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Abstract: In this work, we introduce new definitions of left and right-sides generalized conformable
K-fractional derivatives and integrals. We also prove new identities associated with the left and
right-sides of the Hermite-Hadamard-Fejér type inequality for ¢-preinvex functions. Moreover, we
use these new identities to prove some bounds for the Hermite-Hadamard-Fejér type inequality
for generalized conformable K-fractional integrals regarding ¢-preinvex functions. Finally, we also
present some applications of the generalized definitions for higher moments of continuous random
variables, special means, and solutions of the homogeneous linear Cauchy-Euler and homogeneous
linear K-fractional differential equations to show our new approach.

Keywords: Hermite-Hadamard; ¢-preinvex function; generalized conformable K-fractional derivative;
generalized conformable K-fractional integral; Holder’s inequality; power mean inequality

1. Introduction

The field of fractional calculus is the generalization of classical differential and integral
calculus. There are vast applications of fractional calculus in pure and applied mathematics.
There is a significant role of inequalities in different areas of mathematics, and it is active
and exciting for researchers. Recently, it has been found that convexity plays a significant
part in pure mathematics. A function 7 : Z C ® — R is named as convey, if the inequality

F(txr+ (1= 1)) < TF (K1) + (1 — 1) F(i2)

holds for all k1, x; € Z and 7 € [0, 1].

On using classical convexity, a lot of research has been performed on integral inequal-
ities. However, one of the most essential and well-known inequalities is the Hermite-
Hadamard inequality.

In [1], the remarkable inequality is stated as: Let ' : Z C it — R be a convex function
on the interval Z of real numbers and x1,x, € Z with ¥1 < k5. Then,

K2
F (K1) + F(x2)

F(t)dt < — 1)

1
F ( K1 + Ko ) <
2 Ky — K1
K1
Suppose F is a concave function. In that case, the above inequalities will be reversed.

In the area of mathematical inequalities, many mathematicians have paid attention
to the inequalities of Hermit-Hadamard due to their importance and applications. Many
researchers have generalized the Hermit-Hadamard inequality using the classical convex
function.
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In [2], Fejér gave a weighted generalization of the inequality (1) for a convex function
F : T C R — Rasfollows:

A5 fomte s g futmreie < HEZ0 o

where w : [k1; k2] — R is non-negative, integrable, and symmetric about T = @

First, we mention some preliminary concepts and results that will be helpful in the
sequel, for more details see [3-5].

Let F: QO — R and ¢ : O x Q — N”, where Q) is a nonempty closed set in ", be
continuous functions, and let ¢ : O — } be a continuous function.
In [6], Noor et al. introduced the concept of ¢-invex set and ¢-preinvex functions and
related all properties, as follows:

Definition 1. Let x1 € (). The set Q) is called ¥-invex at k1 with respect to ¢ and ¢ if
K1+ TEi(Pﬁ(Kz, k1) € Q
forall k1,1, € Qand T € [0,1].

Remark 1. Some special cases of Definition 1 are as follows.

(1) If ¢ = O, then Q) is called an invex set, see [7] and the references therein.

(2) If 0(x2,%1) = Ko — K1, then Q) is called a p-convex set, see [8] and the references therein.
(3) If = 0 and O(xy,x1) = ko — K1, then Q is called a convex set.

Definition 2. A function F on the ¢-invex set ) is said to be ¢-preinvex with respect to ¢ and

6, if
F(x1 + 790 (x0,%1)) < (1 — 1) F(x1) + TF (k2) )

holds for all k1, %y € Qand T € [0,1]. The function F is said to be ¢-preconcave if and only if —F
is ¢-preinvex.

Remark 2. Every convex function is a ¢-preinvex function but not conversely. For example, the
function F (i) = —|u| is not a convex function, but it is a p-preinvex function with respect to ¢
and ¢ = 0, where

Ky — k1, if either k1,10 < 0or x1,k2 > 0,

(Ko, k1) = § ®1 — Ko, otherwise. (3)

Recently, researchers have expanded their work on Hermite-Hadamard-Fejér type
inequalities in the fractional domain by using a wide application of fractional calculus.
Hermite-Hadamard-Fejér type inequalities for various classes of function have been identi-
fied using fractional integrals.

2. Fractional Calculus

Fractional calculus is a branch of mathematics that deals with studying and applying
arbitrary order integrals and derivatives. Fractional calculus is a topic that is both ancient
and new at the same time. It is an old issue since, beginning with the assumptions of
G.W. Leibniz (1695, 1697) and L. Euler (1730), it has been developed and studied up to
the present day. There has been a significant increase in interest in fractional calculus in
recent years. The applications have fueled that this calculus are found in numerical analysis
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and several areas of physics and engineering, including, presumably, fractal phenomena.
The Hadamard inequality, which is well known in the field of fractional integrals, is the
most celebrated inequality that has been studied for fractional integrals. Now, we give the
definition of the conformable fractional derivative with its important properties, which
are useful in order to obtain our main results, we suggest [9-17] for articles that deal with
fractional integral inequalities using various forms of fractional integral operators to solve
them.
In this section, we demonstrate some basic definitions related to fractional calculus.

Definition 3. Let p > 0and F € L([ky,k2]). Then the left and right-sided fractional integrals of
Riemann—Liouville, we have

o
1
TV F(o Z—/U—Tpfl]-"rdr, >k
Y () r(p)Kl( ) () 1
and
17
S —/ P LF(D)dT, o <o,
‘ () J o ’

where T'(.) is the Gamma function.
In the case p = 1, the fractional integral reduces to the classical integral.

We now give the definition of K-fractional integral which is mainly due to [8].

