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Abstract: In the past decade, the scientific community has become increasingly interested in the
re-identification of people. It is still a challenging problem due to its low-quality images; occlusion
between objects; and huge changes in lighting, viewpoint and posture (even for the same person).
Therefore, we propose a dictionary learning method that divides the appearance characteristics
of pedestrians into a shared part, which comprises the similarity between different pedestrians,
and a specific part, which reflects unique identity information. In the process of re-identification,
by removing the shared part of a pedestrian’s visual characteristics and considering the unique
part of each person, the ambiguity of the pedestrian’s visual characteristics can be reduced. In
addition, considering the structural characteristics of the shared dictionary and special dictionary,
low-rank, l0 norm and row sparsity constraints instead of their convex-relaxed forms are introduced
into the dictionary learning framework to improve its representation and recognition capabilities.
Therefore, we adopt the method of alternating directions to solve it. The experimental results of
several commonly used datasets show the effectiveness of our proposed method.

Keywords: re-identification; dictionary learning; sparsity constraints; low rank constraints

1. Introduction

Pedestrian re-identification (re-ID) aims to identify specific pedestrians through cam-
eras at different locations, that is, to establish the correspondence between people at
different visual ranges. It is a key task in most surveillance and security applications [1–3],
and has attracted increasing attention from the computer vision community [4,5]. However,
in a real complex environment, such as different camera resolutions, viewing angles and
background changes, lighting changes, occlusions and person pose changes can adversely
affect pedestrian recognition, increase the difficulty of successful pedestrian recognition
and make it face many technical challenges. Furthermore, there is still a big gap between
the current person re-identification technology and practical applications.

This research direction has attracted the attention of a large number of scholars
and research institutions. Aiming to solve the problem of person re-identification, the re-
search mainly focuses on the following two aspects: the expression of pedestrian
characteristics [6–12] and similarity measurement learning [13–18]. The feature descriptors
try to determine how to select visual features with good discrimination and robustness for
pedestrian image matching. As high-dimensional visual features usually do not capture
the invariant factors under sample variance, a distance metric is introduced into pedestrian
re-identification. The main concept of metric learning is that the visual characteristics of
different pedestrians should be more separate and the visual characteristics of the same
pedestrian under different perspectives should be as similar as possible in the embedded
space. Since sparse dictionary learning is a special case of metric learning, it has been
successfully applied in computer vision fields such as face recognition [19,20], and is now
applied to pedestrian re-recognition.
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In 2010, Cong et al. first introduced dictionary learning into person re-identification [21].
They first built a dictionary through a camera, and then the pedestrians of the other
camera were represented by the dictionary sparsely and linearly. Khedher et al. [22]
used the surf descriptor to extract features from each person’s pictures and then con-
structed a known dictionary using reference SURFs. They used the sparse representation
model to learn a coefficient and then determined the identity information. Karanam
et al. [23] learned a single view invariant dictionary for different cameras. They also
improved the discriminative ability of the dictionary by adding explicit constraints on
the sparse codes, which made the Euclidean distance between the coding coefficients
of the same pedestrian under different views smaller than that between the sparse cod-
ing coefficients of different pedestrians. Jing et al. [24] proposed a novel semi-coupled
low-rank discriminant dictionary learning approach for high- and low-resolution images.
Karanam et al. [25] proposed a block sparse representation method based on dictionary
learning. An et al. [26] used canonical correlation analysis (CCA) to learn a subspace in
which the goal is to maximize the correlation between data from different cameras but cor-
responding to the same people. Then, they jointly learned the dictionaries for each camera
view in the CCA subspace. Zhou et al. [27] proposed a novel joint learning framework
that unifies representative feature dictionary learning and discriminative metric learning.
Xu et al. [28] proposed to separate the images of the same pedestrian observed from dif-
ferent camera views into view-shared components and view-specific components so as to
improve the discriminating performance of the learned dictionary. Peng et al. [29] proposed
a novel dictionary learning model which divides the dictionary space into three parts corre-
sponding to semantic, latent discriminative and latent background attributes, respectively.
Li [30] proposed a discriminative semicoupled projective dictionary learning (DSPDL)
model that employs an efficient projection dictionary learning strategy and jointly learns a
pair of dictionaries and a mapping function to model the correspondence of cross-view data.
Li et al. [31] proposed a person re-ID method to divide a pedestrian’s appearance features
into different components. They developed a framework for learning a pair of commonality
and specificity dictionaries, while introducing a distance constraint to force the particulari-
ties of the same person over the specificity dictionary to have the same coding coefficients
and the coding coefficients of different pedestrians to a have weak correlation. Li et al. [32]
considered novel joint fusion and super-resolution framework based on discriminative
dictionary learning. They jointly learned two pairs of low-rank and sparse dictionaries and
a conversion dictionary, which are used to represent the low-rank and sparse components
of low-resolution images, and to reconstruct a high-resolution fused result. However,
to accurately characterize the sparsity and low rank, it is suggested to impose the sparsity
and low-rank constraints directly instead of using the approximations/regularizations.

