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Abstract: In financial mathematics, it is a typical approach to approximate financial markets operating
in discrete time by continuous-time models such as the Black Scholes model. Fitting this model
gives rise to difficulties due to the discrete nature of market data. We thus model the pricing process
of financial derivatives by the Black Scholes equation, where the volatility is a function of a finite
number of random variables. This reflects an influence of uncertain factors when determining
volatility. The aim is to quantify the effect of this uncertainty when computing the price of derivatives.
Our underlying method is the generalized Polynomial Chaos (gPC) method in order to numerically
compute the uncertainty of the solution by the stochastic Galerkin approach and a finite difference
method. We present an efficient numerical variation of this method, which is based on a machine
learning technique, the so-called Bi-Fidelity approach. This is illustrated with numerical examples.

Keywords: numerical finance; Black Scholes equation; uncertainty quantification; uncertain volatility;
polynomial chaos; Bi-Fidelity method

1. Introduction

In modern financial markets, traders can choose from a large variety of financial
derivatives. This term denotes financial instruments that have a value determined by so-
called underlying variables or assets such as stocks, the oil price or the weather. Originally,
derivatives were invented to reduce the risk of uncertain prices, especially in agricultural
markets where one could have long periods between sowing and harvest, see Chapter 1
and Chapter I in [1,2], respectively.

As the derivative market was growing, the need for a pricing formula for derivatives
also increased in the 20th century. A breakthrough was made by Black, Scholes [3] and
Merton [4] when they contemporaneously formulated a model allowing the evaluation of
derivatives. They were later awarded the Nobel prize in economics for their work. Derived
from this model, the Black Scholes equation

∂V(S, t)
∂t

+
1
2

σ2S2 ∂2V(S, t)
∂S2 + rS

∂V(S, t)
∂S

− rV(S, t) = 0, S ∈ (0, ∞), t ∈ [0, T], (1)

explains the behaviour of the price V of the derivative by means of a partial differential
equation (PDE). This derivative is allowed to depend on the time t up to maturity T and
only one underlying stochastic asset (e.g., a stock, an index or some commodity price). The
price of the asset is denoted by S and is assumed to follow a geometric Brownian motion.
The constant r denotes the risk free rate of interest in the market and σ ∈ R is the so-called
volatility of the stochastic asset. Later, this model was extended to multiple underlying
assets and adjusted for certain kinds of underlying variables, for example, interest rates;
see [5].

Comparison to real data soon showed that the volatility σ of one and the same stochas-
tic asset can take values that differ more than explainable by rounding errors, etc.; see [6–8].
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The most popular approaches to deal with this are to model the volatility either as local
volatility, i.e., a function σ(S, t) as in [9–12] or as a stochastic process; compare, e.g., the
famous Heston model [13] or [6,7,14].

These models as well as others are formulated in continuous-time. Because prices in
financial markets are only visible in trades, the markets always operate in discrete time;
compare, e.g., [15]. The models above, therefore, represent approximations of reality. In
order to use them, they have to be fitted to the market using discrete data. This fitting
procedure, however, introduces uncertainty in the recovered values, e.g., by rounding
errors and by the interplay of the random nature of stochastic assets and their discrete
observations. Because the interest rate r is easy to determine even from discrete data, we
focus on the volatility σ for considerations of uncertainty.

Also in [16–18], the authors investigated uncertainty in the volatility: They modelled
it as a one-dimensional random variable Σ(ω) = Θ(ω) or a function of a one-dimensional
random variable Σ(Θ(ω)) for ω in the underlying probability space. Then the price
process V(S, t, Θ) also depends on Θ and follows the stochastic version of the Black Scholes
equation

∂V(S, t, Θ)

∂t
+

1
2

Σ(Θ)2S2 ∂2V(S, t, Θ)

∂S2 + rS
∂V(S, t, Θ)

∂S
− rV(S, t, Θ) = 0. (2)

This equation can be derived by inserting the stochastic volatility into the Black Scholes
model, where the Brownian motion is independent of Θ. It can be studied by means of
uncertainty quantification: The solution V is developed in a generalized Polynomial Chaos
(gPC) expansion

V(S, t, Θ(ω)) =
∞

∑
n=0

vn(S, t)pn(Θ(ω)) (3)

for orthonormal polynomials pn w.r.t. the distribution of Θ and coefficients given by the
expected value vn(S, t) = E(V(S, t, Θ)pn(Θ)). If Θ has a density µ : D → R, one can
alternatively calculate the coefficients by

vn(S, t) =
∫
D

V(S, t, x)pn(x)µ(x) dx.

In [16], these integrals are directly computed by a quadrature rule. The required
solutions V(·, ·, xj) in the quadrature points xj are calculated as the solutions of the deter-
ministic Black Scholes Equation (1) with σ = xj. This classifies the method as a Stochastic
Collocation method.

In the articles [17,18], however, the stochastic Galerkin method is applied for comput-
ing the coefficients vn(S, t). By inserting the gPC expansion (3) into the stochastic Black
Scholes Equation (2), multiplying the equation by an orthogonal polynomial pk(Θ) and
applying the expected value on both sides, deterministic PDEs for the coefficients vn(S, t)
are derived

0 =
∂vk(S, t)

∂t
+

1
2

S2
∞

∑
n=0

∂2vn(S, t)
∂S2 E

(
(Σ(Θ))2 pk(Θ)pn(Θ)

)
+ rS

∂vk(S, t)
∂S

− rvk(S, t). (4)

After truncating of the system and the coupling term to a finite number of indices, the
system is solved numerically by the method of lines in [17] and the finite element method
in [18].
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In our work, we extend the model used above to the volatility Σ(Θ1, . . . , ΘL) depend-
ing on many finitely random variables Θ1, . . . , ΘL. This leads to the stochastic Black Scholes
equation

0 =
∂V(S, t, Θ1, . . . , ΘL)

∂t
+

1
2

Σ2(Θ1, . . . , ΘL)S2 ∂2V(S, t, Θ1, . . . , ΘL)

∂S2 (5)

+rS
∂V(S, t, Θ1, . . . , ΘL)

∂S
− rV(S, t, Θ1, . . . , ΘL).