Definition 4. Let F € L([«y,p]). Then for the left-sided and right-sided KC-fractional integrals of
order p, KC > 0 are defined as:

g
1 )
TV F(o :7/(7—7 k1F(D)dt, o>«
and
K2
o)k
szp,,c]-'( ICT;C / F(r)dt, o<,
g
() T}C
where K-gamma function is defined as T (p) = [ tPe’™ d.
0

A description of a conformable fractional derivative was suggested by Khalil et al. [18].
Consider F : [0,00) — R is called the fractional derivative for0 < p < lato >0,

Do(F)(0) = lim F(o+ecl=r)— ]—"(0).

e—0 &

D, satisfies the following properties

Theorem 1. Let p € (0,1] and F, G be p differentiable at point T > 0. Then
(i) Dp(Kl]-":I: 12G) = K1Dp(F) £ k2Dp(G) for all k1, %2 € R;

(i) Dp(FG) = po(g)+gDp( );

(iii) ( ) GDp(F po(g)
(iv) (k) =0, such that K is constant; and
(v) (Ts) = s1°7P, such that s € R.

7

Q\
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(vi) Suppose that a function F is differentiable, then Do (F)(t) = T1 7P 3L (7);
(vii) Dp(e"7) = kTP T, k € R;

(viii) Dp(simcr) =xT P cosxT, k € R;

(i) Dy(1e¢) =1;

(x) Dy (s'm%'rp) = Cos %TP;

(xi) Dp (cos %TP) = —sin %TP; and

.. Llop 10
(xii) D, (ePT ) =en' .

In addition, a function F : [k, k2] — R is called the conformable integral of order p,
which is proved in [18],

/K2 .7-"(c7)alptf:/K2 F(o)o?tdo, p €(0,1],

1 K1

if the above integral exists and has a finite value.

Remark 3.

TAFNs) = a0 (¢ F) = [ 7o)

do
K1 Ul_p !

where the integral is the usual Riemann improper integral and p € (0,1].

The Hermite-Hadamard inequalities formed by Anderson [19] for conformable frac-
tional integrals are as follows.

Suppose that F : [k1, k] — R is p-fractional differential function with 0 < p < 1 and
F is increasing, then we have

% /K2 .F((T) de’ < ]:(Kl) +]:(K2). (4)

Kg—K’f X 2

If F is decreasing on [k1, k3], then we have

K1 + Ko 0 /"2
F < F d,o. 5
( 2 )_Kg—xf 1 () o7 ©)

Remark 4. It is obvious that if we choose p = 1, then inequalities (4) and (5) reduce to inequality (1).

The Hermite-Hadamard-Fejér type inequality for conformable integrals was suggested
by Khurshid et al. in [20], which is as shown as:

Theorem 2. Suppose 1,y € I such that §(kp, k1) > 0, F : T = [k, k1 + O(kp, 1)] — [0, 00)
is a preinvex function; it is symmetric for %(Kz’m, and function G : [k1,13] — R is a non-

negative integrable . Moreover & meets the condition C; then, we have:

Ky +8(Ko,571) x40 (k)
p(Fr )} [ G0 g0 < [T F)G0) dpo
K1 K1

F 1) + F e + 8(xy, aa+o(rr)
< ( (x1) (Kzl (2 Kl)))/K G(0) dyo,

s Rl

retained for any 0 < p < 1.

The following inequality correlated with the right part of Hermite-Hadamard inequal-
ity for preinvex functions is derived.
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Theorem 3. Let k1,kp € I such that O(xp, k1) > 0and F : T = [k1,x1 + O(k, k1) —
[0, 00) be an p—differentiable function on (xq,x1 + &(x2,%1)) for o € (0,1] such that Dp(F) €
Lo([x1, %1 + 0(x2,%1)]). If | F'| is preinvex function, then :

]:(Kl) +]:(K1 +l9(K2, Kl)) B p /K1+§(K2,K1) f(g‘)dpo’
2 (11 + O(x2, 1)) — Kf

K1

B(x2,%1)
4

IN

H}—/(Kl)| + |.7:/(K2)|]

This paper is organized as follows: in the next Section 3, the authors introduce the left
and right generalized conformable K-fractional derivatives and integrals, which are the
KC-analogues of the recently introduced fractional conformable derivatives and integrals. In
Section 4, we establish two new identities of Hermite-Hadamard-Fejér type inequalities
by using ¢-preinvex functions. In Section 5, we acquire two new weighted approximation
versions which are associated with the left and right parts of the Hermite-Hadamard type
inequalities for the generalized conformable K-fractional by using ¢-preinvex functions.
In Section 6, we also present some applications to higher moments of continuous random
variables, special means, and solutions of the homogeneous linear Cauchy-Euler and K-
fractional differential equations to show our new approach. The conclusion is given at the
end of this work in Section 7.

3. Generalized Conformable K-Fractional Derivatives and Integrals

Here, we introduce a new definition of a (left and right) generalized conformable
JC-fractional derivative, which is defined as follows:

Definition 5. (Generalized left conformable K-fractional derivative) Let 0 < p < 1 and
the (left) K-fractional derivative starting from k1 a function F : [k1,00] — R with I > 0 is
follows as

DKlIC(f)(T) = lim }_(T—’— S(T - K])l_%) _ J—_’(T) .
0,

e—0 €

(6)

When 1y = 0, we write Dip. If (DxpF)(T) exists on (x1,%2), then (D,"Cl,p]-") (k1) =

lim . (D, F) (7).

(Generalized right conformable K-fractional derivative) Let 0 < p < 1, and the
(right) K-fractional derivative terminating at x, of a function F : [—oo,kp] — R with K > 0 is as
follows

Flt+elo—1)7F) - ]—'(r)'

Ko — _ i
D, c(F)(x) = ~ lim 8 )
If (*2Dyc o F) (1) exists on (k1,k2), then (2D o F ) (k2) = limTHKE (KZD;C/p]-')(T).

