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Abstract: We propose a method of group testing by taking dilution effects into consideration. We
estimate the dilution effect based on massively collected RT-PCR threshold cycle data and incorporate
them into optimizing group tests. The new constraint helps find a robust solution of a nonlinear
equation. The proposed framework has the flexibility to incorporate geographic and demographic
information. We conduct a Monte Carlo simulation to compare different group testing approaches
under the estimated dilution effect. This study suggests that increased group size adversely impacts
the false negative rate significantly when the infection rate is relatively low. Group tests with optimal
pool sizes improve the sensitivity over group tests with a fixed pool size. Based on our simulation
study, we recommend single group testing with optimal group sizes.

Keywords: dilution effect; group testing; optimal group size; sensitivity; sequential test

1. Introduction

Group testing, also known as pooled testing or batch testing, works by amalgamating
specimens from individuals into pools and performing tests on these pools. If the group is
tested negative, all of its members are declared negative. If the group is tested positive, each
member has the remainder of his/her original specimen tested separately to determine the
positive/negative outcome. Its implementation has the potential to greatly accelerate the
rate of testing and increase the test capacity especially when the prevalence rate is relatively
low. The concept of group testing was first introduced for detecting syphilis in US soldiers
during World War II [1]. Group testing was studied as an efficient method to detect com-
munity transmission [2]. During the COVID-19 outbreak in 2020, Stanford Medical Center,
the University of Nebraska, and the Clinical Reference Laboratory applied group testing as
the screening strategies for the general population [2,3]. Meanwhile, several universities,
including Duke University, Michigan State University, the State University of New York,
and Syracuse University implemented group testing as their campus screening strategy.

Group testing was discussed with test errors in detail, and it was confirmed that
Dorfman’s method has lower sensitivity than individual testing [4]. This drawback was
mitigated [5] by a new multi-step group testing followed by possible sequential individ-
ual tests.

There are two important considerations for applying group testing: group size and
dilution effects. Pooling optimal number of specimens together does not adversely affect
the detection of positive specimens and achieved 57% fewer tests on average compared to
individual testing [6].

The optimal group size [7] was determined by incorporating the dilution effect and
the expected cost calculated under Dorfman’s procedure. The concentration determines the
group testing sensitivity [8]. Ordered pooling is the most efficient way to group patients if
the function of the dilution effect is concave [9]. This conclusion generalized the ordered
pooling algorithm [10] from no testing errors to testing errors with dilution effects.

Viral load, also known as viral burden, is a numerical expression of the quantity of a
virus in a given volume of fluid. Viral load (viral RNA concentration) in patient samples
and the rate of successful isolation of virus from clinical specimens in cell culture are the
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clinical parameters most directly relevant to infectiousness and hence to transmission. The
RT-PCR (Reverse transcription-PCR) threshold cycle data were collected from 3303 patients
who tested positive for SARS-CoV-2, and viral load was estimated [11]. A Gaussian mixture
model was proposed for the threshold cycle value Ct of a specimen sample collected from
an infected person based on those 3303 positive viral loads data [12]. A logistic regression
model was used to fit the relationship between Ct and the false negative rate (FNR) [13].
Unlike [8,10], molecular-level models of false negatives in RT-PCR, which is a more realistic
way, is used in [12,13].

In this study, we introduced a Monte Carlo method to estimate the expected FNR
given a certain group size and infection rate based on the data from [11]. The dilution
effects were considered for COVID-19 group testing [14]. However, their method did
not mention the Ct value distribution among COVID-19 infections. In addition to more
realistic dilution effect simulation, we added this expected FNR as a constraint to the group
size optimization of the single step group testing and multi-step group testing. The new
constraint provided a lower bound for the expected FNR of group testing, and the nonlinear
group size optimization was more robust than that in [1,5]. Detailed discussions are given
in Sections 2.2.1–2.3.3.

In this study, we found that increasing group size adversely impacts FNR significantly
when the infection rate is low. Group testing with optimal pool sizes improves the sen-
sitivity over group tests with a fixed pool size. Under the consideration of the dilution
effect in this study, multi-step group testing could not improve the sensitivity over single
group testing with an optimal group size. The dilution effects became heavier when false
negatives in the previous testing were pooled into larger groups. Dilution effect modeling
and simulation are useful to configure an optimal group test setting. Our framework can
be applied to effectively combat new diseases in the future.