A model like this might, for instance, occur when the volatility is modelled as a
random variable that also depends on certain stochastic factors as in [19–22]. We propose a
momentum constrained maximum likelihood technique to fit the volatility distribution to
real data and compare our results to market data.

The solution is then derived in the same way as in (4) and calculated numerically by a
finite difference method. The computational cost for multiple similar calculations is reduced
by a Bi-Fidelity technique, which can be considered as a machine learning approach.

This paper thus extends the existing literature [17,18] to a finite number of random
variables affecting the volatility. To deal with the increasing computational effort, a Bi-
Fidelity approach is introduced in numerical computations. The effectiveness is illustrated
in numerical examples with an explicit finite difference scheme. Another novelty is the
comparison of our model to real market data. In order to fit the stochastic volatility of our
model to the observed market volatility, a momentum constrained maximum likelihood
approach is proposed.

The outline of the article is as follows: After introducing gPC to finitely many random
variables, a method of fitting the stochastic volatility to real data is described in Section 2.
The stochastic Galerkin method is used to solve Equation (5) in Section 3. However,
computational costs can be high. Thus, we introduce a Bi-Fidelity numerical technique to
compute this more efficiently in Section 4. The paper is rounded out with numerical results
illustrating the effectiveness of this technique and the fit to real market data in Section 5.

2. Fitting the Random Volatility to Real Market Data

For the convenience of the reader and in order to introduce notation, we briefly recall
the fundamentals of generalized polynomial chaos (gPC). We then propose a method to fit
the volatility distribution to real data.

Denote by Θ1, . . . , ΘL random variables with joint distribution function F̄ : D̄ → R for
a multivariate domain D̄ ⊂ RL. For a function f̄ : D̄ → R, the following notation is used
for integration with respect to (w.r.t.) F̄:

〈 f̄ 〉 :=
∫
D̄

f̄ (x1, . . . , xL) dF̄(x1, . . . , xL) = E( f̄ (Θ1, . . . , ΘL)).

Consider a system of polynomials { p̄α : D̄ → R | α = (α1, .., αL) ∈ NL
0}, where the

polynomial p̄α(x1, . . . , xL) has degree in the i-th variable degxi ( p̄α) = αi. In adaption to
Definition 8.24 in [23], we call this an infinite system of orthogonal polynomials w.r.t. F̄, if for
all multi indices α, β ∈ NL

0 one has

〈 p̄α p̄β〉 = 0 for α 6= β,

〈 p̄2
α〉 =: γ̄α > 0.

The existence of orthogonal polynomial systems follows from the Gram Schmidt
algorithm, if for all α = (α1, . . . , αL) ∈ NL

0 the moments 〈xα1
1 · . . . · xαL

L 〉 are finite. Uniqueness
of the orthogonal polynomials is then given up to multiplication by constants. If the Θi are
independent, they are in particular given by the product of the orthogonal polynomials
w.r.t. the distribution of each Θi.



Mathematics 2022, 10, 489 4 of 20

In the following, Lp
dF(D, H) denotes the space of all functions D → H that are p-times

integrable w.r.t. the measure dF for some D ⊂ Rn and codomain H. If dF is not explicitly
defined, the Lebesgue measure is chosen. If D and H are not defined, then D equals the
domain of F and H equals R.

It is well known that under certain circumstances, orthogonal polynomials span the
space L2

dF̄. They are thus called a complete orthogonal basis of L2
dF̄.

This is, for example, the case, if F̄ is absolutely continuous, has finite moments and
either (Θ1, . . . , ΘL) realizes in a compact domain almost surely or the density of F̄ is
exponentially integrable. For details, see [24]. If the Θi are independent, the orthogonal
polynomials w.r.t. F̄ span L2

dF̄, if all orthogonal polynomial systems w.r.t. the density of Θi

span the corresponding L2 spaces. This is due to the tensor product representation of L2
dF̄

in case of independency of the Θi, see Example E.10 in [25].
Assuming such circumstances to be given, the gPC expansion can be defined.

Theorem 1 (adaption of section 11.3 in [23]). Let Θ1, . . . , ΘL : Ω → R be random variables
with joint distribution F̄ such that the orthogonal polynomials ( p̄α)α∈NL

0
w.r.t. F̄ form a complete

basis of L2
dF̄. Denote byH an arbitrary Hilbert space, e.g., the real numbers R or a space of the form

Lp(D,R), p = 0, 1, 2, for some domain D ⊂ Rn. Then every random variable X : Ω→ H with

X =d X̃(Θ1, . . . , ΘL) (6)

in distribution for a function X̃ ∈ L2
dF̄(D̄,H) can be represented in the generalized Polynomial

Chaos (gPC) form

X =d ∑
α∈NL

0

xα p̄α(Θ1, . . . , ΘL) with xα =
〈Xp̄α〉
〈 p̄2

α〉
∈ H. (7)

The proof follows in analogy to the proof for independent continuous random vari-
ables in Section 11.3 in [23] from the tensor product decomposition L2

dF̄ ⊗H ∼= L2
dF̄(D̄,H).

Assuming Σ ∈ L2
dF̄, Theorem 1 gives the decomposition of the volatility

Σ(Θ1, . . . , ΘL) := ∑
α∈NL

0

σα p̄α(Θ1, . . . , ΘL). (8)

To fit the model to the data, we truncate the series by bounding the maximum polyno-
mial degree |α| := α1 + . . . + αL by K ∈ N0

ΣK(Θ1, . . . , ΘL) := ∑
α∈NL

0 , |α|≤K

σα p̄α(Θ1, . . . , ΘL). (9)

We propose a momentum constrained maximum likelihood approach to fit the gPC
coefficients σα to discrete real-world data. This facilitates the computation.