In 2014, Li et al. [33] first used deep learning methods for person re-identification
research, and since then, an increasing number of researchers have tried to combine deep
learning methods with person re-identification research. Deep learning can integrate feature
extraction and metric learning into a unified learning framework and is mainly focused on
extracting global identity features from pedestrian images. He et al. [34] proposed to use the
Spatial Pyramid structure to extract sample features. Huang et al. [35] used a deep neural
network to learn different representation features of different parts of pedestrian appearance
images, and then calculated the similarity of the corresponding parts of the image. Then,
three sub-networks were constructed for each part to learn the differences between images,
feature maps and spatial changes, and the results of the three sub-networks were combined.
Wu et al. [36] introduced a deep architecture that combines Fisher vectors and deep neural
networks to learn a mixture of nonlinear transformations of pedestrian images into a deep
space where the data can be linearly separated. Tao et al. [37] utilized Cross-view Quadratic
Discriminant Analysis (XQDA) metric learning for person recognition in order to achieve
simultaneous spatial localization and feature representation. Compared with images, there
are not only spatial dependencies, but also temporal order relationships between frames
in video sequences. Reasonable use of the temporal features of videos can reflect the
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motion characteristics of pedestrians and improve the recognition accuracy. Therefore,
for video-based pedestrian re-identification, the spatiotemporal features of videos are
often extracted for recognition. Gao et al. [38] proposed a temporally aligned pooling
representation method, which uses the periodic characteristics of walking to divide the
video sequence into independent walking cycles, and selects the cycle that best matches the
characteristics of the sinusoidal signal to represent the video sequence. Rahmani et al. [39]
proposed a deep fully connected neural network by finding the nonlinear transformations
of a set of connected views, which learn from 2D projections of the dense trajectories of
synthetic 3D human models fitted to real motion capture data. Using the spatiotemporal
motion characteristics of human walking, Khan et al. [40] proposed a novel view-invariant
gait representation deep fully connected neural network for cross-view gait recognition.
However, spatiotemporal features are susceptible to factors such as viewing angle, scale
and speed. With the substantial increase in pedestrians, the motion similarity between
pedestrians also increases, which greatly reduces the ability to distinguish spatiotemporal
features. At the same time, the large number of cameras in large datasets increases the pose
differences and motion differences of the same pedestrian. Obviously, these all limit the
role of spatiotemporal features in pedestrian re-identification.

It this paper, we propose a new special and shared dictionary learning model with
structure characteristic constraints, which has stronger interpretability. We divide the
learning dictionary into two parts. One is a shared dictionary, which represents some
features shared by all pedestrians in the camera, such as the same background. The other is
a special dictionary, which represents the unique characteristics of each pedestrian. Then,
only the unique part that represents the identity of the pedestrian is considered in the
recognition process, which can reduce the ambiguity caused by some other unnecessary
visual feature factors. The main contributions of the paper are summarized as follows:

(I) The shared dictionary part, whose features are shared by all people, have a strong
correlation, so the shared dictionary must be low rank; then, we directly impose the
low-rank constraint. Next, we impose a l0 norm constraint to the special dictionary,
which has strong sparsity and contains only information unique to each person.

(II) In order to better describe the shared information of pedestrians and force the com-
monality of different pedestrians to have the same coding coefficients in the shared
dictionary, we introduce the l2,0 norm constraint on the coding coefficients Zs.

(III) Due to the l0 norm and low-rank constraints, the dictionary learning model with struc-
ture characteristics constraints is highly nonconvex and computationally NP-hard in
general;therefore, we adopt the method of alternating directions to solve it. When
dealing with each subproblem, we directly deal with the original problems with the l0
norm and rank constraints instead of their convex relaxed form. Numerical experi-
ments performed on some real datasets show that our method is superior to traditional
methods, and even better than some deep learning methods on some datasets.