2. Materials and Methods
2.1. Dilution Effect Modeling
RT-PCR

RT-PCR is the standard laboratory technique to measure a specific RNA concentration
in samples. The targeted RNA sequence in the sample is first reverse transcribed into
complementary DNA sequences (cDNAs). Then, those cDNAs are amplified via PCR. The
number of those cDNAs appreciatively doubles at each cycle. The Ct value will return when
the cDNA concentration achieves a fluorescence-detectable level. Therefore, Ct = − log2 V,
up to an additive constant and measure error, where V represents the viral load.

Spurious onset of fluorescence could happen when the number of cycles is too large.
To control the Type I error, each PCR test has cutoff points (the number of cycles it runs). A
censored model was proposed for the measure of the prevalence in a population taking into
dilution effects [12]. The limit of detection (LoD) reflects the lowest viral load in the sample
that can be detected in a PCR test with a specified probability. The LoD was determined
by studies of the limiting distribution using characterized samples. The Ct value was
estimated by [12] to LoD given in [11] to be dcens = 35.6.

2.2. Ct Distribution among Infections

The Charité Institute of Virology and Labor in Berlin provided 3303 positive samples
and associated viral loads. The positiveness and viral loads were determined by PCR
tests [11]. The Ct values of 3303 positive COVID-19 cases are fitted with the following
Gaussian mixture model [12]:

f (Ct) =
3

∑
i=1

πiN (Ct; µi, σ2
i ), (1)
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where π =

0.32
0.54
0.14

, µ =

20.14
29.35
34.78

, and σ =

3.60
2.96
1.32

.

Figure 1 shows the estimated Gaussian mixture density function and LoD (dcens = 35.6).
The shaded area represents the probability that Ct of an infected person is beyond LoD,
and a value of 0.046 is obtained by numerical integration. The samples with Ct values
beyond LoD are hard to detect. The FNR was assumed for those hard-to-detect samples as
β = 0.8 [12].

Figure 1. Ct distribution among positive cases.

2.2.1. Estimation of the False Negative Rate

A censored model was proposed for FNR [12]. If the viral load of a sample is larger
than LoD, the FNR will be negligible. However, when the viral load is less than LoD,
the FNR of this difficult sample will be estimated. A logistic curve was proposed to fit
the relationship between the FNR and Ct values [13]. The new logistic regression model
recognizes that FNR will strictly increase as the Ct value becomes larger. The FNR model is:

FNR(Ct) =
1

1 + exp (−12.5(Ct − 35.8))
. (2)

The location parameter, 35.8, and scale parameter, 12.5, were estimated to make
FNR(Ct) meet the following two properties:

1. FNR(dcens) = 0.05
2. E(FNR(Ct) | Ct > dcens) = β, where β = 0.8

2.2.2. Dilution Effect Functions

Optimal pool sizes were derived for Dofman’s procedure when pooled testing is
subject to dilution effects [7]. Given the pool size n and the number of positive cases d, he
proposed that the group sensitivity function for d ≥ 1 is :

SeG(n, k) = p
[
1− (1− p)nk

]−1
, (3)
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where k is a dilution parameter such that 0 ≤ k ≤ 1. No dilution effect corresponds to k = 0.
When k = 1, the group-testing sensitivity,

SeG(n, 1) = p[1− (1− p)n]−1, (4)

can be interpreted as the probability of a sample randomly selected from a group of size n
being positive.

The concentration d/n determines the sensitivity of group testing [8]. If n is fixed,
SeG(n, d) increases in d. The faster SeG(n, d) converges to the sensitivity of individual
testing as d approaches n, the lower the dilution effect. Ordered pooling is shown to be the
most efficient way to group patients if SeG(·, d) is concave [9]. This conclusion generalizes
the ordered pooling algorithm of [10] from no testing error to testing error with dilution
effects based on (3) and (4).