Note that if F is differentiable then DZ},C(}")(T) = (T—Kl)l’%}"’(l’) and 2Dy i (F) (1) =

— (K2 — T)l_%]: '(T). It is clear that the conformable K-fractional derivative of the constant
function is zero.

Remark 5. If we choose K = 1, then (6) and (7) reduces the notion of left and right fractional
conformable derivatives for a differentiable function F, introduced by Abdeljawad [21], which is
defined as
— )P —
DX (F)(7) = lim F(t+e(t—1x1)F) f(T),

e—0 €

and

2Dp(F)(7) = —lim F(t+e(kg—1)7F) - .7'-(1').

e—0 &
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Correspondingly, (left and right) generalized conformable K-fractional integrals for
0 < p <1 can be represented by

Definition 6. (Generalized left conformable K-fractional integral). For a function F :
[k1,%2] = R, 0 < K1 < Ko, then, the generalized left conformable K-fractional integral of F of
order 0 < p < 1with K > 0 is defined as

. T 7o)

F(0)Dy(0,x1)do = / - )
Jiq — K1

do, T> K. (8)

GICEY

3
1 K

(Generalized right K-fractional conformable integral). For a function F : [kq,k3] —
R, 0 < k1 < Ko, then, the generalized right conformable K-fractional integral of F of order
0 < p < 1with K > 0is defined as

KD

2 Flo)

do, T <xo. )

2T (F)(@) = |

T

F(o)D(xyp, 0 )da—/

T (o) Tk

Remark 6. If we choose K = 1, then (8) and (9) reduces the notion of left and right fractional
conformable integrals for a function F, introduced by Abdeljawad [21], which is defined as

A= [T o, w5,

1 (0 —x)

and

g (F) = [ 2

do, T < K.
T (kp—0) P

Lemma 1. Suppose that F : [k1,00) — R is continuous, and 0 < p < 1 with K > 0, then for all
T > K1 we have
LTk F (1) = F (). (10)

Proof. Since F is continuous, then jp icF (1) is clearly differentiable. Hence,

%(JJ}J)() d—J (F)()
d / )dx
:Tlfpﬁ
Tl=p
= F(1).

O

Lemma 2. Suppose that F : (—co, kp] — R is continuous, and 0 < p < 1 with K > 0, then, for
all T < xp we have
D 2 TpiF (1) = F(7). (11)

Proof. Similarly we can proved Lemma 2. So we omit the proof. [J
Lemma 3. Suppose that F : (x1,kp) — R is differentiable, and 0 < p < 1 with K > 0, then, for

all T > x1 we have
o T (T) = F(T) = F (K1) (12)
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Proof. Since F is a differentiable function, so

T

DT () = [ (0 =)k 1D, e F(o)do

K1

:/T(U—Kl)%_l(U—Kl)l_%}"/(a)da:.7-"(T)—]-'(Kl). (13)

O

Lemma 3 can be generalized for the higher order as follows.

Proposition 1. Let p € (n,n+ 1] and F : [x1,00) — R be (n + 1) times differentiable for
T > k1. Then, for all T > x1, we have

FO(q) (7 — 17)!
I! ’

TP (F)(x) = F(x) - lzé

Proof. By using definition and Theorem 2.1 in [18], we have proved Proposition 1. [

Proposition 2. Let p € (n,n+ 1] and F : (—oo, k3] — R be (n + 1) times differentiable for
T < K. Then, for all T < K we have

n (1) FD (xy) (x5 — 7]
KZJP/IC KZDp,K(.F)(T) :.7:(1') _lz(:)( 1) F (l|2)( 5 ) .

Proof. By using definition and Theorem 2.1 in [18], we have proved Proposition 2. [

Remark 7. Ifn = 00r 0 < p < 1with K > 0 in proposition 2, then, "2 J, c 2D, o (F) (1) =
F (1) = F(r2).

Theorem 4. (Chain Rule). Suppose that F,G : (i1,00) — R are (left) IKC-differentiable functions,
where 0 < p < 1with IC > 0. Let H(t) = F(G(7)). Then H(7) is (left) K-differentiable, and for
all T with T # 11 and G(t) # 0, we have

s

(D) (0 = (DR (F)) (6(0) x (PEG) (2) x (o) .

If T = 11, we have

T—K

(D) 0) = tim (D7) (6(0)) x (PEG) (1) x G0)F .

Proof. By setting yt = 7+ €(t — 11 )1_% in the definition and using continuity of G, then
% . F - F _L
(D) () = tim WD ZHEED 1
S _ Gw) =FG(T) . G =6(1) 1%
(DP/’CH) (1) = }lgr% G(u)—g(t . plllg} u—T T r
x — im 2w - F(G(0) 1- x £
(Dpl’CH)( )= Guoem GG —G(n) G(r)F x Dy cG(T) x G(1)
(D5 H) (1) = (D (F)) (6(1) x (Df6) (7) g(r) kL.

In this section, we proved the key Lemmas important to prove our main results.
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4. Key Lemmas

Throughout this section, we will let |[W|eo = SUP .1 1 1ep-+9 (k1 1)) [W(t)|, where

W : [k, ko + €90(k,k0)] — Risa continuous function, ' is the derivative of F with
respect to variable T, and L[k, k3 + 6l¢l9(K1, i2)] is the collection of all real-valued Riemann
integrable functions defined on [k, k + €98 (x7,x2)] and 0 < p < 1.