The rest of this paper is organized as follows. The joint dictionary learning model
is presented in Section 2, while Section 3 is devoted to optimization algorithm for the
special and shared dictionary learning model and the re-identification process. In Section 4,
the computational experiments are reported. Finally, we conclude the paper with future
work in Section 5.

2. Joint Dictionary Learning Model

We know that the general cameras are fixed in a place, so the picture of each person in
the camera contains part of the same elements that do not help in recognition. What is useful
is the part of unique features that represents information about each person. Assuming
that we have two camera views, a and b, and Yl = [yl,1, yl,2, . . . , yl,N ] ∈ Rm×N(l = a, b) is a
set of training samples composed of N individuals images from l-th view,Yl can be divided
into two parts

Yl = Ys + Yl,u.
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Considering the actual situation, we mainly study the following dictionary learning
model for the person re-identification problem

min
Ds ,Du ,Zs ,Za,u ,Zb,u

‖Ya − DsZs − DuZa,u‖2
F + ‖Yb − DsZs − DuZb,u‖2

F

+ λ1‖ZT
a,uZb,u‖2

F + λ2‖I − ZT
a,uZb,u‖2

F + λ3‖Za,u − Zb,u‖2
F

s.t. ‖Ds(i)‖2
2 ≤ 1, ‖Du(i)‖2

2 ≤ 1,

rank(Ds) ≤ k, ‖Du‖0 ≤ s2, ‖Zs‖2,0 ≤ s1,

(1)

where Za,u and Zb,u are the coding coefficients of person-specific components under camera
views a and b; Zs = [zs,1, zs,2, . . . , zs,N ] is the coding coefficient of person-shared compo-
nents under different camera views. Ds is the dictionary for the person-shared elements,
and Du is the dictionary for the person-specific elements. λ1, λ2, λ3 are penalty parameters
and s1, s2, k are three integers representing the prior information on the upper bounds
of the sparsity and the rank, respectively. ‖Du‖0 is the zero norm of Du, representing the
number of its nonzero elements. rank(Ds) represents the rank of the matrix Ds. ‖Zs‖2,0
is the zero norm of the rows of the matrix Zs, representing the sparsity of the rows of the
matrix Zs.

We know that different people have different features, so the coding coefficients of
different pedestrians should be largely irrelevant. The same pedestrian has a greater
similarity under different cameras, i.e., one person under different views should have the
same coding coefficient. cor(Za,u(i), Zb,u(j)) ≤ ε1, i 6= j, cor(Za,u(i), Zb,u(i)) ≥ ε2, where
0 < ε1 < ε2 ≤ 1 are the given correlation parameters, and cor is the correlation function.
However, the correlation coefficient is more difficult to calculate; similar to article [19],
we transformed the correlation coefficient constraint into the following form: ‖ZT

a,uZb,u‖2
F,

‖I − ZT
a,uZb,u‖2

F. The same elements play the same role for each pedestrian under the
camera, and the shared features are only a small part of all features. So, ‖Zs‖2,0 ≤ s1 was
added. Generally, the common part has a strong correlation. For example, two cameras
may have a part of the same background, and the picture background often has a low-rank
structure. So, the shared dictionary should have a low-rank structure. At the same time,
the unique information for each pedestrian is different, so it should have a sparse structure,
i.e., rank(Ds) ≤ k, ‖Du‖0 ≤ s2. The identity information of the same pedestrian under
different cameras is the same and should be as similar as possible. Therefore, the same
pedestrian should have the same coefficient under different cameras; that is, Za,u− Zb,u = 0.

3. Algorithm Implementation

In this section, we describe the algorithm of dictionary learning and the process of
re-identification.

3.1. Dictionary Learning Algorithm

First, we propose the algorithm for the problem (1). Due to the l0 norm, low-rank
constraints and the properties of the objective function of dictionary learning, we adopted
the alternating directions scheme and optimized one variable at a time by fixing the
other variables.

(1) Update Ds. With fixed Du, Zs, Za,u, Zb,u, we solved the following minimization
problem:

min
Ds
‖Ya − DsZs − DuZa,u‖2

F + ‖Yb − DsZs − DuZb,u‖2
F

s.t. ‖Ds(i)‖2
2 ≤ 1, rank(Ds) ≤ k.