Dilution effects were modeled in a molecular level [12,13]. Based on large-scale COVID-
19 clinical data sets used in [11], researchers proposed more realistic dilution models. The
average viral load of a pooled sample is n−1 ∑d

i=1 Vi. By the relationship between V and
Ct = − log2 V, the Ct,G value of the pooled sample is:

Ct,G = − log2

(
1
n

d

∑
i=1

Vi

)
= − log2

(
1
n

d

∑
i=1

2−Ct,i

)
. (5)

The group testing FNRs were determined by (5) and (2). Monte Carlo simulations
were conducted [13] to estimate the expected FNR for a pooled sample given n and d. We
follow the notation of [13], and let γ(n, d) denote the expected FNR.

In practice, we do not know d before testing. In contrast, the infection rate of a
population is usually roughly estimated by a specific group testing. Inspired by γ(n, d), we
propose the expected FNR:

β(n, p) =
∑n

d=1 γ(n, d)(n
d)pd(1− p)n−d

1− (1− p)n (6)

for n and the infection rate of the population p. Figure 2 shows the expected FNR versus
the pool size under different infection rates. For low infection rates, such as 0.001 and 0.01,
the associated FNR becomes higher when the pool size increases. In contrast, for higher
infection rates, the associated FNR becomes lower when the pool size becomes larger. The
reason behind this phenomenon is concentration. Under the environment of a low infection
rate, the viral concentration becomes lower if we increase the group size. However, the
viral concentration will become dense if we increase the group size when the infection rate
is high.

2.3. Multi-Step Group Testing with Dilution Effects
2.3.1. Multi-Step Group Testing

Multi-step group testing followed by sequential tests achieved high efficiency and
efficacy when the dilution effect is not included in the model [5]. Group tests are repeated
until the process results in three batch negatives or three batch positives. Each round of
the multi-step group testing will depend on the previous group testing results. Negative
sub-populations can be retested with a larger group size since the probability of for positive
incidents is substantially reduced. Meanwhile, a positive sub-population tends to use
groups with smaller sizes for retesting due to the increased probability of positives. The
group size of the next iteration is determined by the optimizing the expected number of tests.
After several rounds, the majority of the population will not need further investigations
while others with 3 positive group test results will need individual tests. We noticed that
some of the very large optimal group sizes are impractical. Some frequent group negatives
such as −−− or −−+− can yield an optimal group size over 1000 in a later stage when
the infection rate is as low as 0.1%. Figure 3 compares test consumption of multi-step
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group testing with different group size upper limits. Group size upper limits have effects
on the number of group tests when the population infection rate is low. The multi-step
group testing procedure is more robust in sensitivity when a group size upper limit is
implemented.

Figure 2. Expected FNR vs. pool size under different infection rates.

Type

Batch_Consumption

Indiv_Consumption

Figure 3. Number of tests for multi-step group testing for population size 100,000 with three different
group size upper limits: 32, 64, and 10,000.
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2.3.2. Optimal Group Size
The size of a group determines the efficiency of group testing. Laboratories are

interested in minimizing the required number of tests. Traditionally, research on group
testing has focused solely on the expected number of tests per individual [1,4]. Given the
probability of a type I error and the probability of a type II error, the expected number of
tests per person without dilution setting, T(n), is:

T(n) =
1
n
+ 1− Pr(Type II Error)− [1− Pr(Type I Error)− Pr(Type II Error)](1− p)n. (7)

The accuracy, sensitivity, and other measures were considered by [5], as well as the
number of tests, and [15] included the expected number of tests and accuracy. Both the
costs of collecting the samples and those of running the assays were considered by [16]. An
extension of the objective function was discussed to array testing over a number of realistic
situations [17]. They showed that controversy between different objective functions may be
useless since the corresponding results are largely the same for standard testing algorithms
in a wide variety of situations.

Before we derive the expected number of tests per person based on (7) for Dorman’s
method, we first show the probability in each cell of the confusion matrix for group
testing results for the infection rate p. Table 1 shows the probabilities for the confusion
matrix, where γ(n, 0) denotes the probability that a group of size n with no positive cases
test negative.

Table 1. Probabilities for the confusion matrix for group testing results.

