated numerically at the start of the calculation of
fitness function. The algorithm used here can be marked as an inside-the-sphere rule and
its function is evident from its name. The sphere radius was chosen to be much larger
than the maximal static energy supposed to be stored by the sought attractor driven by
the equilibrium point at origin. For example, the value of radius r = 50 was chosen for
third-order dynamical systems.

3.3. Fractional-Order Modification of Analyzed GBT-Based Functional Blocks

The recent trend in the analysis of chaotic dynamics is to consider one or several
differential equations in the mathematical description of a dynamical system of non-integer
order. Reasons for this can be seen in the generalization of the investigated problem, and the
desire to find new types of the strange attractors or to derive mathematical models that are
closer to real situations or natural activity [33]. Several methods for the numerical analysis
of FO differential equations have already been published [34]. Few general routines as well
as system-specific procedures are available as Matlab code in online software deposits.

From the viewpoint of analog signal processing circuits, FO two-terminal or two-port
devices can be found especially in feedback loops as smooth controllers [35,36], to perform
arbitrary phase shifting inside generators of the harmonic waveforms, for construction of
special frequency responses of filtering structures, for advanced frequency compensation,
stability-increasing purposes, and many other practical applications. For analog circuit
design engineers, the most important is the answer to the question of how this element
behaves looking from the outside. In the ideal case, the FO device has a constant phase
shift between response and driving force (both quantities can be either voltage or cur-
rent) measured from DC up to infinite frequency. Since the immittance function can be
easily transformed into an equivalent transfer function only FO, two-terminal elements
(sometimes called fractal capacitors) are usually addressed in research works.

The main problem with the design of the FO chaotic oscillator lies in the synthesis of
the broad-band FO capacitor itself. Unlike some others, the authors of [37] have properly
recognized the necessity to approximate the constant phase shift of the FO capacitor over
several frequency decades. To speed up the construction of the FO chaotic oscillator,
paper [38] offers fully passive ladder realizations of FO capacitors for all decimal orders
between zero and one and all multiples of ten degrees; including 1

4 and 3
4 . Numerical

values of resistors and capacitors are calculated such that phase error is less than 1.5◦ in the
frequency range from 10 Hz up to 1 MHz. Any of these FO capacitors can be directly picked
and used instead of the conventional capacitor (either floating or grounded) in upcoming
practical construction and measurement of lumped chaotic oscillators. For curious readers,
review paper [39] and references given therein can be recommended for further study of
problems associated with the design of passive FO circuit elements.

The active realization of 0.9 order FO integrator based on operational trans-conductance
amplifiers is suggested in paper [40]. The authors utilize simple bilinear filters to implement
the final approximation of the FO integrator using the voltage transfer function with two
zeroes and three poles.

Looking from a different circuit design perspective, the linear part of the vector field
of the dynamical system can be implemented using frequency filters. Of course, realization
of the FO system requires the utilization of at least one FO filter of adequate order. This
also applies to FO modifications of dynamical systems (18), (23) and associated FO less-
than-third order cases with non-resonant load. Paper [41] nicely presents realizations of FO
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filters with an easily reconfigurable transfer function thanks to the FPAA development kit.
This approach can significantly speed-up the design process of the final chaotic circuit. Note
that an ideal FO integrator can be considered a special case of FO filter. FPGA realizations of
chaotic systems can also be found in recent papers, for example [42]. These implementations
serve as hardware solvers for given sets of discretized differential equations and form a
bridge between numerical analysis and experimental verification.

4. Experimental Results

Among the other problems associated with the presentation of newly discovered
chaotic systems [43] (via journal paper), the design of a fully analog oscillator having the
flow-equivalent behavior to the investigated mathematical model and its experimental
verification through laboratory measurement belongs to the widely accepted proof that the
investigated dynamical system generates long-time structurally stable strange attractors
of a prescribed geometric shape. Using eye contact, we can ensure that a chaotic circuit
having much shorter time constants (lower by many orders) already settles in the chaotic
steady state.