(2)
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To facilitate optimization, a relaxation variable D̃s was introduced to simplify the
solving process. Then, the optimization problem in (2) can be written as follows:

min
Ds ,D̃s

‖Ya − DsZs − DuZa,u‖2
F + ‖Yb − DsZs − DuZb,u‖2

F + ‖Ds − D̃s‖2
F

s.t.
∥∥∥D̃s(i)

∥∥∥2

2
≤ 1, rank(Ds) ≤ k.

(3)

First, we fixed Ds and updated D̃s. This problem can be optimized by the Lagrange
dual [41].

min
D̃s

‖Ds − D̃s‖2
F

s.t.
∥∥∥D̃s(i)

∥∥∥2

2
≤ 1.

(4)

Then, we fixed D̃s, and updated Ds by solving:

min
Ds
‖Ya − DsZs − DuZa,u‖2

F + ‖Yb − DsZs − DuZb,u‖2
F + ‖Ds − D̃s‖2

F

s.t. rank(Ds) ≤ k.
(5)

The above problem can be solved by [42].
(2) Update Du. With fixed Ds, Zs, Za,u, Zb,u, we solved the following minimization

problem:

min
Du
‖Ya − DsZs − DuZa,u‖2

F + ‖Yb − DsZs − DuZb,u‖2
F

s.t. ‖Du(i)‖2
2 ≤ 1, ‖Du‖0 ≤ s2.

(6)

For easier calculation, the relaxation variable D̃u was introduced to simplify the solving
process. The optimization problem in (6) can be written as follows:

min
Du ,D̃u

‖Ya − DsZs − DuZa,u‖2
F + ‖Yb − DsZs − DuZb,u‖2

F + ‖Du − D̃u‖2
F

s.t.
∥∥∥D̃u(i)

∥∥∥2

2
≤ 1, ‖Du‖0 ≤ s2.

(7)

We fixed Du, and updated D̃u by solving. It can be optimized in the same way as in (4)

min
D̃u

‖Du − D̃u‖2
F

s.t.
∥∥∥D̃u(i)

∥∥∥2

2
≤ 1.

(8)

With the updated D̃u, we can update Du by solving

min
Du
‖Ya − DsZs − DuZa,u‖2

F + ‖Yb − DsZs − DuZb,u‖2
F + ‖Du − D̃u‖2

F

s.t. ‖Du‖0 ≤ s2.
(9)

This problem can be solved via the gradient support projection algorithm (GSPA) [43].
(3) Update Zs. With fixed Ds, Du, Zb,u, Zb,u, we solved the following minimization

problem:

min
Zs
‖Ya − DsZs − DuZa,u‖2

F + ‖Yb − DsZs − DuZb,u‖2
F

s.t. ‖Zs‖2,0 ≤ s1.
(10)
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Since the L2,0 norm can be regarded as a special L0 norm, it can be solved similar to
in (9).

(4) Update Za,u. With fixed Ds, Du, Zs, Zb,u, we solved the following minimization
problem:

min
Za,u
‖Ya − DsZs − DuZa,u‖2

F + λ1‖ZT
a,uZb,u‖2

F + λ2‖I − ZT
a,uZb,u‖2

F

+ λ3‖Za,u − Zb,u‖2
F.

(11)

This is a smooth convex problem; hence, we could obtain the following closed-form
solution:

Za,u =
(

DT
u Du + 2λ2Zb,uZT

b,u + λ3 I
)−1(

DT
u Ya + λ2Zb,u IT −DT

u DsZs + λ3Zb,u

)
. (12)

(5) Update Zb,u. With fixed Ds, Du, Zs, Za,u, we solved the following minimization
problem:

min
Zb,u
‖Yb − DsZs − DuZb,u‖2

F + λ1‖ZT
a,uZb,u‖2

F + λ2‖I − ZT
a,uZb,u‖2

F

+ λ3‖Za,u − Zb,u‖2
F.

(13)

This is a smooth convex problem, so that the closed-form solution is as follows:

Zb,u =
(

DT
u Du + 2λ2Za,uZT

b,u + λ3 I
)−1(

DT
u Yb + λ2Za,u IT −DT

u DsZs + λ3Za,u

)
. (14)

A detailed description of the above learning is summarized in the following
Algorithm 1.

Algorithm 1 Dictionary Learning Algorithm

Input: samples matrices Ya, Yb and initial point Ds, Du, Zs, Za,u and Zb,u randomly.
1: while not converged do
2: Fix other variables, update Zs, Za,u and Zb,u via solving (10), (11) and (13), respectively.
3: Update dictionary Ds by solving (3).
4: Update dictionary Du by solving (7).
5: end while

Output: dictionaries Du and Ds.