True Condition

No Samples Are Infected At Least One Sample is Infected

Test + (1− γ(n, 0))(1− p)n ∑n
d=1(1− γ(n, d))(n

d)pd(1− p)n−d

Result − γ(n, 0)(1− p)n ∑n
d=1 γ(n, d)(n

d)pd(1− p)n−d

Test result + needs n + 1 tests, whereas test result − needs only one test. The expected
number of tests per person under the dilution setting, T(n), is:

T(n) = ((1− p)nγ(n, 0) +
n

∑
d=1

pd(1− p)n−dγ(n, d))× 1
n

+

[
n

∑
d=1

(
n
d

)
pd(1− p)n−d(1− γ(n, d)

]
+ (1− γ(n, 0))(1− p)n)(

1
n
+ 1) (8)

= (1− p)n

[
1− γ(n, 0) +

1
n
+

n

∑
d=1

(
1 +

1
n
− γ(n, d)

)(
n
d

)(
p

1− p

)d
]

.

A selection of the group size is an optimization problem. We seek to minimize
T(n) subject to the expected FNR β(n, p) given in (6) not exceeding a given level C. The
optimization problem can be written as:

min
n∈{1,2,··· ,nmax}

T(n) (9)

such that β(n, p) ≤ C,

where nmax is the upper limit of the group size.
Figure 4 shows the optimal group size among different infection rates with different

thresholds for the expected FNR β(n, p). Figure 5 illustrates the expected FNR given
the optimal group size under the different thresholds. A group of size 1 is returned for
a threshold of 0.01 because even the individual testing cannot achieve the threshold of
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FNR. Except for low thresholds of 0.01 and 0.1, we can notice that the optimal group size
gradually decreases as the infection rate increases. As a result, the viral concentration in
pooling increases with an optimal size. The expected FNR given the optimal group size
tends to decrease gradually when the infection rate increases as well.

Figure 4. Optimal group size for different infection rates with different expected FNR thresholds.
The infection rate ranges from 0.001 to 0.1; expected FNR thresholds are 0.01, 0.1, 0.2, 0.3, and 0.4.

Figure 5. Expected FNR given optimal group size under different thresholds. The infection rate
ranges from 0.001 to 0.1; the expected FNR thresholds are 0.01, 0.1, 0.2, 0.3, and 0.4.

2.3.3. Sensitivity

The sensitivity of Dorfman’s method is (1− β)2 under no dilution effect assump-
tion [4,5,18]. Note that it does not depend on n or d. We can extend this result by taking
into account the dilution effect. To identify an infection as test positive, we want to make no
error on neither the pooled testing nor the individual testing. Given the infection rate p, the
probability of making no error on pooled testing is 1− β(n, p). It is intractable to estimate
the probability that an individual received a correct test result. The reason is because the
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pooling result depends on other samples in the same group. If an infected sample has
very low viral load and it happens to be in the same group as other infected samples with
high viral load, it is possible that individual testing fails to detect the samples with low
viral loads. If we ignore those complicated hierarchical relations, we can assume that
the individual test result is independent to the pooled test result. Then, the approximate
sensitivity, given p and n, is:

(1− β(n, p))(1− γ(1, 1)). (10)

Table 2 shows a comparison between the approximate sensitivity based on (10) and
the simulated sensitivity for a fixed group size of 10 and different infection rates. The
population size is 100,000 with 100 repetitions.

Table 2. Approximate sensitivity vs. simulated sensitivity given pool size 10, population size 100,000,
and 100 repetitions.

p Group Size Approximate Sensitivity Simulated Sensitivity sd

0.001 10 0.7798 0.7824 0.0364
0.01 10 0.7871 0.7919 0.0124
0.03 10 0.8031 0.8156 0.0076
0.05 10 0.8188 0.8357 0.0054
0.1 10 0.8561 0.8770 0.0037

Multi-step group testing methods [5] mitigate the false negative issue without consid-
ering dilution effects. Every sample was taken with a few rounds of pooled testing and
possible individual tests. At the end of each round, samples in a negative sub-population
entered into a larger group in the next round. There is one caveat for multi-step group
testing under the assumption of dilution effects. If there are infected samples in a negative
sub-population, we will pool those false negative cases in the group with a larger size.
The infection rate in the larger pooling size will be lower. We use Figure 2 as an example.
If the infection rate of the whole population is 0.03 and the group size is 25, then the
expected FNR is around 0.22. After the first round of group testing, we can obtain negative
sub-populations and positive sub-populations. Among the negative sub-populations, there
can be false negative cases, and the infection rate is lower than 0.03. Multi-step group
testing moves the samples in a negative sub-population into a larger group. For example,
if the infection rate of the negative sub-population is 0.01 and the group size is 50, the
expected FNR will become higher than 0.3.