The values of the volatility of an asset can be obtained, e.g., by calculating the implied
volatilities from corresponding European options. This generates a dataset of implied
volatilities representing observations of the random variable ΣK(Θ1, . . . , ΘL). When fitting
the volatility to the data, we constrain ourselves to those tuples of coefficients corresponding
to a volatility ΣK(Θ1, . . . , ΘL) whose first moments coincide with the empirical moments
of the dataset. The choice of these constraints reduces the dimension of the parameter
space for the likelihood function while important characteristics of the distribution—the
statistical moments—are maintained.

We illustrate the technique on the simple case of two independent random variables
and truncation at K = 1:
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Example 1. Let Θ1, Θ2 be two independent random variables of known distribution and w.l.o.g.
expected value 0 and variance 1. Assume the densities of their distributions exist and denote them by
f1, f2, respectively. Now consider the random volatility truncated to maximum polynomial degree 1

Σ1(Θ1, Θ2) = σ00 p̄00(Θ1, Θ2) + σ01 p̄01(Θ1, Θ2) + σ10 p̄10(Θ1, Θ2) = σ00 + σ01Θ2 + σ10Θ1

when choosing orthonormal polynomials. Assume that values of the volatility y1, . . . , yM are given.
The plain maximum likelihood method would maximize the joint density h of the realizations
y1, . . . , yM of Σ1(Θ1, Θ2) w.r.t. the three coefficients (σ00, σ01, σ10) ∈ U ⊂ R3 \ {0}:

(σ00, σ01, σ10) = argmax
(σ00,σ01,σ10)∈U

h(y1, . . . , yM | (σ00, σ01, σ10))

= argmax
(σ00,σ01,σ10)∈U

M

∏
i=1

1
|σ10σ01|

∫
t∈R

f1

(
x− σ00 − t

σ10

)
f2

(
t

σ01

)
dt.

Constraining the maximum likelihood estimator to be exact in the first moment, i.e., the
expected value, gives

E(Σ1(Θ1, Θ2)) = σ00
!
= ȳM := mean(y1, . . . , yM).

This reduces the optimization to two variables

(σ01, σ10) = argmax
(σ01,σ10)∈Û

M

∏
i=1

1
|σ10σ01|

∫
t∈R

f1

(
x− ȳM − t

σ10

)
f2

(
t

σ01

)
dt,

where Û = U ∩ {ȳM} ×R2.
Further constraints can be used to reduce the complexity even more: Claiming, e.g., the

variance to coincide with the empirical variance Var(Σ1(Θ1, Θ2))
!
= S2

M gives the additional
relation

σ10 = ±
√

S2
M − σ2

10

reducing the optimization to one variable and the sign of σ10. This ends our example.

3. Deriving the System of PDEs for the gPC Coefficients

The stochastic Galerkin method is applied to the Black Scholes Equation (5) with
uncertain volatility in order to transform the stochastic PDE into a system of deterministic
PDEs for the gPC coefficients of the solution V(S, t, Θ1, . . . , ΘL).

To do so, one has to assume Σ ∈ L2
dF̄ and V ∈ L2

dF̄(D̄, L2((0, ∞) × [0, T],R)), such
that Theorem 1 can be applied. In analogy to the one-dimensional case in [17,18], the thus
derived gPC expansions are inserted in the Black Scholes Equation (5). Multiplication of
the equation by p̄δ(Θ1, . . . , ΘL) and application of the expected value, for each δ ∈ NL

0 at a
time, yields the equations

0 =
∂vδ(S, t)

∂t
+

1
2

S2 ∑
α,β,γ∈NL

0

σασβ
∂2vγ(S, t)

∂S2 Mαβγδ + rS
∂vδ(S, t)

∂S
− rvδ(S, t)

due to orthogonality of the pα. Note that the Galerkin multiplication tensor Mαβγδ :=
〈 p̄α p̄β p̄γ p̄δ〉
〈 p̄2

δ〉
exists since the integrated functions are all polynomials in L variables.

In order to solve the system, the boundary conditions and the final condition corre-
sponding to the considered financial derivative are transformed to conditions on the gPC
coefficients vi. Usually, they are deterministic and thus appear in the coefficient v(0,...,0),
whereas all other coefficients vanish.
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We truncated the gPC expansions up to maximum polynomial degrees K, N ∈ N0 and
obtained representation (9) for ΣK and

VN(S, t, Θ1, . . . , ΘL) := ∑
δ∈NL

0 , |δ|≤N

vN
δ (S, t) p̄δ(Θ1, . . . , ΘL) (10)

for coefficients vN
δ ∈ L2((0, ∞)× [0, T],R).

The system of equations for the truncated gPC coefficients vN
δ , δ ∈ NL

0 with |δ| ≤ N, is
then given by

0 =
∂vN

δ (S, t)
∂t

+
1
2

S2 ∑
α,β,γ∈NL

0 ,
|α|,|β|≤K,
|γ|≤N

σασβ

∂2vN
γ (S, t)
∂S2 Mαβγδ + rS

∂vN
δ (S, t)
∂S

− rvN
δ (S, t), (11)

which can be evaluated numerically. For demonstrative purposes, we use a finite difference
scheme, see Appendix A.

Note, however, that convergence of the truncated stochastic Galerkin solution VN

in (10) to the true solution V as N → ∞ is not obvious and could not be proven to date. It
is a topic open to further research. From now on, we assume convergence.

4. A Bi-Fidelity Approach for Calculating the Stochastic Galerkin Solution to the Black
Scholes Equation with Random Volatility

If the volatility depends on just L = 2 random variables, the stochastic Galerkin (SG)
solution truncated at maximum degree N already has (N + 1)(N + 2)/2 gPC coefficients.
Thus, (N + 1)(N + 2)/2 coupled equations have to be solved to obtain the approximate
SG solution. The number of equations and with it the computational cost rapidly increase
as N or L increases.

