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Abstract: In this paper, we consider a two-sided vibro-impact energy harvester described as a forced
cylindrical capsule inclined at a horizontal angle, and the motion of the ball inside the capsule follows
from the impacts with the capsule ends and gravity. Two distinct cases of dynamical behavior are
investigated: the nondissipative and dissipative cases, where the dissipation is given by a restitution
coefficient of impacts. We show that the dynamics of the system are described by the use of a 2D
implicit map written in terms of the variables’ energy and time when the ball leaves the moving
capsule ends. More precisely, in the nondissipative case, we analytically show that this map is area-
preserving and the existence of invariant curves for some rotation number with Markoff constant
type is proved according to Moser’s twist theorem in high energy. The existence of invariant curves
implies that the kinetic energy of the ball is always bounded, and hence, the structure of system is
not destroyed by the impacts of the ball. Furthermore, by numerical analysis we also show that the
dynamical behavior of this system is regular, mainly containing periodic points, invariant curves and
Aubry–Mather sets. After introducing dissipation, the dissipation destroys the regular dynamical
behavior of the nondissipative case, and a periodic point with low energy is generated.

Keywords: energy harvester; vibro-impact system; invariant curves; global dynamics

1. Introduction

Energy harvesting (EH) refers to the process of converting various renewable energy
sources such as wind, solar, wave, and vibration into electrical energy, which usually can be
used to complement and substitute other sources of energy [1]. In recent years, a number of
well-known conventional transduction methods of converting various energy into electrical
energy were explored and developed, including piezoelectric [2], electromagnetic [3],
electrostatic [4], and triboelectric [5].

To efficiently capture energy, various mechanical systems and energy conversion
methods based on single-degree-of-freedom and multiple-degrees-of-freedom were devel-
oped. Linear systems are generally not suitable as EH devices under excitation with varying
frequencies, since the high-power output required by the system can only be achieved by near
resonance, leading to reliability and fatigue issues [6,7]. Due to these limitations, parametric
excitation and nonlinearities are often introduced into systems to improve their performance
and amplify their response [8–10]. In addition, due to the high efficiency of EH, multistable
equilibria systems became increasingly popular in various realistic applications [11–13].
The study of vibro-impact (VI) systems for EH and the benefits of exploiting their dynam-
ical behavior were proposed in [14,15]. The study of VI systems is both challenging and
fascinating to scientists for two main reasons. The first one is that the simplest VI system
has extremely complicated dynamical behavior. The best way to explain this behavior is
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with the impact-pair model, which is described as the ball of a point mass moving freely
inside a 1D box and reflecting when hitting the boundary of the box. Due to the existence of
the impacts, it has extremely complicated dynamical behavior, such as grazing bifurcation,
singularity, and chaotic attractor [16–19]. The second is that a proper approach to studying
VI systems is to attempt to establish its discrete Poincaré map (sometimes called the first
return map). However, this map usually cannot be solved explicitly, thereby presenting the
main difficulty with obtaining further analytical results.

Recently, a new type of VI-EH device was proposed in [20–22]. The device consists of
a forced cylinder and a ball that moves freely inside the cylinder. Both ends of the cylinder
are covered with membranes consisting of DE material that is sandwiched between two
compliant electrodes, thereby acting as a variable capacitance capacitor. The principle of
EH is that the ball impacts against one of the membranes and causes it to deform, resulting
in a change in capacitance between the initial and deformed stated, leading to EH. Thus,
the kinetic energy is converted through the impacts of the potential energy of the deformed
membrane, and then into electrical energy. Here, we consider a VI-EH system described as
as a small ball rolling inside a forced cylindrical capsule that is reflected after hitting the
capsule ends. The main contribution of this paper is that we prove that the structure of the
system is not destroyed by the impact of the ball. More precisely, in the nondissipative case,
a proof of the existence of invariant curves is proved according to Moser’s twist theorem,
which in turn proves that the kinetic energy of the ball is always bounded. Moreover,
through the numerical simulation results, we find that in the nondissipative case, the
energy of the ball is dissipative; i.e., infinite energy cannot also appear. Therefore, the
structure of the system is not destroyed. The rest of this paper is organized as follows. In
Section 2, we present a VI-EH and establish its Poincaré map. In Section 3, the existence of
invariant curves is proved according to a version of Morser’s twist theorem. In Section 4,
the global dynamical behavior of the system is investigated by numerical simulations,
and the theoretical results are further verified. We draw the conclusions of this paper
in Section 5.