3.2. Re-Identification

Given the gallery feature vector matrices and the learned dictionaries Ds, Du, we
propose the following steps to re-identify a person:

1. The coding coefficients of the shared components of pedestrians can be obtained by:

Zl,s = arg min
Zl,s

{∥∥Yl − DsZl,s − DuZl,u
∥∥2

F + λ4
∥∥Zl,s

∥∥
2,1

}
, (15)

where λ4 is the scalar parameter; Yl = [Ya, Yb], Zl,s = [Za,s, Zb,s] and Zl,u = [Za,u, Zb,u];
Zl,s denotes the dictionary coefficient corresponding to the part shared by the pedes-
trians under different cameras; Zl,u denotes the dictionary coefficient corresponding
to the part unique to each person under different cameras.

2. The dictionary coefficient corresponding to the part unique of each person under
different cameras can be obtained as follows:

Za,u = arg min
Za,u

{
‖Ya − DsZa,s − DuZa,u‖2

F + β1‖Za,u‖1

}
, (16)
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Zb,u = arg min
Zb,u

{∥∥Yb − DsZb,s − DuZb,u
∥∥2

F + β1
∥∥Zb,u

∥∥
1

}
, (17)

where β1 is the scalar parameter.
3. We took za,u,i and zb,u,j to be the dictionary coefficients corresponding to the individual

special parts of the i-th pedestrian and the j-th pedestrian under cameras a and b,
respectively. Then, we computed the Euclidean distance between za,u,i and zb,u,j for
personal identification matching

sim
(

za,u,i, zb,u,j

)
=
∥∥∥za,u,i − zb,u,j

∥∥∥2

2
, (18)

where i = 1, 2, · · · , N and j = 1, 2, · · · , M.

4. Numerical Experiments
4.1. Datasets

In this section, we evaluate the proposed method. All the codes were written in MAT-
LAB, and all the computations were performed on a LENONVE ideapad with Windows 10
Inter(R) Core(TM)i5-6200U CPU @2.30 GHz, 2.40 GHz and 4 GB memory. We empirically
validated the method proposed in this paper using five publicly available multi-shot re-ID
datasets:

VIPeR [44]: the VIPeR dataset contains 632 pedestrians; each pedestrian captures one
image from each of the two cameras; it contains two images of each pedestrian.

PRID 2011 [45]: The PRID 2011 dataset contains images of 200 people. These images
were taken with two non-overlapping cameras in an uncrowded outdoor environment
with significant point-of-view and lighting variations.

QMUL-GRID [46]: The GRID dataset contains 250 images of pedestrians. Each pedes-
trian image contains two images seen from different camera views, both of which come
from eight non-intersecting camera views installed in busy subway stations. The dataset is
challenging due to variations in pose, color and lighting, as well as poor image quality due
to low spatial resolution.

CUHK01 [47]: The CUHK01 dataset contains contains 971 photos of pedestrians. Each
pedestrian consists of two images from a pair of disjoint cameras. The image quality is
relatively good.

CUHK03 [48]: CUHK03 is one of the largest personal identification datasets, and it
contains 1467 pedestrians. It provides two types of data, one obtained from manually
labeled pedestrian bounding boxes and the other from automatically detected bounding
boxes. The detected CUHK03 is more challenging than the labeled CUHK03 dataset due to
incorrectly detected bounding boxes.

In our experiments, we randomly divided VIPeR, PRID 2011, QMUL-GRID, CUHK01
and CUHK03 into two parts, one as the training data and the other as the testing data.
More details are given in Table 1. For the experiments on each dataset, the above procedure
was repeated 10 times. The average of the 10 measurements was considered as the final
experimental result.

Table 1. The details and settings of person re-ID datasets.

Dataset VIPeR PRID 2011 QMUL-GRID CUHK01 CUHK03

Cams 2 2 8 6 6
IDs 632 200 250 971 1467

TrainIDs 316 100 125 871 1367
TestIDs 316 100 125 100 100

Interfering Img 0 549 775 0 0
Labeled 1264 949 1275 1942 14,096
Detected 0 0 0 0 14,096
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Some pedestrian image pairs selected from the five datasets are presented in Figure 1.

(a) VIPeR (b) GRID (c) PRID

(d) CUHK01 (e) CUHK03

Figure 1. Sample images.