This becomes a problem especially if the SG solutions for many options shall be
computed at a time, e.g., for risk management evaluations of derivatives with different
underlying assets. The Bi-Fidelity approach provides a solution to this problem, if the same
type of option (e.g., European Call options) with the same maturity T and interest rate r,
but different distributions of the volatility model Σ(Θ1, . . . , ΘL) are considered. A situation
like this arises, for instance, when comparing financial derivatives of the same type and
maturity date but with different underlying stochastic assets.

In general, given a PDE depending on a random variable Ξ, the Bi-Fidelity method
aims to approximate the desired high fidelity solution at a certain realization z of Ξ by
pre-stored high and low fidelity solutions in some other realizations of Ξ and the compu-
tationally cheaper low fidelity solution in z. This can be considered a machine learning
approach because the properties of the equation are learned offline by picking suitable
realizations for the stored approximation data.

The application of Bi-Fidelity techniques to various problems is an active area of
research [26,27]. In the setting of uncertainty quantification for PDE models, it is frequently
described in the context of uncertainty quantification via Stochastic Collocation methods;
see, e.g., [28,29] for the general procedure or [30–33] for applications. The combination
with the stochastic Galerkin method works similarly; however, it is not very common in
literature.

At first, the random variable Ξ has to be assigned. In our case, it is not given by
(Θ1, . . . , ΘL), since we still want our solution to be a random variable depending on the
Θi in order to explore its stochastic behaviour. Instead, we suppose the distribution of
Σ(Θ1, . . . , ΘL) to change from calculation to calculation, as it would be the case for different
underlying assets, without changes in the distributions of the Θi. This could reflect different
sensitivities of different stochastic assets to the factors Θi. By representation (9) of the
truncated gPC expansion of Σ, a variation in the distribution of the volatility means a
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variation in at least one of the gPC coefficients σα, |α| ≤ K. Hence, the random variable Ξ
describes volatility models of the form (9) by their gPC coefficients σα, |α| ≤ K.

Then, high and low fidelity models have to be defined. The high fidelity model is the
one we are actually interested in. We choose a high-resolution numerical solution to (11)
derived by the explicit finite difference scheme (A3) with a large number of grid points in
the S-space MH

ζ and in time NH
τ . The low fidelity model, i.e., the cheaper model that is less

trusted but used for the approximation rule, is chosen to be the same numerical solution on
a coarse grid with small ML

ζ and NL
τ .

Note, however, that NL
τ must not be chosen too small; otherwise, the stability of the

scheme could be violated for a large number of volatility models. The reason for this
requirement will become clear at step 1 of the offline data generating steps.

It is also possible to consider different numerical schemes or even different but similar
underlying equations for the high and low fidelity models. However, important character-
istics of the solution must be shared between the models.

Now one can proceed with the typical Bi-Fidelity algorithm as described in [28–30].
Below, the application of this algorithm is explained, where the volatility is assumed to
depend on L = 2 random variables Θ1, Θ2 for a better readability. An extension to more
random variables can easily be achieved. The truncation number K = 1 is chosen such that
the random variable Ξ represents the gPC coefficients σ00, σ10 and σ01 of the volatility as in
Example 1.

Since the actual computational effort lies in the calculation of the transformed system
of Equation (A2), the Bi-Fidelity approach is applied directly on the transformed v̄. Thus,
a transformation back to the original variables vN , S and t is performed only once for the
Bi-Fidelity solution, reducing the computational cost. For the calculation of the scheme,
initial conditions and the Galerkin multiplication tensors are pre-stored and reused.

The following three steps describe the offline learning phase of the algorithm in which
the stored approximation data are generated [28–30]. These steps have to be executed only
once.

Step 1: At first, the codomain of Ξ is described by finite intervals σ00 ∈ [a00, b00], σ10 ∈
[a10, b10], σ01 ∈ [a01, b01].
The intervals can, for instance, be constructed by calculation of σ00, σ10, σ01 for
some of the stochastic assets of interest. Alternatively, one can think of possible
values of σ00 inspired by similar experiments and choose bounds of σ10 and σ01
such that the variance of Σ(Θ1, Θ2) is bounded by some predefined value. We
used this approach in the calculations of Section 5.
After that, a large set Y of possible realizations of Ξ has to be chosen such that it
is a good ’cover’ of the possible values of Ξ. One can use Monte Carlo sampling
or a structured grid on the codomain of Ξ.
For every volatility model described by a y ∈ Y, the low fidelity solution v̄L(y)
is computed, if the corresponding system of equations is parabolic and the low
fidelity scheme is stable.

Step 2: Since one can usually not afford to calculate the high fidelity solution in every
y ∈ Y, one has to determine the most important points. Let A ∈ N denote the
number of high fidelity computations one can afford, then this can be achieved
by choosing z0 := argmaxy∈Y dL(v̄L(y), 0)) and

zi+1 := argmax
y∈Y

dL(v̄L(y), V̄L(z1, . . . , zi)), i = 0, . . . , A− 1. (12)

The notation V̄L(Ŷ) := span(v̄L(ŷ) | ŷ ∈ Ŷ) for Ŷ ⊂ Y is used for the span of
the solutions to previously picked zi ∈ Ŷ. Then dL(u, V) := infv∈V ‖u − v‖L

is the distance of a point v ∈ V̄L(Y) to the set V ⊂ V̄L(Y). We used a greedy
procedure for the point selection; for further details on the computation, compare
Algorithm 1 in [29].
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This step selects the points z1, . . . , zA whose solutions span the ’largest’ subspace
V̄L(z1, . . . , zA) of V̄L(Y).

Step 3: The high fidelity solution is calculated in the thus derived points z1, . . . , zA. Note
that NH

τ has to be chosen large enough such that the numerical scheme is stable
for all volatility models zi. The parabolicity of the system of PDEs does not need
to be checked again, as it has been checked in step 1 already. The pairs of high
and low fidelity solutions v̄H(zi), v̄L(zi) are stored.