The process of lumped circuit synthesis based on a mathematical model is a straight-
forward task that has many correct solutions. The cookbook [44] provides us with several
methods for implementing polynomials as well as piecewise linear vector fields using
off-the-shelf active elements as a voltage-mode electronic circuit. For current-mode chaotic
oscillators, readers can be referred to paper [45].

The practical realization of dynamical systems (3) and (8) is provided by means of
Figure 13a,b respectively. The circuit that implements the fourth order system is described
by the following set of differential equations:

d
dt v1 = − 1

C1
·
(

v1
R1

+ v2
R6

)
, d

dt v2 = − 1
C2
·
(

v1
R3

+ v2
R2

+ v3
R11
− K2

R7
v3

1 − K2

R10
v3

2

)
,

d
dt v3 = − 1

C3
·
(

v2
R4
− R8·v4

R9·R13
− K2

R5
v3

2

)
, d

dt v4 = − 1
C4
· v3

R12
,

(25)

where K = 0.1 is an internally trimmed transfer constant associated with four quadrants
analog multiplier AD633. To achieve the maximal simplification of the final circuit, a
fundamental transformation of coordinates v1 → v1 , v2 → v2 ,−v3 → v3 , iL → v4 was
introduced. Doing so, of course there is no qualitative change in system dynamics, as
documented by Mathcad-aided numerical integration. Similarly, as in the previous section,
the build-in fourth order Runge–Kutta method was applied, both on original (orange
trajectory) and transformed (blue curve) strange attractor. Results are shown in Figure 13a
looking from two different 3D perspectives. Both trajectories were numerically integrated
using Mathcad and the build-in fourth order Runge–Kutta method with fixed step size,
considering dimensionless state variables and parameters. The time step was chosen to be
as small as 10 ms and final time 104 s, just to ensure the stability of the integration method.

Note that both circuitry realizations allow all state variables to be easily accessi-
ble/measurable as voltages between some nodes and the ground. By considering numerical
values (17), impedance norm 104 and frequency norm 104, a complete list of the real values
of passive components becomes:

C1 = C2 = C3 = C4 = 10 nF , R1 = 2.5 kΩ , R2 = 1 kΩ , R3 = 1.1 kΩ , R4 = 2.7 kΩ , R5 = 25 Ω ,
R6 = 1.5 kΩ , R7 = 20 Ω , R8 = 10 kΩ , R9 = 10 kΩ , R10 = 25 Ω , R11 = 6.7 kΩ , R12 = 10 kΩ , R13 = 10 kΩ.

(26)

Obviously, the synthesis of a chaotic oscillator based on a prescribed mathematical
model offers many different structures. In the case of expected strange attractors that do
not evolve around origin chaotic waveforms, they have DC frequency components. Thus,
the utilization of lossless inverting integrators is not a good idea because of inevitable
saturation. Integrated circuit AD633 itself can be used as a single input single output
voltage controlled current source with a trans-conductance value directly controlled by
external DC voltage. This is demonstrated in Figure 13b. The proposed circuit is uniquely
described by a following set of ordinary differential equations:
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d
dt v1 = 1

C1
·
(
− v1

R1
− K·V1

R3
v2

)
, d

dt v2 = 1
C2
·
(
− v2

R2
+ K·V4

R6
v3 +

K2·v1·(v2
1+V2)

R7
+

K2·v2·(v2
2−V3)

R4

)
,

d
dt v3 = − 1

C3
·K

2·v2·(v2
2−V3)

R5
,

(27)

where K = 0.1 is the transfer constant of AD633 and Vk, k = 1, 2, 3, 4 are independent DC
voltage supplies. Assuming numerical values of system parameters (21), impedance norm
104 and frequency norm 104 the list of real-valued circuit components is:

C1 = C2 = C3 = C4 = 10 nF , R1 = 12.8 kΩ , R2 = 5.9 kΩ , R3 = 1.2 kΩ , R4 = 455 Ω , R5 = 455 Ω ,
R6 = 667 Ω , R7 = 6.5 kΩ , V1 = 1 V , V2 = x V , V3 = 7.05 V , V4 = 1 V.

(28)

Selected experimental measurement results associated with a third order cascode type
amplifier are provided in Figure 14.