2. Statement of the Problem

The VI-EH system can be modeled as a small ball of unitary mass rolling inside a
forced cylindrical capsule that is inclined at a horizontal angle of β (0 < β < π

2 ), along
with two DE membranes ∂B and ∂T for harvesting energy from ambient vibrations at the
bottom and top of the capsule at distance L apart. The friction between the ball and the
capsule is neglected, thus the motion of the ball is driven purely by impacts with one of the
DE membranes and gravity. The elastic restitution coefficient for impacts between the ball
and the DE membranes is e ∈ (0, 1], and the mass of the capsule is huge with respect to
the mass of the ball, which means that the impacts do not affect the motion of the capsule.
Assume that the capsule moves periodically according to a C6 and 1-periodic function p(t),
i.e., p(t + 1) = p(t), see Figure 1.

Using the absolute coordinates, under the influence of the gravity and inclined angle,
the motion of the ball moving inside the capsule satisfies as

ẍ = −g sin β, (1)

where g is the gravitational acceleration. Assume that the motion equation of ∂B is

X(t) = p(t), (2)

then, the motion equation of ∂T is X(t) = p(t) + L.
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Figure 1. Schematic for vibro-impact energy harvesting (VI-EH) system.

Assuming that the impact occurs at instant τ, we consider the following problem{
ẍ = −g sin β, p(t) ≤ x(t) ≤ p(t) + L,
x(τ) = p(τ) or x(τ) = p(τ) + L⇒ ẋ(τ+) = −eẋ(τ−) + (1 + e) ṗ(τ),

(3)

where ẋ(τ+) and ẋ(τ−) are the velocity of the ball before and after the impact at τ, respectively.

Remark 1. Note that the grazing and chattering phenomenons can also occur in this system, but
we do not discuss them here because the research required to analyze them needs different approaches.

The problem (3) can usually be formulated in discrete form. Let v = ẋ(t) denote the
velocity of the ball. Suppose that at time t the ball impacts with ∂B and attains a velocity
v after impact. Then, it moves from ∂B to ∂T and reaches ∂T at time t̃ with the velocity ṽ.
After impact with ∂T, the ball attains a velocity v̂. Continuing this process, the ball moves
from ∂T to ∂B and reaches ∂T at time t′ with the velocity v̄. After impacts with ∂T, the ball
attains a velocity v′. Based on the above analysis, we obtain

p(t̃)− p(t) + L = v(t̃− t)− g sin β

2
(t̃− t)2 (4)

and

ṽ = v− g sin β

2
(t̃− t). (5)

The relative velocity of the ball and ∂T before and after an impact is related by

v̂− ṗ(t̃)
ṽ− ṗ(t̃)

= −e.

It gives

v̂ = −eṽ + (1 + e) ṗ(t̃). (6)

Then, by (5) and (6), we have

v̂ = −ev +
ge sin β

2
(t̃− t) + (1 + e) ṗ(t̃). (7)

Completely similar to the above analysis, we have

p(t̃)− p(t′) + L = −ṽ(t′ − t̃) +
g sin β

2
(t′ − t̃) (8)
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and

v̄ = v̂− g sin β

2
(t′ − t̃). (9)

The relative velocities of the ball and ∂B before and after an impact are related by

v′ − ṗ(t′)
v̄− ṗ(t′)

= −e.

It gives that

v′ = −ev̄ + (1 + e) ṗ(t′). (10)

Then, we obtain from (8)–(10) that

v′ = −ev̂ + ge sin β
2 (t̃− t)− g sin β

2 (t′ − t̃) + (1 + e) ṗ(t′)
= e2v + ge sin β

2 (t′ − t̃− e(t̃− t))− (1 + e)( ṗ(t′)− ṗ(t̃)).
(11)

A good strategy to describe the motion of the ball at the moments of impact with the
same moving membranes ∂B (or ∂T) in problem (3) is to define a Poincaré map P that sends
the couple (t, v) to (t′, v′). In the following, we introduce a notion to construct the map P.