Feature Selection: In our experiment, we used the GOG feature method proposed
by Matsukawa et al. [11] to deal with the original image feature. GOG feature describes
local regions in an image through a hierarchical Gaussian distribution and shows strong
robustness against changes in pedestrian body pose, illumination, background clutter,
and picture quality.

4.2. Experiment on VIPeR

To illustrate the effectiveness of our proposed model as well as the method, several al-
ternative state-of-the-art re-ID methods were selected: KISSME (2012) [16], DGD (2016) [49],
KCVDCA (2017) [50], JDL (2017) [28], JLML (2017) [48], MVLDML (2018) [51], MPML
(2019) [52], DIMN (2019) [53], DLA (2020) [31] and VS-SSL (2020) [54]. The numerical
results of the above methods on dataset VIPeR are reported in Table 2. From Table 2,
the matching rates of our method on ranks 1, 5 and 10 are 51.23%, 80.73%, 90.56% and
95.02%, respectively, which are higher than those of the other methods. Although the recog-
nition accuracy of our method in rank 1 is the same as that of DIMN method, the recognition
accuracy of our method in ranks 2–5 is higher than that of the DIMN method, meaning
our method is significantly better than DIMN in rank 5, which also shows the superior
performance of our method. The results show that the recognition accuracy of our approach
on the VIPeR dataset is better than that of some other existing methods.

Table 2. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the VIPeR
dataset. Bold number represents the best accuracy. ‘-’ denotes that there is no reported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

KISSME [16] 19.60 48.00 62.20 77.00
DGD [49] 38.60 - - -

KCVDCA [50] 43.29 72.66 83.51 92.18
JDL [28] 44.30 72.66 82.50 92.90

JLML [48] 50.20 74.20 84.30 91.60
MVLDML [51] 50.03 79.20 88.54 94.65

MPML [52] 50.54 78.16 87.63 95.00
DIMN [53] 51.23 70.19 75.98 -
DLA [31] 50.89 80.03 89.33 94.87

VS-SSL [54] 44.80 72.30 79.30 86.10
Ours 51.23 80.73 90.56 95.02
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4.3. Experiment on PRID 2011

The third experiment was conducted on the dataset PRID 2011. Similarly, we also
compared it with some of the most advanced methods, including PPLM (2012) [55],
XQDA+LOMO (2015) [12], XQDA+GOG (2016) [11], M+DMLV (2017) [56], DMLV+LOMO
(2017) [57], JDL (2017) [28], MTL-LOREA (2018) [58], APDL (2018) [59], DLA (2020) [31]
and VS-SSL (2020) [54]. The experimental results of the approaches are reported Table 3.
As shown in the table, the recognition rates of the proposed method are 36.80%, 63.80%,
73.20% and 83.30% at different ranks, respectively. This further proves that the proposed
approach has a better performance on the dataset with interfering images than that of other
traditional approaches.

Table 3. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the PRID
2011 dataset. Bold number represents the best accuracy. ‘-’ denotes that there is no reported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

PPLM [55] 15.00 32.00 42.00 54.00
XQDA+LOMO [12] 26.70 49.90 61.90 73.80
XQDA+GOG [11] 35.90 60.10 68.50 78.10

M+DMLV [56] 15.20 36.10 48.30 -
DMLV+LOMO [57] 27.80 48.40 59.50 83.20

JDL [28] 26.50 53.60 63.20 73.00
MTL-LOREA [58] 18.00 37.40 50.10 66.60

APDL [59] 25.00 54.00 67.00 82.00
DLA [31] 36.50 63.00 72.90 82.70

VS-SSL [54] 35.40 57.80 66.30 77.90
Ours 36.80 63.80 73.20 83.30

4.4. Experiment on QMUL-GRID

The second experiment was conducted on dataset QMUL-GRID to illustrate the effec-
tiveness of our proposed method, and several alternative state-of-the-art re-ID methods
were selected: MtMCML (2014) [60], LSSCDL (2016) [61], DR-KISS (2016) [11], Multi-HG
(2017) [62], SCRWI (2017) [63], JLML (deep-learning) (2017) [48], CSPL+GOG (2018) [64],
MPML (2019) [52], SRRTC (2019) [65], DIMN (2019) [53], DLA (2020) [31] and KISS+
(2021) [66]. The numerical results of the above methods for dataset QMUL-GRID are
reported in Table 4. As shown in Table 4, the deep learning method JLML has the best per-
formance in the recognition rate of rank 1 and rank 5, but the KISS+ method has the highest
accuracy in the accuracy rates of rank 10 and rank 20. Our proposed method is second only
to these two methods. This is also due to the fact that the GRID dataset is relatively small,
and we only used 125 markers to train our model, while JLML first pre-trained on large-
scale ImageNet [67], Market-1501 [68] and CUHK03, and then selected 125 identifiers from
QMUL-GRID to fine-tune the pre-trained model. The KISS+ method used an orthogonal
basis vector to generate virtual samples to deal with the small sample size problem. Our
proposed approach has better performance than most of the other traditional non-deep
learning methods, which proves the strong applicability of the proposed method.
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Table 4. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the
QMUL-GRID dataset. Bold number represents the best accuracy. ‘-’ denotes that there is no re-
ported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