Dilution effects make further rounds of group testing on negative sub-populations
even harder. Hence, we propose in this study that all the groups in the negative sub-
populations are tested twice in each round of the multi-step group testing to reduce FNR
caused by dilution effects. Samples in the negative groups in the second test will be
advanced to the negative sub-population for the next round. The samples in the positive
group in the second test will be advanced to the positive sub-population in the next
round. Figure 6 shows the negative repetition. For a negative repetition in round k, the
expected reduction of the number of false negatives is np(β(n, p)− β(n, p)k+1), and it is
k−1np(β(n, p)− β(n, p)k+1) per test kit. This number decreases as k increases, and therefore,
it is not efficient to conduct further testing for the cases from the negative repetition.
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Figure 6. Negative sub-population in a repeated testing procedure.

3. Results

We conducted a Monte Carlo simulation study to evaluate the efficiency and efficacy
of group testing procedures in the dilution effects setting. The simulation results are given
in Table 3. A population of 100,000 people is randomly generated 100 times. The infection
rates of 0.1%, 1%, 3%, 5%, and 10% are chosen. For the infected people, Ct follows (1).
The FNR function given Ct is given in (2). We compared the classification metrics for (A)
individual tests; (B) single group testing with a fixed size 10; (C) single group testing with
optimal group sizes; (D) multi-step group tests ending with two batch negatives or two
batch positives, with an individual test given to two batch positives; and (E) three stage
hierarchical group testing, which will divide positive groups into smaller, non-overlapping
subgroups twice until all positive specimens are confirmed by individual testing. For
(C), (D), and (E), the group size is determined by (9) for the sub-populations in each step.
For each of the infection rates, the overall accuracy, sensitivity, specificity, PPV (positive
predictive value: proportion of true positives among test positives), and NPV (negative
predictive value: proportion of true negatives among test negatives) are obtained, and
the required number of tests to cover the whole population is calculated. The values are
averaged over the 100 repetitions.

Conventional individual testing performs better in accuracy and sensitivity than any
group testing methods. The sensitivity of individual testing is around 0.95 due to the
probability that an infected person has Ct, which is beyond the detection limit of around
5%. The Ct value of the pool will be high and beyond LoD, even when we use the optimal
group size and the infection rate is low.

The sensitivity of group testing method is found to be equal in different infection rates
when there are no dilution effects [5]. However, with dilution effects and FNR functions of
Ct, the sensitivity of the group testing methods increases if the infection rate goes up. It is
because a higher infection rate raises the viral load concentration in a pooling sample and
therefore reduces FNR. Figure 7 shows that the simulated sensitivity of (B), (C), (D), and (E)
increased as the infection rate increased.

Method (C) improved the sensitivity by using optimal group sizes instead of a fixed
group size in method (B). Figure 8 shows the Ct value distribution in the negative sub-
population for a fixed group size (method (B)) and the optimal group size (method (C)).
The Ct distribution for Ct > 35.6 is almost identical for methods (B) and (C). However,
the distribution of Ct is lower in (B) than in (C) for Ct < 35.6. Method (C) made less false
negatives for the samples with low Ct. For the infection rates of 0.001 and 0.01, the number
of tests for method (C) was larger than that of method (B). However, when the infection
rate became larger than 1%, the number of tests in method (C) started to be less than that of
method (B).
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Table 3. Simulation results: 100 repetitions, population size 100,000; mean with standard deviation in
parentheses.

p(1) 0.001 0.01 0.03 0.05 0.10

(A) a Acc.(2) 0.999 (0.000) 0.999 (0.000) 0.998 (0.000) 0.997 (0.000) 0.995 (0.000)
Indiv Sens.(3) 0.955 (0.018) 0.960 (0.005) 0.960 (0.005) 0.960 (0.000) 0.959 (0.000)
Tests Spec.(4) 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 0.998 (0.000) 0.995 (0.000)