Define the sections

Π1 = {(x, v, t) ∈ R3|x = X(t)}

and

Π2 = {(x, v, t) ∈ R3|x = X(t) + L}.

Moreover, define the sections

Λ1 = {(t, v)|(p(t), v, t) ∈ Π1}

and

Λ2 = {(t, v)|(p(t) + L, v, t) ∈ Π2}.

The section Λ1 (or Λ2) can be interpreted as the Poincaré section. Thus, we obtain four
basic maps P1 : Λ1 → Λ2, P2 : Λ2 → Λ2, P3 : Λ2 → Λ1, P4 : Λ1 → Λ1, which is defined by

P1(t, v) := (t0, v0) = (t̃, ṽ),
P2(t0, v0) := (t1, v1) = (t̃, v̂),
P3(t1, v1) := (t2, v2) = (t′, v̄),
P4(t2, v2) := (t5, v3) = (t′, v′),

respectively, see Figure 2.
Define the composition map P = P4 ◦ P3 ◦ P2 ◦ P1 : Λ1 → Λ1, and then P is regarded

as a Poincaré map of problem (3).
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Figure 2. Schematic for four basic maps.

Lemma 1. The Poincaré map P has the expansion t′ = t +
L + (p(t̃)− p(t))

v
+
−L + (p(t′)− p(t̃))

ṽ
+K(g, β),

v′ = e2v +
ge sin β

2
(t′ − t̃− e(t̃− t))− (1 + e)( ṗ(t′)− ṗ(t̃)),

(12)

where

K(g, β) =
−α1(p(t̃)− p(t) + L)

v(2v + α1)
+

α2(p(t̃)− p(t′) + L)
ṽ(2ṽ + α2)

,

α1 =
K1(g, β)√

v2 +K1(g, β) + v
, α2 =

K2(g, β)√
ṽ2 +K2(g, β) + ṽ

,

K1(g, β) = −2g sin β(p(t̃)− p(t) + L), K2(g, β) = 2g sin β(p(t̃)− p(t′) + L).

Proof. By (4), we have

g sin β

2
(t̃− t)2 − v(t̃− t) + (p(t̃)− p(t) + L) = 0.

It gives

t̃− t = 2(p(t̃)−p(t)+L)

v+
√

v2− g sin β
2 (p(t̃)−p(t)+L)

= p(t̃)−p(t)+L
v +

(
2(p(t̃)−p(t)+L)

v+
√

v2− g sin β
2 (p(t̃)−p(t)+L)

− p(t̃)−p(t)+L
v

)
.

(13)

Then, we have

t̃− t =
p(t̃)− p(t) + L

v
+ (p(t̃)− p(t) + L)Q1, (14)

where

Q1 = 2

v+
√

v2− g sin β
2 (p(t̃)−p(t)+L)

− 1
v

= 2
v+
√

v2+K1(g,β)
− 1

v

= −K1(g,β)
v(2v+

√
v2+K1(g,β))+K1(g,β)

= −1

v(
2v+
√

v2+K1(g,β)
K1(g,β) )+1

= −α1
v(2v+α1)

with K1(g, β) := −2g sin β(p(t̃)− p(t) + L) and α1 = K1(g,β)√
v2+K1(g,β)+v

.
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Similarly, we have

t′ − t̃ =
−L + (p(t′)− p(t̃))

ṽ
+ (p(t′)− p(t̃)− L)Q2, (15)

where Q2 = α2
ṽ(2ṽ+α2)

with α2 = K2(g,β)√
ṽ2+K2(g,β)+ṽ

, K2(g, β) = 2g sin β(p(t̃)− p(t′) + L).

Thus, by (14) and (15), we get

t′ = t +
L + (p(t̃)− p(t))

v
+
−L + (p(t′)− p(t̃))

ṽ
+K(g, β),

where K(g, β) = (p(t̃)− p(t) + L)Q1 + (p(t̃)− p(t′) + L)Q2.