Lemma 4. Suppose that an open invex set O C R and & is a continuous bifunction, and ¢ :
Q x Q — R. Let a function F : Q — R be differentiable and F' € L{xo, k3 + e ¢(x1,x2)] with
K1,k € Qand e 8(xy, k) > 0. IFW : [k, k2 + e 0(x1,%2)] — R be an integrable function it
is usually symmetric for kp + %9 (x1, x3), then

F (2 + 5 0(x1,52) i ; ip
( ) — ) [jpkﬁcw <K2 + el%’ﬁmz)) rtefola) gy (Kz + 819(7(1,1(2))}
(0801, 12)) 71 L 2 2

1
(P8 (x1,12)) kst

i

i i
j (.FW) <K2 + 6219(K1,K2)> + Ky+e ¢l9(K1’K2)jp,K (}_W) (KZ + 6219(1(1,1(2))] (14)

1
/ 7,0)F' (k2 + 1€ 8 (11, %2) ) dT,
0

where
v%*lVV(KZ + U€i¢l9(K1,K2))dU, Te [0 l);

S—~

U(t,v) = . (15)
ot i ettt << [31]
1

and 0 < ¢ < T with K > 0.

Proof. Let

1
/LI '(ka + T ?9(x1, K2) ) dT

0

( v%flw Kz + vei"’ﬂ(xl,xz))dv) F (Kz + T€i¢l9(K1,K2)>dT

(/ 1W Kz + 06?9 (xy, Kz))dv) F' (Kz + T€i¢l9(K1,K2))dT
1

considering the first integral

1
> T
A = / (/ U%—lw(;cz + vei4’z9(;<1,1<2))dv) F' (Kz + Tei¢l9(K1,Kz))dT
0 \0

T 1

_ 1 £ i i9 2
= i) (/v)c W(K2+ve ﬁ(Kl,Kz))dv)}'(Kz+T6 19(;{1,;{2))’0
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1
1 T
—_—— 1 ip io
) 19(K1,K2)0/T}C W<K2+Te 19(K1,K2))]-"(1<2+Te l9(1c1,1c2))d1—
1
.F(K2+ 1.9K1,K2 2 e ‘
B / kW (1 + 7681, 1) ) (16)
l¢l9 Kl,Kz
0
%
1 / 0
K
0

_ -1 i i
& 8y, 3) W(K2 + Te 19(1(1,1(2))]-"(1(2 + Te ﬂ(xl,xz))dr.

Making the change of variable z = x; + Te?®(x1, k3) in the above inequality (16), we have

Flxo+ ﬁﬁ(’ﬂz Kz) Ko+ % O(x1,x2)
PR R pl>/" - ) kW)
(i O(xy, K2)) £ 2

K + 19(1{ Kp)
LR brawee @)
(El‘P 19(K1,K2))7€+ ®2

_ Flra+ 5 8(x1,12))T(p)

P

= T2 W (ky + —O(xq, K
(e#8(xy,12)) PVt g o)
1 ip
e E e )
e’ K1, Kp

Now,

1
Ay = / (/ (1-0) K “W(ka +ve’¢z9(1c1,1c2))dv) F (Kg + Tei¢l9(K1,K2))dT
1
2

1
e 9(xcy, K2) (

1
e8(icq, 1)

, , 1
(1— ZJ)%71W<K2 + U€l¢l9(K1,K2)>dU) .7-"(1{2 + Te’4’z9(K1,K2))

1
2

NI—=
T T

1-— T) lW(Kz + Te ¢19(K1,K2))F(K2 + T€i¢l9(K1,K2))dT (18)

1
.7:(1(2 + 19 Kl,Kz 2 1
/ Y K2+T61¢l9(K1 Kz))d
Z¢l9 Kl/KZ 1

1
el 8(x1,%2))

D=
—_

(1— T)%*l]-"<1<2 + Tei¢l9(K1,K2)) W(Kz + T€i¢l9(K1,K2))dT.

Making the change of variable z = x; + Te?®(x1, k3) in the above inequality (18), we have

Flra+ 9 0001,52)) pratetotunn
Aj = ( : P )/2 ip o K2+€l¢l9(K1/K2)_Z)%ilw(z)dz
(@t T St
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1 Ko +ei P8 (k1K)
_( 911, 52)) £ 7 / +4l o )(K2+el¢l9("1"‘2) — )k F(2)W(2)dz
e (x1, 1)) * ot vl
Flro+ ﬁﬁ(Kl,Kz) . i
_ ((1,4719( 2 ))% ) Kz+e‘/’19(K1,K2)jp,,CW<K2 + 6219(1(1,1(2)) (19)
e K1,K2
1 i i
_ ( i¢l9( )) %Jrl Kp+e ‘pﬂ(Kl,KZ)jp’]C (.FW) (Kz + 6219(7(1,7(2)) .
e K1, K2

By adding (17) and (19), we obtain the result that we needed. O

Lemma 5. If W : [k, k2 + ¢i¢l9(K1, i2)] — R is an integrable function, it is usually symmetric
for iy + %614)19(1(1,1(2) with €99(x1,%3) >0, 0< ¢ < 7 and IC > 0. Then

i ;

e 7o )W i) = Tpi W (k2 + €98k, 12)) (20)
1 .

=5 [Kz—&-e% K1,K2) j KW (i) + sz W(Kz +gl¢l9(K1,K2))]

Proof. Since W is symmetric about x; + #ﬁ(xl, K2), we have W (2x; + e?0(xq, 1) — z) =

W(z), for all z € [y, kp + €98(k1, x7)]. Putting 2x5 + €/?9(k1, %) — T = z, one obtains

‘ Ko +e9 (k1K) -
K2+L’“7’l9(7<1ﬂ<2)‘7p/}CW(K2) = / [(Kz + ei¢l9(K1,K2)) — T] * W(t)dt
K2
Ko +e P9 (k1K)
= (z =)

K2

-1

?ﬁ\‘

W(2K3 4 €90(x1, k2) — 2)dz

Ko+ P9 (i 12) )
- / (Z—Kz)z71W(Z)dZ
K2

= ‘ZJT}ZCW(KZ + €i¢l9(K1, KZ)).
Hence, the proof is complete. [J

Lemma 6. Suppose that an open invex set () C R, © is a continuous bifunction, and 9 : A x QO —
R. Let a function F : QO — R be differentiable and F' € Lixp, ko + e (1, x0)] with k1,3 € Q
and e 9(xy, k) > 0. IF W : ko, k3 + 9 0(x1,x2)] — R is an integrable function, it is usually
symmetric for 1z + 1€ (x1, ), then