MtMCML [60] 14.08 34.64 45.84 59.84
LSSCDL [61] 22.40 - 51.28 61.20
DR-KISS [11] 20.60 39.30 51.40 62.60
Multi-HG [62] 19.84 40.48 56.88 62.32

SCRWI [63] 24.80 45.40 54.10 68.90
JLML [48] 37.50 61.40 69.40 77.40

CSPL+GOG [64] 25.84 46.48 58.40 70.16
MPML [52] 24.32 47.92 58.40 68.08
SRRTC [65] 26.56 46.32 56.16 66.80
DIMN [53] 29.28 53.28 65.84 -
DLA [31] 28.16 49.04 59.52 70.48

KISS+ [66] 33.58 58.58 79.37 82.55
Ours 33.46 56.64 68.13 75.44

4.5. Experiment on CUHK01

The fourth experiment was conducted on the dataset PRID2011. Similarly, the pro-
posed approach was compared with other excellent methods, including KISSME (2012) [16],
SalMatch (2013) [69], Mid-Filter (2014) [70], XQDA+LOMO (2015) [12], XQDA+GOG
(2016) [11], JLML (2017) [48], LADF+DMLV (2017) [56], Multi-HG (2017) [62], DMLV+LOMO
(2017) [57], MVLDML (2018) [51], MPML (2019) [52], DLA (2020) [31] and MLAPG
(2020) [71]. The experimental results of different methods on ranks 1, 5, 10 and 20 are
reported in Table 5. Similar to the numerical results of the QMUL-GRID dataset, our
method is second only to the deep learning method JLML, while outperforming the other
traditional methods, as JLML first pre-trained on large-scale ImageNet, Market-1501 and
CUHK03, and then selected part of the identifiers from CUHK01 to fine-tune the pre-trained
model. On rank 1, the recognition rate of our proposed method achieved 72.36%, which is
5% higher than MPML, and on rank 5, it reached 88.43%, which is a 2.7% improvement
over DLA. On rank 10 and rank 20, the recognition accuracy of MLAPG and MVLDML
improved from 89.50% and 95.85% to 92.43% and 96.06%, respectively.

Table 5. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the
CUHK01 dataset. Bold number represents the best accuracy. ’-’ denotes that there is no reported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

KISSME [16] 10.30 27.20 37.50 49.70
SalMatch [69] 28.50 45.90 55.70 68.00
Mid-Filter [70] 34.30 55.10 65.00 74.90

XQDA+LOMO [12] 63.20 83.90 90.00 94.40
XQDA+GOG [11] 57.80 79.10 86.20 92.10

JLML [48] 76.70 92.60 95.60 98.10
LADF+DMLV [56] 63.20 83.90 90.00 94.40

Multi-HG [62] 64.37 - 90.56 94.56
DMLV+LOMO [57] 65.00 85.60 91.10 95.10

MVLDML [51] 61.37 82.74 88.88 93.85
MPML [52] 67.18 86.89 92.06 95.85
DLA [31] 70.19 85.78 90.87 94.57

MLAPG [71] 57.09 85.58 89.50 -
Ours 72.36 88.43 92.43 96.06
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4.6. Experiment on CUHK03

The last experiment was performed on the labeled CUHK03 and the detected CUHK03
datasets. To illustrate the effectiveness of our method, we compared the performance of
our approach with some state-of-the-art methods, specifically, XQDA+LOMO (2015) [12],
XQDA+GOG (2016) [11], DGD (2016) [49], BTloss (2017) [72], JLML (2017) [48], MGN
(2018) [73], JSLA (2018) [29], MLFN (2018) [74], DDPM (2018) [75], RAPMR (2018) [76],
GLAD (2019) [77], PLNET (2019) [78], SAN (2019) [79], DLA (2020) [31], Deep-Person
(2020) [80] and Gconv (2020) [81]. For the labeled and detected CUHK03, the experimental
results of different methods are listed in Tables 6 and 7.