Lemma 2. There is a sufficiently large constant v∗ > 0 such that if the initial velocity v > v∗ and
for every t ∈ R, then the Poincaré map P is well defined and belongs to a class of functions of C6.

Proof. By (12), we have

t̃− t = 2(p(t̃)−p(t)+L)

v+
√

v2− g sin β
2 (p(t̃)−p(t)+L)

. (16)

Consider the function

F(t̃, t, v) = t′ − t−
( L + (p(t̃)− p(t))

v
+
−L + (p(t′)− p(t̃))

ṽ
+K(g, β)

)
.

Then, for sufficiently large v, we have

∂t̃F(t̃, t, v) = 1−O(
1
v
) > 0.

Thus, when v is large enough, for every couple (t, v) we get a unique t̃ = t̃(t, v) that
satisfies Equation (16). By using the implicit function theorem, we obtain by uniqueness
that t̃(t, v) is a C6 function. Then, by (12) we conclude that the Poincaré map P is well
defined and belongs to a class of function of C6.

Remark 2. Note that P is a 2D implicit map written in terms of the variables’ energy and time
when the ball leaves the moving capsule ends, which usually give rise to the main difficulties for
analytical investigation.

Lemma 3. There exists a constant sufficiently large constant v∗ > 0 and t ∈ R such that the
Poincaré map P is an area-preserving map in the nondissipative case, i.e., the elastic restitution
coefficient e = 1.

Proof. When r = 1, by Lemma 1, the Poincaré map P is t′ = t +
L + (p(t̃)− p(t))

v
+
−L + (p(t′)− p(t̃))

ṽ
+K(g, β),

v′ = v +
g sin β

2
(t′ − 2t̃ + t)− 2ṗ(t̃) + 2ṗ(t′).

(17)

Let X = p(t), H(X, v) = v2/2 + Xg sin β, X2 = p(t1) + L = p(t2) + L, X3 = X4 =
p(t3) = p(t4). For the maps P1 and P3, the integral invariant of Poincaré–Cartan (c.f.
[23]) yields∮

Γ
vdX− H(X, v)dt =

∮
P1(Γ)

v1dX1 − H(X1, v1)dt1,∮
P2◦P1(Γ)

v2dX2 − H(X2, v2)dt2 =
∮

P3◦P2◦P1(Γ)
v3dX3 − H(X3, v3)dt3,

(18)
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where Γ = {(t, µ(t)) : t ∈ R, µ(t) > v∗} is any a C1 Jordan curve in the definition region P.
Set dX = ṗ(t)dt, dX1 = dX2 = ṗ(t1)dt1 = ṗ(t2)dt2, dX3 = ṗ(t3)dt3. This transforms

Equation (18) to

∮
Γ
(vṗ(t)dt− v2

2
− p(t)Xg sin β)dt =

∮
P1(Γ)

(v1 ṗ(t1)dt1 −
v2

1
2
− p(t1)X1g sin β)dt1,∮

P2◦P1(Γ)
(v2 ṗ(t2)dt2 −

v2
2

2
− p(t2)X2g sin β)dt2 =

∮
P3◦P2◦P1(Γ)

(v3 ṗ(t3)dt3 −
v2

3
2
− p(t1)X3g sin β)dt3.

(19)

Taking into account both (7) and (8), we obtain

∮
P1(Γ)

(v1 ṗ(t1)dt1 −
v2

1
2 − p(t1)X1g sin β)dt1 =

∮
P2◦P1(Γ)

(v2 ṗ(t2)dt2 −
v2

2
2 − p(t2)X2g sin β)dt2,∮

P3◦P2◦P1(Γ)
(v3 ṗ(t3)dt3 −

v2
3

2 − p(t1)X3g sin β)dt3 =
∮

P(Γ)(v
′ ṗ(t′)dt′ − v′2

2 − p(t′)X′g sin β)dt′.
(20)

From (19) and (20), we get

∮
Γ
(vṗ(t)− v2

2
− p(t)g sin β)dt =

∮
P(Γ)

(v′ ṗ(t′)− v′2

2
− p(t′)g sin β)dt′. (21)

It is obvious that the curves Γ and P(Γ) either intersect or one of them goes around
the other. Suppose that the later case occurs and letR denote the domain that is bounded
by Γ and P(Γ). When v is sufficiently large, by Green’s formula (c.f. [23]) and (21), we
have

∫∫
R( ṗ(t)− v)dtdv = 0. In fact, when v∗ is sufficiently large, we also have

∫∫
R( ṗ(t)−

v)dtdv < 0. This naturally leads to a contradiction; thus, the intersection of the curves Γ
and P(Γ) is nonempty (called Moser’s intersection property) and the Poincarḿap P is an
area-preserving map.