Assume now that a certain volatility model z is given and the corresponding Bi-Fidelity
solution of the Black Scholes equation with uncertain volatility shall be computed. This is
performed in the online phase as follows [28–30]:

Step 1: The low fidelity solution v̄L(z) is calculated by scheme (A3). Note that the
system of equations needs to be parabolic and the scheme has to be stable for a
reasonable calculation.

Step 2: The low fidelity solution v̄L(z) is projected onto V̄L(z1, . . . , zA) leading to the
projection formula

v̄L(z) ≈ PV̄L(z1,...,zA)
v̄L(z) =

A

∑
k=1

ckv̄L(zk)

with projection coefficients ck ∈ R. Here PVy denotes the orthogonal projection
of y onto V. Details of the computation of the ck can be found in [29], for instance.

Step 3: Finally, the Bi-Fidelity solution is constructed by applying the same projection
law to the stored high fidelity solutions

v̄BF(z) :=
A

∑
k=1

ckv̄H(zk).

After deriving v̄BF, it has to be transformed back to the original variables v, S and t.

5. Numerical Results

This section presents numerical solutions to the Black Scholes equation with uncertain
volatility. For the sake of simplicity, the volatility is assumed to depend on the two
independent random variables Θ with standard normal distribution and ∆ uniformly
distributed on [−0.5, 0.5]. The properties of such models are investigated and the model is
tested on real data. Furthermore, the error of the Bi-Fidelity approximation is investigated
and its computation time is compared to the high fidelity model.

For more convenient reading, times t and the maturity T are given in days, whereas
for the computations, these values were multiplied by 1/251 to go over to years.

5.1. Results for the Extended Model

The numerical solution to the truncated system of Equation (11) for a European Call
option with a strike price strike = 100 and maturity T = 20 in a market with risk-free rate
of interest r = 0 is visualized in Figure 1a,b by plotting its mean and variance.

The volatility of the underlying stochastic asset is modelled by

Σ1(Θ, ∆) = 0.5 + 0.2Θ + 0.1
√

12∆ (13)

for Θ standard normally distributed and ∆ uniformly distributed on [0.5, 0.5]. The random
variables are modelled to be independent. For the gPC expansion of the solution, the
truncation number N = 5 was chosen, for which system (11) is parabolic. The numbers of
grid points Mζ = 200 in ζ and Nτ = 319 in τ were chosen such that the applied explicit
finite difference scheme (A3) is stable.

Contour lines were drawn at a height of quarters of the maximum absolute value and
the borders of the smoothing area, i.e., the area where the solution differs from its final
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condition V(S, T) = (S− strike)+, were drawn in red. These lines will be present in each
of the following surface plots. Note that the expected value surface resembles the solution
of the deterministic Black Scholes equation for σ = 0.5 in Figure 1c, but the smoothing area
is larger.

(a) Expected value surface for the stochastic solution. (b) Variance surface for the stochastic solution.

(c) Deterministic solution.

Figure 1. Solutions to the Black Scholes equation for a European Call option with T = 20, strike = 100
and r = 0 for the volatility model Σ1(Θ, ∆) = 0.5 + 0.2Θ + 0.1

√
12∆, Θ normally and ∆ uniformly

distributed, in (a,b) and the deterministic model σ = 0.5 in (c) calculated with K = 1, N = 5,
Mζ = 200, Nτ = 319.

Experiments showed that the qualitative shape of the expected value and variance is
characteristic for solutions to the Black Scholes equation with random volatility (5) of the
form Σ(Θ, ∆) = σ00 + σ10Θ + σ01∆. These models lead to solutions that ’lie between’ the
solutions for volatility that depends on Θ or ∆ only and has the same mean and variance.

The higher σ10 is in comparison to σ01, the closer the solution is to the solution for
volatility depending on Θ only and the further away it is from the solution for the model
depending on ∆ only, and vice versa. An increase in the mean σ00 of the volatility while
keeping its variance constant was observed to enlarge the smoothing area and thus the
spread of the variance, which in turn flattens it.

A rise in the variance σ2
10 + σ2

01/12 of the volatility with constant mean σ00, however,
seemed to scale up the variance of the SG solution by the same factor. Meanwhile, the
expected value of the SG solution was marginally increased within the smoothing area.

5.2. Comparison to Real Market Data

The model is compared to market prices of a European Call option, whose end of
day values are considered from 7 January 2019 to 20 September 2019. (The values were
obtained from https://www.finanzen.net/, accessed on 21 September 2019). Its underlying

https://www.finanzen.net/
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asset is the DAX index, and the strike price and maturity are given by strike = 10,275 and
T = 180 days, respectively.

A volatility model of the form Σ(Θ, ∆) = σ00 + σ10Θ + σ01∆ was fitted to the daily
implied volatilities by using the moment constrained maximum likelihood approach from
Example 1 with the two moments mean and variance. This lead to the volatility model

Σ(Θ, ∆) = 0.2292 + 0.1126Θ + 0.0115∆, (14)

whose fitted density is shown in Figure 2a together with a histogram density estimator.
The SG solution was computed using the truncation number N = 5 and the numbers of
grid points Mζ = 200 and Nτ = 678. With these values, the numerical scheme is stable and
the system of Equation (11) is parabolic.

Figure 2b shows the market prices and the expected value of the SG solution as
well as the range expected value plus/minus standard deviation and the solution to the
deterministic Black Scholes equation with volatility σ = E(Σ(Θ, ∆)). A more detailed plot
of those graphs for the last 55 days of the option is given in Figure 2c. One observes that
the expected value of the SG solution is very close to the data on these days but slightly
above the data at earlier times. However, the data are always in the range expected value
plus/minus standard deviation, as one would expect from stochastic theory.