Figure 13. Circuitry realization of cascoded amplifier: (a) with resonant load implemented using
analog computer concept, (b) with resistive load implemented using trans-conductance cells.

Figure 14. Selected oscilloscope screenshots captured during measurement of cascoded amplifier.
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Third-order Darlington’s stage, that is, with resistive load, has several circuit represen-
tations, for example, the network depicted in Figure 15a. This oscillator is described by the
following set of ordinary differential equations:

d
dt v1 = − 1

C1
·
(

v1
R1

+ v2
R2

+ v3
R4

)
, d

dt v2 = − 1
C2
·
[

v1
R12

+ v2
R3
− K2

R6

(
v1 +

R8
R7
·v2

)3
]

,

d
dt v3 = − 1

C3
·
[
− R8

R7·R9
·v2 +

v3
R11
− K2

R5

(
v1 +

R8
R7
·v2

)3
+ K2

R5
·v3

2

]
.

(29)

Figure 15. Darlington’s stage with resistive load: (a) analog computer-based circuit realization,
(b) plane projection v1 vs. v2 (blue color) and v1 vs. v3 (red color), (c) frequency spectrum of chaotic
signal v1 (blue color) and v3 (red color).

The calculation of numerical values of passive circuit components with respect to the
system parameters (24) results in:

C1 = C2 = C3 = C4 = 10 nF , R1 = 10 kΩ , R2 = 1.4 kΩ , R3 = 5 kΩ , R4 = 1.7 kΩ , R5 = 68 Ω ,
R6 = 68 kΩ , R7 = 10 kΩ , R8 = 10 kΩ , R9 = 2.1 kΩ , R10 = 5 kΩ , R11 = 1 MΩ , R12 = 10 kΩ .

(30)

Corresponding Orcad Pspice simulation results, namely plane projections in Figure 15b
and the frequency spectrum in Figure 15c. Within these plots, ranges of the state variables
are v1 ∈ (−4, 4) V, –v2 ∈ (−0.5, 0.5) V, and v3 ∈ (−1.2, 1.2) V. The frequency spectrum is
plotted using a linear horizontal scale from DC up to 50 kHz and a logarithmic vertical
scale from 1 µV up to 100 mV. The red resistor in the schematic represents the load of
Darlington’s stage and affects overall system dissipation. It can be removed from the final
network topology while the chaotic nature of generated signals remains unchanged.

The route-to-chaos scenario can be effectively traced and/or controlled via a con-
tinuous change of the black resistor. Note that this circuit parameter does not directly
represent a parameter of the mathematical model, it is rather a combination of two of them,
namely y11 and y12. Therefore, to affect only the numerical value of parameter y12, blue
resistor within Figure 15a should be changed simultaneously (i.e., in the same direction).
The common period doubling scenario has been observed, as depicted via Figure 16. For
resistor values lower than 1.6 kΩ, the system solution becomes unbounded. The opposite
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side of the bifurcation diagram ends with the stable equilibrium point for the chaotic
oscillator having a value of the swept black resistor larger than 12 kΩ. Figure 16 also
provides a bifurcation diagram for the change of the second GBT parameter

=
y12. The left

boundary of this plot is limited by value 1.7 kΩ, for higher resistances system solution is
unbounded, limited only by the saturation levels of active elements. On the opposite side
of the investigated bifurcation diagram, chaotic behavior takes place again for numerical
values between 1.1 kΩ and 800 Ω.

Figure 16. Darlington’s stage having output opened (that is infinite load resistance), 1D bifurcation
diagram for narrow range of: (a) black resistor, (b) green resistor.

For lower resistances of the swept green resistor, chaos is slowly replaced by the long
sequence of various limit cycles. Finally, values below 200 Ω lead to a stable equilibria
solution. In both plots, one-dimensional bifurcation diagrams were calculated using a cross
section defined by the plane v1 = 0 V. The bifurcation diagram is calculated for resistance
step 0.32 Ω and 0.1 Ω in the case of Figure 16a,b respectively. To ensure high resolution, a
final time of 500 s together with time step 10 ms were adopted during both calculations.