3. The Existence of Invariant Curves

In this section, a proof of the existence of invariant curves for the system is given,
based on Moser’s twist theorem in the nondissipative case. To illustrate the main results
below, we first briefly review some of the definitions and results of Moser’s twist theorem
investigations into area-preserving maps [23–25].

By [26], we know that an irrational number α is said to be a type of constant γ. If γ is
defined by

γ = inf
{

q2
∣∣∣α− p

q

∣∣∣ : p, q ∈ Z, q ≥ 1
}

then it is strictly positive and γ is called the Markoff constant of α.

Lemma 4. In choosing a 1D interval [a, b] ⊂ [0, 1] with b− a ≥ ε > 0 on the real-number axial,
there exists a constant type α ∈ [a, b]/Q such that the corresponding Markoff constant satisfies
ε

16 ≤ γ ≤ ε
4 .

Theorem 1. (Moser’s twist theorem) Assume that the operator Φ : R× [−1, 1] → R×R is a
diffeomorphism that belongs to a class of functions of C5 and is a 1-periodic function with respect to
the variable θ. Moreover, assume that the specific form of Φ is{

θ′ = θ + α + δr + δϕ(θ, r),
r′ = r + δφ(θ, r),

(22)
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where 0 < δ < 2 and α is an irrational number of constant type with Markoff constant γ,
thereby satisfying

γ ≤ δ ≤ bγ (23)

for some fixed b. We also assume that the operator Φ has Moser’s intersection property (see the
proof of Lemma 2.3), i.e., for any parameterized C1 Jordan curve Γ = {(θ, µ(θ)) : θ ∈ R} located
in region R× [−1, 1] that satisfies Γ ∩Φ(Γ) 6= ∅, there is a positive constant C that depends only
on fixed b, such that if

‖ϕ(θ, r)‖C5 + ‖φ(θ, r)‖C5 ≤ C,

then there exists µ ∈ C3(S1) such that Γ = {θ, µ(θ) : θ ∈ R} is invariant under the action of
operator Φ, and the rotation number of Φ|Γ is α.

Remark 3. The proofs of Lemma 3.1 and Theorem 3.1 were given in [26,27], respectively, so we do
not repeat them. These theories were applied to the study of different dynamical systems, such as
breathing circle billiard [28], piece-wise linear oscillator [29], and so on.

We are now ready to prove the main result of this paper, say

Theorem 2. There exists a constant number κ > 0 such that if the function p satisfies

∣∣∣dk p(t)
dtk

∣∣∣ < κ, ∀t ∈ R, k = 0, 1, · · · , 6,

then there exist curves Γ = {(t, µ(t)) : t ∈ R} with µ ∈ C3(S1) that are invariant under the
Poincaré map P, resulting in the energy of the ball always being bounded.

Proof. Let  F (t, v) =
−L + (p(t′)− p(t̃))

ṽ
+K(g, β),

G(t, v) =
g sin β

2
(t′ − 2t̃ + t)− 2ṗ(t̃) + 2ṗ(t′).

Then, by (17), the map P has the expansion t′ = t +
L + (p(t̃)− p(t))

v
+F (t, v),

v′ = v + G(t, v).

By Lemma 4, we get a sequence {αn} of irrational numbers of constant type converging
to 0, and this satisfies

1
2n
≤ αn ≤

1
n

,
1

32n
≤ Mn ≤

1
8n

.

Define εn by αn = 4(L+(p(t̃)−p(t)))
nεn

and consider transformation

Un :
(

θ,
nεn

r + 4

)
7→ (t, v).