F(x2) + F (k2 + €908(x1,x2))
2

|:K2+ei¢l9(K1'K2)jleW(K2) + ‘Z}K,}CW(KZ + ei‘Pﬁ(Kl/ KZ))}

- [Kﬁeiw("l"‘Z)J i (FW)(x2) + sz (FW) (Kz + ei"bﬁ(Kl,Kz))} (21)

=

1
. +1
= (€l¢l9(K1,K2 K /17 7,0)F (k2 + 1€90 (11, %2) ) dT,
0
where,
/ (1-0) £-lw K2+ve4’19(1c1,1c2 dv+/vl€ 1W(K2+ve¢19(1c1,1c2))d T€0,1],
0

wzth0§¢§7andlC>O.
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Proof. Let

1(t,0)F (k2 + T€i¢l9(K1,K2))dT

o

117 7
/ [/(1 - v)%*ll/\/(KZ +0e'?9(k1, k7)) dv
0

0

v%flV\/(Kz + vei‘l’l?(xl,xz))dv F' (k2 + T€i¢l9(K1,K2))dT (22)

F' (kg + 1 ?9(x1, 2) ) dT

T

[/ (1—0)E W (1 + ve?O(xc, x2) ) dv
0

1

F' (Ko + 1 ?9(x1, 2) )dT

/U%AW(Kz + 06?9 (i1, K2))dv

F' (2 + 1 ?0(x1, 12) ) dT

1
o=
0

. 1
= ezq)ﬁ (L) {(O/ (1-0) 7€ LWk + ve 8 (x, Kz))dl)) F(ry + Te“”ﬁ(Kl,Kz)‘O]

[/(1 - U)%_1W(K2 +0e'9(x1, x2) ) dv

1

8 ) (1- T)%_1W(K2 + T6i¢l9(K1,K2))]:(K2 + T6i¢l9(K1,K2))dT (23)

o

_ Flro +€99(x,x2)
B l¢l9 Kl/KZ

1
/ (1—-1) k-1 K2+Te’¢19(1<1 K2))dT
0

m / (1-1)k “IW (ko + Te?9(x1, k2) ) F (K2 + T8 (k1, K2) ) dT.

By using the change of variable technique, z = x; + Te'?9(k1, ;) in the above equation,
we have

) Ko +eP9(x1,k7)
F(xp + e P0(xq,10) ’ / v

. £
(8@19(1(1, Kz)) el K
Ko +eiP8(x1,x7)
1 2 12

(8(xy,r2)) T [ e+ etota ) -2 FE@WE)E

-1

s

P = (k2 + e (i1, 1) — z)

W(z)dz

_ Fro + e ?9(x1,12) RO ) 7 W (i) — :
= p’

(ei4’19(1c1,1c2))%+1 (ei4’19(1c1,1c2))%+1

K2+ei¢l9(K1/K2)jp,]C (FW)(x2). (24)
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For P,, we have

1 T
Py = /{/U’%—W\/(Kz+vei"’19(1<1,1<z))dv F' (k2 + 1e?0(x1,12) ) dT

0 L1

T
. . 1
= W [ (1/ ok W (i + Uel¢l9(K1,K2)dv)).7:(K2 + 0e'?0(x1,172) ‘0

?ﬁ\‘b

1
/r%*lw Ko + T€i¢l9(K1,K2))]:(K2 + T€i4)l9(K1,K2))dT
l¢l9 K11K2 D

_ Fl(x2) -1 i
= IML'Q)O/T W (xy + 1e'?0(1,12) ) dT

1

€i¢l9(11<1,1<z) O/T%_lw(Kz + T€i¢19(1<1,1<2))}"<1<2 + T€i¢l9(K1,K2))dT.

By using the change of variable technique, z = &, + Te/?®(x1, k2) in the above equation,
we have

Ko+ 0(xcy 17)

Py = — 7 (x2) ] / (z—xz)%71W(z)d2
(El(pﬁ(Kl,Kz))7€ K2
1 Ko +eP8(x1,17) ,
(ot ) F - x)E FWEE
e'P9(x1, 12 X2
f
- (e 9( (K2>)) = Ta W (k2 +€98(x1, 12)) (25)
e'PY(xq, 1
1 " ;
e R W R
e K1, K2

By adding (24) and (25), utilizing (20), we obtain the desired results. [

5. Inequalities for Generalized /C-Fractional Conformable Integrals

In this section, we present some K-analogues of Hermite-Hadamard-Fejér type in-
equalities for generalized conformable [C-fractional integrals.

Theorem 5. Suppose that an open invex set (0 C R, & a continuous bifunction, and ¢ : Q@ x Q@ —
R. Let a function F : Q) — R be differentiable, and F' € L{xa, ko + €'? &(x1,x2)] with k1, %2 € Q
and e & (x1,%2) > 0. IfW [k, k0 + €90(x1,x2)] — R is an integrable function, which is
usually symmetric for kp + & 19(K1, Kk2). If | F'| is a p-preinvex function on Q), then we have:

.7-'(1{2 + #ﬁ(xl,xz))

(ei¢19(1c1,1c2))%+1
1 , i : i
e TP (o G 000 k) 4000 7 (W) (2 T ol )| | 29
eP9(xq,x0)) *
).

i i i9
ijjCW<K2 + 3219(1{1,1{2)) _|_K2+€‘Pl9(K1,K2) jp,ICW<K2 + (3219(K1,K2)>:|

WV ]leo

= 21‘%“(%4—1)(’}_,(’(2” +[F(
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where 0 < ¢ < 7 and IC > 0.