From Table 6, we can see that on the labeled CUHK03, our proposed method is
second only to the deep learning method Deep-Person on rank 1, rank 5 and rank 10,
and second only to the deep learning method JLML on rank 20, and it performs better
than some existing traditional methods, as well as deep learning methods, as the Deep-
Person method applied long short-term memory (LSTM) in an end-to-end fashion to
model pedestrians, treating it as a head-to-toe sequence of body parts. It exploited the
complementary information between local and global features to better align with the
whole person. From Table 7, we can see that on the detected CUHK03, our proposed
method achieved the best recognition accuracy on all ranks, which is better than some
existing traditional and deep learning methods, such as GLAD, Deep-Person and Gconv.
This proves the effectiveness and competitiveness of our method.

Table 6. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the
labeled CUHK03 dataset. Bold number represents the best accuracy. ’-’ denotes that there is no
reported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

XQDA+LOMO [12] 52.20 82.20 92.10 96.30
XQDA+GOG [11] 67.30 91.00 96.00 -

DGD [49] 75.30 - - -
BTloss [72] 75.53 95.15 99.16 -
JLML [48] 83.20 98.00 99.40 99.80
MGN [73] 68.80 - - -
JSLA [29] 77.50 92.40 96.50 99.20

MLFN [74] 54.70
GLAD [77] 86.00 98.10 99.20 99.70
PLNET [78] 82.75 96.59 98.60 -

SAN [79] 88.30 - - -
DLA [31] 90.26 97.98 99.17 99.72

Deep-Person [80] 91.50 99.00 99.50 -
Gconv [81] 85.90 98.30 99.30 99.70

Ours 90.31 98.20 99.46 99.78

From the above experiments on different datasets, it can be seen that our method is the
best on some datasets and outperforms the existing traditional methods. Although not the
best on some datasets, it is only second to one or two deep learning methods. In conclusion,
our proposed method performs well overall.
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Table 7. Comparison of top-ranked matching rates (%) with the state-of-the-art methods on the
detected CUHK03 dataset. Bold number represents the best accuracy. ’-’ denotes that there is no
reported result.

Methods Rank 1 Rank 5 Rank 10 Rank 20

XQDA+LOMO [12] 46.30 78.90 83.50 93.20
XQDA+GOG [11] 65.50 88.40 93.70 -

JLML [48] 80.60 96.90 98.70 99.20
MGN [73] 66.80 - - -
JSLA [29] 64.20 89.10 93.40 96.10

MLFN [74] 82.80 - - -
DDPM [75] 75.90 - - -

RAPMR [76] 70.60 - - -
GLAD [77] 83.30 96.10 97.70 98.80
SAN [79] 84.30 - - -
DLA [31] 87.62 97.32 99.46 99.65

Deep-Person [80] 89.40 98.20 99.10 -
Gconv [81] 83.10 96.40 98.00 98.90

Ours 88.42 98.33 99.48 99.66

5. Conclusions and Discussion

In this paper, we propose a new special and shared dictionary learning model with
structure characteristic constraints, including sparse, low-rank and row-sparse constraints.
Here, we divided the dictionary into two, one to represent features shared by all pedestrians
and the other to represent features unique to each individual. Then, only the unique part
that represents the identity of the pedestrian was considered in the recognition process,
which can reduce the ambiguity caused by some other unnecessary visual feature factors
in the recognition process. In order to improve the accuracy of matching and to better
characterize the structural characteristics of the dictionary, on the basis of original dictionary
learning, l0 norm and low-rank constraints were directly added instead of their convex
regular form. We used the method of alternating directions to solve the optimization
model, and when solving each sub-problem, we also directly solved the problem with
constraints. Finally, experiments on different datasets showed that our algorithm has a
high accuracy rate.

Since the objective function of dictionary learning, as well as the highly nonconvex
and computationally NP-hard of l0 norm and rank constraints, is bilinear, the optimality
condition of the model and the convergence of the algorithm were not established here. It
is difficult to not only explore the impact of feature extraction methods, but also compare
the performance of metric learning methods. So our research focuses on the comparison of
metric learning methods. We think that evaluating the GOG features using view transfor-
mation model (VTM) based approaches is a good attempt. These will be addressed in our
future work.
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