PPV 0.484 (0.020) 0.910 (0.010) 0.968 (0.002) 0.983 (0.002) 0.990 (0.001)
NPV 10.000 (0.000) 10.000 (0.000) 0.999 (0.000) 0.998 (0.000) 0.995 (0.000)

#Tests(5) 100,000 (0) 100,000 (0) 100,000 (0) 100,000 (0) 100,000 (0)

(B) b Acc. 10.00 (0.000) 0.998 (0.000) 0.994 (0.000) 0.992 (0.000) 0.987 (0.000)
Single Sens. 0.781 (0.042) 0.794 (0.013) 0.815 (0.008) 0.836 (0.001) 0.876 (0.000)
Group Spec. 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 10.000 (0.000)
Tests PPV 0.990 (0.012) 0.992 (0.004) 0.992 (0.002) 0.993 (0.001) 0.995 (0.001)
Fixed NPV 10.00 (0.000) 0.998 (0.000) 0.994 (0.000) 0.991 (0.000) 0.986 (0.000)

Size 10 #Tests 10,878 (91) 17,649 (261) 31,190 (348) 42,926 (463) 65,750 (500)

(C) c Acc. 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.992 (0.000) 0.988 (0.000)
Single Sens. 0.830 (0.038) 0.823 (0.013) 0.834 (0.006) 0.845 (0.005) 0.877 (0.003)
Group Spec. 10.000 (0.000) 10.000 (0.000) 10.000 10.000 (0.000) 10.000 (0.000)

Optimal PPV 0.994 (0.010) 0.995 (0.002) 0.995 (0.001) 0.996 (0.001) 0.998 (0.001)
Sizes NPV 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.992 (0.000) 0.987 (0.000)

#Tests 20,517 (54) 21,579 (158) 30,569 (257) 38,872 (352) 54,995 (304)
B+Ind(6) 20,000 + 517 16,667 + 491 16,667 + 13,902 16,667 + 22,205 25,000 + 29,995

(D) d Acc. 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.992 (0.000) 0.987 (0.000)
Multi-step Sens0. 0.831 (0.039) 0.835 (0.012) 0.841 (0.000) 0.839 (0.006) 0.869 (0.004)

Group Spec0. 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 10.000 (0.000)
Variable PPV 0.997 (0.006) 0.997 (0.002) 0.998 (0.001) 0.998 (0.001) 0.999 (0.000)

Sizes NPV 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.992 (0.000) 0.986 (0.000)
1 indiv #Tests 40,388 (41) 40,396 (126) 46,898 (191) 50,739 (280) 70,175 (290)

Test B+Ind 40,082 + 306 37,278 + 3118 39,571 + 7327 38,801 + 11,938 48,314 + 21,861

(E)e Acc. 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.992 (0.000) 0.987 (0.000)
Three Stage Sens0. 0.833 (0.034) 0.822 (0.014) 0.829 (0.007) 0.837 (0.005) 0.869 (0.003)
Hierarchical Spec. 10.000 (0.000) 10.000 (0.000) 10.000 (0.000) 10.00 (0.000) 10.00 (0.000)

Variable PPV 0.998 (0.006) 0.997 (0.002) 0.998 (0.001) 0.998 (0.001) 0.999 (0.000)
Sizes NPV 10.00 (0.000) 0.998 (0.000) 0.995 (0.000) 0.991 (0.000) 0.986 (0.000)

Group #Tests 20,436 (48) 20,964 (154) 28,527 (224) 35,956 (304) 56,906 (295)
Test B+Ind 20,130 + 306 17,896 + 3067 21,308 + 7219 24,078 + 11,878 35,013 + 21,893

a Conventional individual tests. b One-step batch tests with a fixed batch size of 10, individual tests for positive
batches. c One-step batch tests with variable batch sizes. d Multi-step batch tests with variable optimal batch
sizes; an individual test for 2 batch positives. e Three stage hierarchical group tests with variable optimal group
sizes. (1) infection rate, (2) overall accuracy, (3) sensitivity, (4) specificity, (5) number of required tests,
(6) number of batch tests + number of individual tests.