Proof. Using Lemma 4, the modulus property, and ¢-preinvexity of | 7’| on (), we have

.7-'(1{2 + %ﬁ(m,xz))
(ei¢19(K1,1c2))%+1

1
<€i¢l9(K1,K2))%+l

iep i @
j;}CW<K2 + 3219(1{1,1(2)) Kote P9(x1,102) jp,ICW<K2 + 6219(K1,K2)>:|

ei‘P i i(P
ijjC (FW) <K2 + > 8(x1,%2)) Jqrote P8 (x1,%2) jp,lC (FW) (K2 + 6219(1(1,1(2))] ‘

1
5t
= / [/ v%_1W(K2 + 0 ?9(x1, 12) ) dv | F' (2 + 1e0(101, %2 ) dT
0

0
1
+f
< / [/vlpc_l‘W(Kz+vei4’19(1<1,1<2))’dv] (1 —1)|F (k)| + 7| F (k1) | ] dT
0o Lo

1
v/
}
1

= Q1+ 9.

1
/ (1-0) 1)/\/ (k2 + ve O (k1, 2) ) dov

T

F' (12 + T€i¢l9(K1,K2))dT‘ (27)

1
/(l — v)%*1’W(K2 + 06?9 (k1, %2)) ’dv] [(1—7)|F'(k2)| + T|F (1) |]dT

T

Change the order of integration in the first term of (27) to obtain the following result

=

Il
D\,N\~ o\,.mh—- O\N\H

|

ok 1 ’W(Kz + ve'?9(x1, K2)) ’

/vf W (k2 + vei‘f’ﬁ(m,xz))dv] (1= 1)|F (k)| + T|F (k1) |]dT
0

[(1=7)|F'(k2)| + T|F (1) |]dTdv (28)

S,

A

[

_1‘W<K2+vei¢ﬁ(m,,{2))‘ K(l —20)2 ~ ;) ()| + <; _ U;) |f/(;<1)|}dv.

By the change of variable technique z = x, + ve'?9(k1, x,), for every v € [0,1].

14
| F' (1) /Kz+ £8(1,2) 1( zZ—1 )2 1 ( zZ— 1 )/c—l
% e (x1,2) Jia 2 e'P9(xc1, 12) 8 ) \e?d(x1,x2) Wiz)ldz

9 ) -

| F' (x1)] /K2+Tl9(’<l"<2) 1 1 < zZ— 1Ky ) ( zZ— 1K ) K
e o) sl e - = dz. 29
+el¢19(K1/ KZ) K2 8 2 €l¢l9(K1,K2) el¢19(;{1, KZ) |W(Z)‘ z ( )

Consider |W||e = SUD ¢ [y 1y -+ 091 1) |W( )|, we obtain
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e o _

9, SHWHOO‘]:/ K2| K2+219(K1K2) 1(1_ 4Z—K2 )2_1 <4Z_K2 )K 1dZ

99 (x1,12) 2 P9 (xq,%2) 8 | \ e?d(x1,x2)

Wl Pl o) (11 ) ) () e 40
P8 (i1, 12) e'?d(xq, x2) e 9(xq, 12)
Analogously, we have
Wl )| wrge) (1 17 z-60 \2\(_z-x k7

0, < i1 ess) ) oS ) e

eiP9 (k1 x2) e (xy, x2) e V(x1,12)

/ [ +e V(K% — 2 — %71
Wl 7 ()] | 2% 0 2) (1_?“) 1 (Z’fz) i, (31)
e9(x1, 1) e'B(x1,%2) 8 ) \e?d(x1, x2)

By adding (30) and (31), then substituting in (27), we obtain the desired result. [

Corollary 1.
I Letting KC = 1 in Theorem 5, then, we have a new result

F (2 + 5 81, x2) i¢ el
( , - 1 ) {jPKZW(Kz + 619(7(1,K2)> rate?dm) 7 W(Kz ﬁ(“w&)ﬂ
(€98(x1,72))" 2 2
1 el i

[Vl

< W(‘]ﬂ 2)| + |~7:,(K1)D

II. Letting ¢ = 0 in Theorem 5, then, we have a new result

]-"(Kz + %19(1{1,1{2))

1 1
jK%CW<K2 + 219(1(1,1(2)) +K2+19(K1'K2) jp[}CW(Kz + 519(1(1, K2)>:|

(19(1(1,1(2))%—’_1 0,
1 © 1 « K 1
_ W “Z)}C(‘T:W) (KZ + 219(1(1,1(2)) + 2+0(kq,2) jp,lC('FW) (Kz + 519(1(1, Kz)):| ‘ (33)
K1,K2
W ||eo

< W%H(MO}—/ 2)| + |]:/(Kl)|>

IIL. Letting ¢ = 0 and K = 1 in Theorem 5, then, we have

f(Kz + %19(K1,K2))

(8(x1,%2)) ket

T (st 300 ) 4005 T (e G0 )|

- —1 [jp"z(ﬂ/v) (Kz + 19(K1,K2)> Hrtdar) 7 (FW) (xz + ;19(1(1,1(2))] ‘ (34)

(81, k) K71

[Wlleo % '
SWO}— 2)| + | F (K1)|>

Theorem 6. Suppose that an open invex set (3 C R, ¢ is a continuous bifunction, and ¢ :
Q x Q — R. Let a function F : Q — R be differentiable, and F' € L[ky, ko + €'? 9(x1,x7)] with
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K1,k € Qand e'? 9(xy,x3) > 0. W [Kko, k2 + 9 (x1,%2)] — R is an integrable function,
which is usually symmetric for x; + #ﬂ(;{l, k2). If | F'| be a p-preinvex function on Q, then, we
have:

‘ F(ro) + F (12 + ei‘l’ﬂ(;cl,xz))
2

|:K2+ei¢ﬁ(K1,K2)Jp,KW(K2) + jﬁcw(@ +ei¢l9(K1,K2))‘|

_ {Kz+ei4’l9(K1,Kz)ij,C (FW)(k2) + T3 (FWV) (Kz + ei¢l9(K1,K2))} ‘ (35)

swwqﬂw%mﬂﬂﬁﬁwmifwM)

where 0 < ¢ < T and K > 0.