(a)

0 20 40 60 80 100 120 140 160 180

t
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24

26

v
a

lu
e

market data

expected value

exp val + std

exp val - std

deterministic sol

(b)

120 140 160 180

t

10

15

20

25

v
a

lu
e

market data

expected value

exp val + std

exp val - std

deterministic sol

(c)

Figure 2. Comparing the stochastic model to real market data. (a) Histogram density estimator and
density of Σ(Θ, ∆) fitted to the implied volatilities by constrained maximum likelihood. (b) Market
values of the option together with the expected value of the SG solution and the range expected value
plus minus standard deviation. (c) Detailed look on the last 55 days.
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A comparison to the deterministic solution shows that it also lies above the market
data for early times. Recall that unlike the deterministic solution, the SG solution allows
realizations to differ from the expected value within a certain range.

5.3. Comparing Bi-Fidelity Solution and High Fidelity Solution

The Bi-Fidelity solution of the Black Scholes equation with uncertain volatility (5)
following volatility model (13) for a European Call option is compared to its high fidelity
solution. After that, a simulation is performed to find the error in expected value and
in variance between the Bi-Fidelity solution and the high fidelity solution. The error is
characterized in size and shape by a Monte Carlo simulation for different volatility models.
Finally, the computation times for high fidelity and Bi-Fidelity model are compared.

We go back to the toy model of a market with interest rate r = 0 and maturity T = 23
of the option. The strike price was set to strike = 100 and the gPC expansion of the solution
was truncated after a total polynomial degree of N = 5 as before.

A rather coarse grid with ML
ζ = 50 and NL

τ = 150 was chosen for the low fidelity
model. This NL

τ is high enough such that the vast majority of all low fidelity computations
performed in the examples explained below was stable. In the case of instability, the
corresponding sample point was removed from the set of low fidelity sample points. The
high fidelity solution was computed on a fine grid with MH

ζ + 1 = 350 + 1 grid points in S
direction. The number of grid points NH

τ + 1 = 5853 + 1 in the time direction was chosen
such that all high-resolution computations for important volatility models were stable.

The low fidelity sample points represented volatility models Σi(Θ, ∆) = σ
(i)
00 + σ

(i)
10 Θ +

σ
(i)
01 ∆ with

σ
(i)
00 ∈ {0 < 0.05λ ≤ 0.8 | λ ∈ N \ {0}},

σ
(i)
10 ∈

{
0.05λ ≤

√
σ00/2 | λ ∈ N0

}
and (15)

σ
(i)
01 ∈

{
0.05λ ≤

√
12(σ00/2− σ2

10) | λ ∈ N0

}
.

The coefficients were chosen such that Var(Σ(Θ, ∆)) ≤ σ
(i)
00 /2.

Figure 3a,b shows the expected value surfaces of the high fidelity and the Bi-Fidelity
solution for the volatility model Σ(Θ, ∆) = 0.5+ 0.2Θ + 0.1

√
12∆. At first glance they seem

to approximately coincide.

(a) High fidelity solution. (b) Bi-Fidelity solution.

Figure 3. Expected value surfaces for high fidelity and Bi-Fidelity solution.
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To study the deviations, the absolute difference in expected values is displayed in
Figure 4a close to the strike price and Figure 4b for a wider range of S values. One observes
a difference of size 10−3 within the smoothing area that seems to increase in absolute value
as S→ ∞. Figure 4c shows the difference for all values of S and t. The maximum absolute
value of the absolute difference is less than 0.3 and occurs close to S = ∞, where the
option values tend to infinity. Therefore, a difference of 0.3 in these regions means a small
deviation. The difference in the smoothing area of size 3 · 10−3 is larger compared to the
values attained in this region that are close to zero. Recall, however, that the solution is
multiplied by strike when transforming back the variables. Hence, an error of size 10−3 at
strike 100 means an error of size 10−5 · strike.

(a) close to the strike price (b) for a wider range of S values

exp val v
H

 - exp val v
BF

4 8 12 16 20

t

0  

11 

25 

43 

67 

100

150

233

400

900

S

0

(c) for all S values

Figure 4. Absolute difference in expected value of high fidelity and Bi-Fidelity solution.

The variances of high and Bi-Fidelity solution are considered in Figure 5a,b, respec-
tively. The high fidelity variance seems to be a little bit steeper than the Bi-Fidelity variance.
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(a) High fidelity solution. (b) Bi-Fidelity solution.

Figure 5. Variance surface for high fidelity and Bi-Fidelity solution.

We examine the absolute difference in variance as represented in Figure 6a to lie in
the smoothing area. Figure 6b, showing the difference for all S and t values, supports this
conclusion. The error is again of size 10−3 = 10−7 · strike2.

(a) close to the strike price

var v
H

 - var v
BF

4 8 12 16 20

t

0  

11 

25 

43 

67 

100

150

233

400

900

S

0

1

2

3

10
--3

(b) for all S values

Figure 6. Absolute difference in variance of high fidelity and Bi-Fidelity solution.

Finally, a simulation was performed to obtain the characteristic size and shape of
the Bi-Fidelity error. For this purpose, 300 volatility models of the form Σ(Θ, ∆) =
σ00 + σ10Θ + σ01∆ were generated randomly from uniformly distributed random variables

σ00 ∈ [0, 0.8], σ10 ∈ [0,
√

σ00/2], σ01 ∈ [0,
√

12(σ00/2− σ2
10] ’covered’ by the grid in (15).

Both high and Bi-Fidelity solutions were calculated for each of these volatility models.
The mean absolute difference of the expected values is represented in Figure 7a close

to the strike price and Figure 7b for a larger range of S values. Figure 7c is a plot of the error
for all S and t values. The smoothing area is not plotted since it differs for every volatility
model. The shape of the error is characterized by an oscillation of size 10−3 = 10−5 · strike
close to the strike price and a steady increase in absolute value for S→ ∞. The maximum
absolute difference lies close to S = ∞ and has a size of 10−2 = 10−4 · strike, which is small
in relative terms. This coincides with the error shape in Figure 4a–c and thus seems to be
characteristic for the considered Bi-Fidelity model.
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(a) close to the strike price (b) for a wider range of S values

mean difference in expected values

1 3 5 7 9 11 13 15 17 19 21 23

t

0  

11 

25 

43 

67 

100

150

233

400

900

S

0

(c) for all S values

Figure 7. Mean absolute difference in expected value of high fidelity and Bi-Fidelity solution.