Method (D) improved the sensitivity by multi-step group testing over single layer
group testing in method (C) for infection rates of 0.001 and 0.01. Figure 9 shows the
distribution of Ct in the negative sub-populations for method (C) and method (D). The
comparison of the distributions of Ct between method (C) and method (D) was identical
to the comparison between method (B) and method (C). Method (D) yielded less false
negatives for samples with low Ct values. The violin plot shapes of methods (C) and (D)
for the low Ct values are slightly different for an infection rate of 0.001. For the infection
rates of 0.05 and 0.1, the Ct distributions for methods (C) and (D) were almost identical,
but the difference in sensitivity was 0.006 and 0.007 between multi-step group testing and
single layer group testing for infection rates of 0.05 and 0.1, respectively.

Method (D) improved over Method (C) for certain infection rates. Table 4 shows the
changes in false negatives between step I and step II of multi-step group testing. The multi-
step architecture could not reduce false negatives by increasing steps when the dilution
effect was assumed in this study. The reason is because the previous false negatives fell
into groups with larger sizes, yielding even higher dilution effects.
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Figure 7. Sensitivity of group tests as the infection rate varies. Generally, the sensitivity of group test
methods increases as the infection rate increases.

Figure 8. False negative Ct values of single layer group testing with fixed group size and optimal
group size for each of the infection rates: 0.001, 0.01, 0.03, 0.05, and 0.1.
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Figure 9. False negative Ct values of multi-step group testing and single layer group testing for each
of the infection rates: 0.001, 0.01, 0.03, 0.05, and 0.1.

Table 4. Simulation results: 100 repetitions, population size 100,000; mean with standard deviation
in parentheses.

p Step I False Negatives Step II False Negatives

0.001 14.4 (5.86) 15.3 (4.87)
0.01 88.2 (74.8) 86.3 (80.4)
0.03 242 (203) 235 (210)
0.05 367 (350) 392 (325)
0.1 717 (546) 623 (510)

Method (E) can be considered the variation of method (D), which does not advance
to further tests on negative sub-populations. Three-stage hierarchical group tests could
not improve the sensitivity compared to the Dorfman group testing but improved the test
efficiency. Our simulations showed that the difference in sensitivity between method (E)
and method (C) was less than 1%. Method (E) saved 7% of test consumption compared to
method (C) for the infection rate of 5%.

4. Discussion

Some infectious diseases spread silently by asymptomatic carriers, and we need a
rapid testing of the virus for all the residents of each community. It requires more efficient
testing methods than individual testing. Group testing is a natural candidate.

Compared to individual testing, group testing increases FNR. In this study, we have a
comprehensive discussion of dilution effects, one major concern for the implementation of
the group testing. The pooling result depends on other samples in the same group. This is a
limitation of the pooled tests. If we ignore those complicated hierarchical relations, we can
assume that the individual test result is independent to the pooled test result. Using over
3000 samples, we modeled the dilution effects. Furthermore, under this specific dilution
effect, we can estimate the optimal group size via Monte Carlo simulation. The optimal
group size is determined by the infection rate and the dilution effect. Single group testing
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with an optimal size performs better on both sensitivity and test efficiency than single
group testing with a fixed size of 10. The group size of 10 is widely used for COVID-19
group testing.

Based on our simulation study, we recommend single group testing with optimal
group sizes. Multi-step group testing cannot improve the sensitivity from single group
testing with an optimal size due to the dilution effect. The reason for this is because the
samples with false negatives in the previous group are pooled into a larger group, causing
a larger dilution effect. More people in the community can be covered by improving the
efficiency of tests. Multi-stage hierarchical group testing, a variation of multi-step group
testing, can improve the efficiency of testing by a reduction in test consumption when it
has less than 1% in sensitivity comparing to the single-layer group testing with optimal
group size.

Our dilution effect modeling and simulation tool will be useful to determine an
optimal group test. It can be easily applied to various infectious diseases. For COVID-
19, for example, the presence of the viral load in the patients can vary over more than
nine orders of magnitude [19]. Therefore, any lab using group testing needs a simulation
tool to monitor/optimize its group testing regularly. In future studies, we will continue
investigating the dilution effect to improve test efficiency and efficacy. Other group testing
methods such as overlapping group tests will be investigated as well.
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