Proof. Using Lemma 6 and the modulus property, we have

‘ F(x2) + F (x2 + €99 (x1,x2) )
2

|:K2+ei¢l9(K1,K2)jp,KW(K2) +‘7p;i?CW(K2 —|—€i4)l9(K1/K2))‘|

[t 7, (FW) (2) + TS5 (FW) (k2 + 9801, 12) )|

1 1
= (ei4’z9(1c1,1c2))%+1 /(—/(1 —v)%”W(Kz—l—vei"’l?(;q,xz))dv

0 T

T
+ /(1 — v)%*lVV(KZ + U€i¢l9(K1,K2))dU) F' (ko + e 0(k1, 2) ) d|. (36)
0

From ¢-preinvexity of |F'| on Q), we have

E

> {K2+ef¢19(1€1,7<2)jp’]€ W(KZ) + jp%CW(KZ + ei¢19(K1,K2))‘|

_ {K2+ei¢19(K1,K2)jp,]C (fW)(Kz) + '.7;% (./—"W) (Kz + €i¢19(K1/ KZ))} ‘

1 1
< (ei‘/’ﬂ(xl,xz))%ﬂ /(/(1 70)%_1W(K2+7)€i¢19(K1,K2))dU
0

T

+ /(1 - v)%_1W(K2 + vei¢19(1<1,1<2))dv) |((1 — )| F (k)| + 7| F' (x1) | )d. (37)
0

We have achieved this by adjusting the order of integration
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‘]:(Kz) + F (12 + €99 (1, 12))

; [mﬂiw(m,xz)jp,]cw(,cz) + jp’{jCW(KZ +ei¢l9(KHK2)>]

= [ 7 (FW)(2) + T3 (FW) (2 + €8 (1, 12) ) ]|

1 v
< (e9(xy, K2) %H/ 170 W (12 + 0e9(xc1, 12 ‘/ [(1—1)|F (k)| + 7| F'(x1)|]ddv
0

o

1 1
+ (01, 2)) %“/ (1-0)f 1|W(K2+vgl¢l9(;q,;<2))|/[ (1—1)|F ()| + 7| F (1) || ddo
0

1 1
(1<P19 K1,K2) KH/ (1-0) k 1|W(K2—|—ve¢19 (x1,%2) |/ (1—71)|F'(k2)| + T|F' (1) |]dTdo
0 0

=

! ! 1
_ (€i¢19(K1,K2))7%+1<|F (K2>| —; |]: (K1)|) /(1 o '0)7%71|W(K2 + U€i¢l9(K1,K2)) |dU (38)
0

By the change of variable technique, z = x; + ¢/ (x1, x2), and using the fact that | W||c =
SUP ¢ (165,160 €198 (i1 53] [W(z)|, we have

'-F(KZ) + .7:(1(2 + €i¢l9(K1,K2))
2

[szreirPﬂ(m,Kz)jerw(Kz) +»7;%CW(K2 +ei¢l9(K1/K2))1

= [ 7, (FW) (52) + Tk (FW) (12 + 90001,k ]|

Ko +ei? 8 (k1K)

; L F'(x)| + | F' (x Ky +eP0(x1,%2)) —z\ £ -1
< (€l¢19(K1/K2))K”W“00<| (r2)] > 7 1)|> <( P9 (x, Kz)) )K dz
- p F'(x2)| + | F'(x
= (ot k) E ) (2L LR, 9)
which is the desired result. O
Corollary 2.
I Letting IC = 1 in Theorem 6, then, we have a new result
F i) + F (12 + €98 (x1, ; ‘
‘ (r2) + 7 22 (k1. %2)) {KZHM(KI’KZ)JP W (i) +ij2W(K2+€l¢ﬂ(K1,K2))]
_ [Kz+ef‘/’19(K1,Kz)jp (FW) (i) + ijZ(]:W) (KZ +ei¢l9(K1,K2))} ’ (40)

< ||W||oo(ei¢l9(K1,K2))p+l ( |]:/(K2)|;;)|f’(1<1)|>'
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II. Letting ¢ = 0 in Theorem 6, then, we have a new result

’]—'(Kz) + F (k2 + 0(k1,%2))

> ["2“9("1"‘2)‘7% W(Ka) + ZBCW(KZ + 9(x1, Kz))}

[0 7, (FW) (k2) + T% (FW) (52 + 805, 52))| (41)

< |W||oo(19(1(1,;{2))7%+1<|f’(;{2)|;;)|]:/(;(l)|>.

IIL. Letting ¢ = 0 and p = 1 along with KC = 1 in Theorem 6, then, we have a new result

Ko +8(K1,%2) Ko +0(K1,%2)
Fl) + 7 ("22“9("1”‘2)) Watz— [ FeWe
< |W||oo<l9(K1,K2)>2<|f,(K2)| 72L |]:/(K1)|>' (42)

IV. Letting 9(xy,x2) = k1 — Ky in Corollary 2 part IIL., then, we have a new result

2
SHWHOO(Kl_KZ)Z(]: (K2)|;|f (K1)|) (43)

6. Applications
6.1. Random Variable
Suppose that for 0 < xy < k1, W : [ka, k2 + 8(x1,k2)] — RT is a continuous proba-

bility density of a continuous random variable X that is symmetric about x, + 58 (i1, x2).
Furthermore, for r € &, suppose that the rth moment

Ko +8(x1,K2)
E/(X) = / x'W(x)dx

is finite.
Letting F(x) = x" on [y, k + 8(x1,%2)] for r > 2, then, the function | F/(x)| = ra"~!
is a preinvex function. Therefore, using this function in Corollary 2 part III., we have

r 19 , r W (¢S] 19 7 ?
Kb + (k2 +2 (x1,%2)) —Er(x)’ < W] (Z(Kl x2)) (|K2|V—1 + |K1|’_1), (44)

K2+19(K1/K2)
since W is symmetricand [ W(x)dx =1.