The characteristic error in the variances derived by the same 300 volatility mod-
els is displayed in Figure 8a. It shows some oscillation close to the strike price of size
10−2 = 10−6 · strike2 but vanishes elsewhere, as one can observe in Figure 8b.

(a) within the smoothing area

mean difference in variance

1 3 5 7 9 11 13 15 17 19 21 23

t

0  

11 

25 

43 

67 

100

150

233

400

900

S

0

0.005

0.01

0.015

0.02

(b) for all S values

Figure 8. Mean absolute difference in variance of high fidelity and Bi-Fidelity solution.

This error can possibly be reduced by adding more approximation pairs for the Bi-
Fidelity computation or by choosing a low fidelity model closer to the high fidelity model.
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Remark 1. Because the focus of this paper is the illustration of the general technique, a European
Call option is used as an example in the above error analysis. If one were to consider other financial
options, this might lead to different results. In practice, the method has to be fitted to the specific
question and the considered option type and market settings (r, T, the range of the volatility gPC
coefficients). In particular, the choice of the numerical method and the desired accuracy can vary for
different questions. A modeller could, e.g., be interested in obtaining a very accurate model. They
would thus prescribe an error threshold, choose a higher-order scheme for numerics and then search
for the grid sizes such that the error threshold is not exceeded (up to some percentile). A trader
instead might, for instance, only be interested in a rough prognosis of end-of-day values. They can,
therefore, work with coarser grids and less accurate schemes. Because the method behaves differently
for different option types, numerical schemes and market settings, a general recommendation on the
choice of hyper-parameters cannot be given. Instead, the method would have to be investigated for
each specific application.

In general, however, one can say that the Bi-Fidelity error increases with the difference in the
low and high fidelity model. In our case this means choosing an even coarser grid as a low fidelity
model and/or an even finer grid for the high fidelity models might introduce an additional model
approximation error. However, choosing the low fidelity model very close to the high fidelity model
cancels the computational advantage of the technique. A trade-off has to be made considering the
specific situation.

Furthermore, increasing the number A of approximation data pairs should increase the accuracy
up to some point. If A is not prescribed by computational resources, one could, e.g., add new
approximation points in (12) until the considered distance is below some threshold for all remaining
realizations.

5.4. Comparison of Computation Times

For demonstration, the above Bi-Fidelity model and the high fidelity model with
the same number of grid points MH

ζ = 350 and NH
τ = 5853 were calculated in the same

300 randomly generated volatility models. Every model Σ(i)(Θ, ∆) = σ
(i)
00 + σ

(i)
10 Θ + σ

(i)
01 ∆

belonging to iteration i ∈ {1, . . . , 300} was generated such that it satisfies the same bounds

on the coefficients σ
(i)
00 ∈ (0, 0.8], σ

(i)
10 ∈ [0,

√
σ00/2] and σ

(i)
01 ∈ [0,

√
12(σ00/2− σ2

10)] as for

the low fidelity sample points in (15). The Σ(i) should thus be ’covered’ by the low fidelity
sample points, which enables a Bi-Fidelity computation. In every calculation, the stability
of the scheme w.r.t. the chosen time step is checked. The computation times for both models
are plotted in Figure 9.

The mean computation time for the high fidelity model is 173.99 s, whereas the Bi-
Fidelity model achieved a mean computation time of 10.68 s per volatility model. Hence,
the application of the Bi-Fidelity method accelerated our computations by a factor of 16.3
in mean. For finer high fidelity grids, this difference should further increase. However,
choosing a finer grid means introducing a larger difference in the high and low fidelity
model, which could lead to larger errors.
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Figure 9. Computation times for the high fidelity model and the Bi-Fidelity model evaluated in the
same volatility model.

6. Conclusions

When the volatility in the Black Scholes equation is determined by discrete market data,
uncertainty is introduced due to the estimation procedure. We modelled this uncertainty
by a dependence on a finite number of random variables representing random factors of
influence. A possibility to fit this uncertain volatility to market data was demonstrated.
Afterward, the Black Scholes equation with uncertain volatility was used to model the price
process of a derivative. Under certain assumptions, the random volatility and the stochastic
solution can be represented by their generalized Polynomial Chaos (gPC) expansions
allowing the application of the stochastic Galerkin method. The resulting deterministic
system of PDEs for the gPC coefficients was truncated and solved numerically by a finite
difference scheme.

Numerical examples showed that the expected value of this stochastic model fitted
real market data in a similar way as a deterministic model. However, the stochastic solution
allows deviations from its expected value within a certain range and it can be used for
calculations of further stochastic quantities such as the variance of the solution or in risk
management applications.

However, computation can become costly for a large number of random variables
or a late truncation. This is due to the fast increase in the number of gPC coefficients.
Therefore, a machine learning technique was presented to reduce the computation cost for
computing the solutions for different volatility models within the same setting (option type,
maturity, interest rate, maximum polynomial degree). The so-called Bi-Fidelity approach
approximates a costly solution on the basis of a computationally cheaper solution and some
pre-stored costly solutions for wisely selected volatility models.
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For a European Call option, the maximum absolute difference in the expected value of
the Bi-Fidelity solution to the desired solution was experimentally observed to be of size
10−5 · strike in mean close to the strike price and increase to size 10−4 · strike in mean for
S → ∞, where the expected value also tends to ∞. The maximum difference in variance
attained a value of size 10−6 · strike2 in mean. Meanwhile, the mean computation time was
decreased by a factor of 16.3.