As regards the expected behavior of the designed chaotic oscillator, there is a question
about the susceptibility of the desired strange attractor to changes of circuit elements.
From the viewpoint of passive elements, uncertainties, and deviances from the optimal
values can lead to the deformation of the desired strange attractor. Of course, for significant
differences from calculated values, the full disappearance of the prescribed strange attractor
can be expected. The problem of tolerance synthesis can be solved by a circuit simulator
such as Orcad Pspice, by Monte-Carlo combined with transient analysis. For each run of
Monte-Carlo, the generated waveforms (state variables) undergo the test for the presence
of chaotic patterns. In the case of active devices used in the chaotic oscillators, tolerance
analyses make sense especially for CMOS implementations of the chaotic system, usually
combined with process-voltage-temperature analysis [46].

5. Discussion

From the viewpoint of chaos and hyperchaos generation, the process of the bipolar
transistor generalization can cause naturally non-chaotic fully analog building blocks (both
isolated and driven) to exhibit irregular, noise-like motion with the broadband frequency
spectrum. In this paper, two examples of this situation were thoroughly numerically
analyzed: the cascoded amplifier and Darlington’s stage. In both cases, resonant load
(leading to a fourth order mathematical model) as well as resistive load (third order model)
were investigated. Using the heuristic search-for-chaos algorithm, it turns out that several
biasing points essentially lead to the robust unpredictable self-oscillations, that is, they
generate chaotic signals without the necessity of introducing an input driving source.
In addition to discovering four new chaotic systems, the conditions for the evolution of
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the complex dynamic movement are discussed, using a comparison with non-chaotic
equivalent circuits with small-signal models of bipolar transistors.

A cascoded amplifier with both resonant and resistive loads can offer several interest-
ing shapes of chaotic attractors, each having a rather low value of KYD. For the third-order
version of this dynamical system, the neighborhood of origin does not belong to the basin
of attraction for the chaotic limit set. The generated chaotic waveform possesses a signifi-
cant DC frequency component and is not well suited for circuit design using the analog
computer concept. A brief description of the conventional cascode amplifier is given in
Appendix A. Obviously, the original and chaotified systems have only a little in common.

Besides chaotic oscillations, Darlington’s topology offers very small parametric regions
with associated hyper-chaotic solutions. Based on subsequent analysis, hyper-chaos is
weakly characterized by two small positive LE. A mathematical model of this fourth-order
dynamical system can be marked as a novel autonomous hyperchaotic dynamical system
with a polynomial (smooth) vector field.

This paper leaves room for future investigations. Firstly, the individual dynamical
systems presented in this paper were not subject to intensive searching for the hidden
attractors [47,48]. Secondly, there are many useful analog building blocks that have multiple
transistors. By considering GBT-based modification systems, dynamics can be enhanced
significantly. Finally, preliminary studies indicate that, by piecewise linear approximation
of polynomial forward trans-conductance, there is a chance to observe chaotic steady states.
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Appendix A Common Function of Two-Transistor Cascoded Amplifier

Both cascoded amplifier and amplifier with Darlington’s pair belong to the favorite
circuit topologies. A typical example of a cascoded amplifier with resistive load is provided
in Figure A1. It is a specific interconnection of either two bipolar or two unipolar transistors.
The first transistor, driven by the input voltage Vi, is connected in either common-emitter
or common-source topology. The second (output) stage is formed by either the common-
base or common-gate connection of the transistor. The advantage of this structure is the
reduction of the Miller effect and, consequently, a higher bandwidth of this circuit. In
contrast to the investigated “chaotified cascoded amplifier” the stability of this circuit is
significant, simply because little feedback is fed from output to input node.

Figure A1 also shows a resistively loaded amplifier formed by Darlington’s pair of
bipolar transistors. This is an interconnection of two common-collector topologies leading
to a significant boosting of current amplification. In fact, the resulting current amplification
(final beta) is a product of the betas of the individual transistors. An inevitable drawback
of the real circuit is the doubled base-emitter voltage required to open Darlington’s pair.
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Figure A1. Traditional topology of analyzed amplifiers, circuit is driven by the input voltage Vi while
the response can be obtained at node Vo: (a) cascoded type, (b) having Darlington’s pair.
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