K2

Corollary 3.
I Let r = 1in (44), and E(X) is the expectation of the random variable X, from the above inequality,
we obtain the following known bound

2
2Ky + 9(xq, K W|oo (B(x1,
%_EM) < i (2(1 2))”
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II. Letting 9(xq,x2) = k1 — ko in Corollary 3 part L., we obtain the following known bound

Wl (1 — 12)°
5 :

K1 + Ko B
2

El(x)‘ <

6.2. Special Means

In the literature, the following means for real numbers x1, x, € Jt are well known:

Ky + K1

A(xz,%1) =5 arthimetic mean,
1
K;+l _ K£+1 T N
L, (x,61) = | —m————— eneralized log —mean, r € N, xy < x7.
T( 2 1) (Kl —K2)(I’+1) 8 g 2 1

Consider F(z) =z" forz >0, r € N, ¢ =0, K = p =1, and a differentiable symmetric
to kp + 38(x1, k2) mapping W : [ka, k2 + ¢(x1,%2)] — R*. Theorem 6 implies the following
inequality

K5+ (K2 +219(K1/K2))r /Kz+l9(K1ﬂ<2) Wi(z)dz — /Kz+l9(K1,Kz)
K K

Z’W(z)dz’

2 2

2
< [Vl B0a,2) (leal=" 4 frr ).

- 2
So
’A(KE, (12 + 8(x1,%2))") /}:M(KLKZ) W(z)dz — /K:ZM(KLKZ) ZW(z)dz
< W oo (81, 52)) A (Iia 7, a1, (45)
Corollary 4.

I Letting W = 1 in (45), then, we recapture the following result

A5, (k2 + 8(1,12))") = £5 (5, (k2 + 801, 12))) | < P W o (801,120 Ao a1, forr > 2.

() [

W(z)dz — /K1

II. Letting 8(xq, k) = K1 — K in (45), then, we recapture the following result

Z’W(z)dz‘ < 7Wlleo (11 — K2)2A<|K2|r*1, \K1|r*1>, forr>2.

K2

III. Letting W = 1 in Corollary 4 part 11., then, we recapture the following result

A3, K) = £5 (3, 0)

<r(i — K2)2A<\K2|r*1, |K1|’*1), forr > 2.

6.3. Examples

In this subsection, we use generalized conformable K-fractional derivative to solve
homogeneous and nonhomogeneous differential equations.

Example 1. Consider the following homogeneous linear Cauchy-Euler K-fractional differential
equation
20 A
K o € o
K1 przp,/Cy(T) +125Dpxy(1) +x13y(t) =0, 0<p<1, T,K>0, (46)
K2 K
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where K1, Ko, and k3 are real constants.

We look for a solution of the form y(t) = 7K. Then, by definition of generalized conformable
K-fractional derivative, we have Dngy(T) = S%T% and D(Z)p,le<T) = s(s — 1),‘&—22Tﬂ
Substitution of the formulas DS,KV(T)' Dgp,Ky(T) and y(t) into Equation (46) gives the auxiliary
equation of Equation (46), which is k15> + (ko — x1)s + k3 = 0. The auxiliary equation of
Equation (46) has two roots with three possibilities for solution. The first one, if sy and s, are
distinct real numbers, is the general solution of the form y(t) = C; T + Czr%, If the roots are
repeated s1 = sy = s, then, the solution has the form y(t) = le% + Czr% InT. In the third
probability, if the two roots are complex numbers, s1 5, = o % in the general solution has the form

y(t) = CTx cos(£&nlnt) + Cott sin(£ylnT).

Example 2. Consider the following homogeneous linear K-fractional differential equation

Kngp’,Cy(T) + Kz'Dg,Ky(T) +x3y(1) =0, 0<p<1, T,K>0, (47)
where k1, Ky, and k3 are real constants.
sk &
We look for a solution of the form y(t) = e? ™" Then, by definition of the generalized
P P

. . . 0 sKrx 0 2 Krx
conformable K-fractional derivative, we have D, ,-y(t) = se ? "~ and Dy, - y(T) = s *
Substitution of the formulas Dg, (1), DY o,y (T) and y(T) into Equation (47) gives the auxiliary

equation of Equation (47), which is x1s% + x5 + k3 = 0. The auxiliary equation of Equation (47)

has two roots with three possibilities for solution. The first one, if sy and sy are distinct real
51K 4 57K 4
numbers, is the general solution of the form y(t) = Cye ¢ oy Coe ? o, If the roots are

sk &
repeated s; = sy = s, then, the solution has the form y(t) = (C; + TCz)eTﬂC. The third
probability, if the two roots are complex numbers, sy = o % i the general solution has the form

L
y(v) = ¢ 7 [y cos(£177) + Casin(£177)].

7. Concluding Remarks

The authors of this article presented the left and right sides of generalized conformable
K-fractional derivatives and integrals on the left and right sides, respectively. We also ad-
dressed some new estimates for the lower and upper boundaries of the Hermite-Hadamard-
Fej’er type inequality found for ¢-preinvex functions using generalized conformable K-
fractional integrals, which offer fresh error bounds to the literature for the lower and higher
boundaries of the Hermite-Hadamard-Fej’er type inequality for ¢-preinvex functions in
fractional domain. Using the results of this study, the reader can deduce a number of
previously reported Hermite-Hadamard-Fejér type inequalities, as well as several new
Hadamard and -Fejér-Hadamard type inequalities.
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