A topic that is still open to further research is the convergence of the truncated gPC
expansion of the stochastic solution to the true solution as the truncation number goes to
infinity. If convergence is assumed to hold, it is also possible to solve the deterministic
system of PDEs for the gPC coefficients with a different numerical technique and apply
the Bi-Fidelity approach to this solution. Furthermore, one could think of applying the
technique used in this paper to the Black Scholes equation with uncertain volatility and
interest rates, when there are doubts concerning its true value, or to familiar equations such
as the Black Scholes equation for multiple assets or the bond equation.
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Appendix A. Finite Difference Scheme

For demonstrative purposes, European Call options with strike price strike and matu-
rity T will be considered to present the finite difference scheme used for solving the system
of Equation (11).

For an easier implementation, system (11) is rewritten in vector form. This is per-
formed via a bijection φ from the set {0, . . . , |I| − 1} of positions in the vector to the set
of multi indices I := {δ ∈ NL

0 | |δ| ≤ N}, as described in Section 5.2 in [34]. Define
v := (vN

φ(0), . . . , vN
φ(|I|−1))

T , then one can represent system (11) by

0|I| =
∂v(S, t)

∂t
+

1
2

S2A
∂2v(S, t)

∂S2 + rS
∂v(S, t)

∂S
− rv(S, t),

where the coupling matrix A is given by

A[n, l] = ∑
α,β∈NL

0 ,
|α|,|β|≤K

σασβ Mαβ(φ(l))(φ(n)), for n, l = 0, . . . , |I| − 1. (A1)
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The boundary conditions and final values have to be transformed to vectors as well.
If the deterministic part with multiindex (0, . . . , 0) is in the first vector position and a
European Call option is considered, they are given by

v(S, T) =


(S− strike)+

0
...
0

, S ∈ (0, ∞),

v(S, t) S→0−−→ 0|I|, t ∈ [0, T], and

1
S

v(S, t) S→∞−−−→


1
0
...
0

, t ∈ [0, T].

The system has to be transformed into a finite domain. For the European Call option,
this can be achieved by the following transformation of variables

ζ :=
S

S + strike
,

τ := T − t,

v̄(ζ, τ) :=
v(S, t)

S + strike
=

(1− ζ)v(strike · ζ/(1− ζ), T − τ)

strike
,

which can be found, e.g., in Chapter 2.2.5 in [35] for the deterministic Black Scholes equation.
This leads to a PDE for v̄ given by:

∂v̄(ζ, τ)

∂τ
=

1
2

ζ2(1− ζ)2A
∂2v̄(ζ, τ)

∂ζ2 + rζ(1− ζ)
∂v̄(ζ, τ)

∂ζ
− r(1− ζ)v̄(ζ, τ), (A2)

ζ ∈ (0, 1), τ ∈ [0, T],

with boundary and initial conditions

v̄(ζ, 0) =


(2ζ − 1)+

0
...
0

, ζ ∈ (0, 1),

v̄(ζ, τ)
ζ→0−−→ 0|I|, τ ∈ [0, T], and

v̄(ζ, τ)
ζ→1−−→


1
0
...
0

, τ ∈ [0, T].

In order to solve the system, we choose a finite difference scheme because it is easy to
implement for practitioners. An equidistant grid

ζm := m
Mζ

= m∆ζ, m = 0, . . . , Mζ ,

τn := T n
Nτ

= n∆τ, n = 0, . . . , Nτ ,

with ∆ζ := 1/Mζ , ∆τ := T/Nτ was selected. The numbers Mζ , Nτ ∈ N were chosen
large enough to represent the solution in a proper way and in the right proportion to
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obtain a stable scheme. The partial derivatives are approximated component wise by finite
differences, as it was done for the deterministic solution in Chapter 8.1.1 in [35], with

forward differences for ∂v̄
∂τ (ζm, τn) ≈ v̄(ζm, τn+1)− v̄(ζm, τn)

∆τ
and

central differences for ∂v̄
∂ζ (ζm, τn) ≈ v̄(ζm+1, τn)− v̄(ζm−1, τn)

2∆ζ

and for ∂2v̄
∂ζ2 (ζm, τn) ≈ v̄(ζm+1, τn)− 2v̄(ζm, τn) + v̄(ζm−1, τn)

(∆ζ)2 ,

for m = 1, . . . , Mζ − 1, n = 0, . . . , Nτ − 1. This yields the explicit finite difference scheme

v̄(ζm, τn+1) = ∆τ

(
1
2

ζ2
m(1− ζm)

2A
v̄(ζm+1, τn)− 2v̄(ζm, τn) + v̄(ζm−1, τn)

(∆ζ)2

+rζm(1− ζm)
v̄(ζm+1, τn)− v̄(ζm−1, τn)

2∆ζ
− r(1− ζm)v̄(ζm, τn)

)
(A3)

+ v̄(ζm, τn),

for m = 1, . . . , Mζ − 1, n = 0, . . . , Nτ − 1 with initial value

v̄(ζm, 0) =


(2ζm − 1)+

0
...
0

, m = 1, . . . , Mζ − 1.

The remaining values for m ∈ {0, Mζ}, i.e., ζm ∈ {0, 1}, are given by the boundary
conditions v̄(0, τn) = 0N+1 and v̄(1, τn) = (1, 0, . . . , 0)T for all n.

Consistency of the scheme can easily be verified. By the Lax–Richtmyer Equivalence
theorem, see for instance [36] Theorem 1.5.1, convergence of the numerical solution is given,
if Mζ and Nτ are chosen to obtain a stable scheme (A3) and if the system of Equation (A2)
is well-posed. Well-posedness is in particular given for a parabolic system, i.e., when all
real parts of the eigenvalues of A are positive.

The Galerkin multiplication tensor and thus the entries of the coupling matrix A can
be computed by a suitable quadrature method. Gaussian quadrature was used to obtain
the numerical results in Section 5.
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