The transformation Un maps the region D = {(θ, r) : θ ∈ R, r ∈ [−1, 1]} to the region
Dn = {(t, v) : t ∈ R, v ∈ [ nεn

5 , nεn
3 ]}. Since nεn = 4(L+(p(t̃)−p(t)))

αn
, the distance from the

region Dn to the line v = 0 goes to infinity when n→ ∞. Let

Pn = U−1
n ◦ P ◦Un : D → R2.
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We obtain

Pn :
{

θ′ = θ + αn + δnr + δn ϕn(θn, rn),
r′ = r + δnφn(θn, rn),

where δn = αn
4 , ϕn(θn, rn) =

1
δn
F
(

θ, nεn
r+4

)
, φn(θn, rn) = G

(
θ, nεn

r+4

)
(r+4)2(L+p(t̃)−p(t))−1

1+G
(

θ, nεn
r+4

)
(r+4)n−1ε−1

n
.

Since the map P satisfies the Moser’s intersection property (see the proof of Lemma 3)
and Pn is homeomorphic to P, we can conclude that Pn also satisfies Moser’s intersection
property. Since (23) holds for b = 8, then we can apply Theorem 1 as soon as both ‖ϕ(θ, r)
and ‖C5 , ‖φ(θ, r)‖C5 are sufficiently small. The case is held because we chose an n that is
sufficiently large and assumed that ‖p‖C6 is sufficiently small. Thus, by Theorem 1, Pn has
an invariant curve. We then obtain a curve Γn = {(t, µn(t)) : t ∈ R} with µn ∈ C3(S1) via
the transformation Un, which is also invariant under the action of P. After passing to a
subsequence {µn}n≥1, we assume that µn(t) ≤ µn+1(t) and limn→∞ µn(t) = ∞ uniformly
with respect to t ∈ R. Define a region

Bn = {(t, v) : t ∈ R, µn(t) ≤ v ≤ µn+1(t)}

for n ≥ 1. The region Bn is homomorphically mapped to its image by P, and the boundary
of Bn is invariant. Thus, Bn must be invariant under the action of P. Let v∗ be a constant
such that {(t, v) : v ≥ v∗} ⊂ ∪n≥1Bn. When v ≥ v∗, it follows that (t, v) ∈ BN for some
N ≥ 1. By invariance of BN , the orbit {Pn(t, v)} is completely contained in BN . Therefore,
we conclude that {Pn(t, v)} is bounded, i.e., the energy of the ball is bounded.

Remark 4. According to Theorem 3.2, the existence of invariant curves also provides the stability
results of the problem (3): if the initial condition of the system is on an invariant curve, then the
future dynamical evolution will stay confined to that invariant curve forever; if the initial condition
of the system lies between two invariant curves, the future dynamical evolution will stay bounded
between them forever. Moreover, the existence of invariant curves also ensures that the kinetic energy
of the ball is always bounded, and hence, the structure of VI-EH is not destroyed by the impact of
the ball.

Remark 5. The symmetry of the system is mainly reflected in two aspects: on the one hand, it
refers to the geometric symmetry of the system; on the other hand, it refers to the symmetry of
the dynamical behavior of the system. The geometric symmetry is obvious. If the DE materials
covered in both ends of the cylinder capsule are different, that is, the restitution coefficients of the
collisions are different, then the dynamic behavior of the system is asymmetric (see [30] for a similar
analysis). If the restitution coefficients of the collisions are the same and p(t) is chosen as a class of
specific functions that satisfies p(t + n/2) = −p(t) (n is odd integer), then the Poincaré map P of
problem (3) has the property of symmetry, such that if Γ is an invariant curve of P, then P(Γ) is
also an invariant curve of P (c.f. [31,32]).

Remark 6. If β = 0, then the cylindrical capsule moves along the horizontal direction, and
Theorem 2 still holds in this case.

4. Numerical Simulations

In this section, we discuss the numerical simulations results obtained from the VI-EH
system to further verify our theoretical results. We first discuss the dynamical behavior of
the system in the nondissipative case, and then discuss the dissipative case.

Choose p(t) = ζ sin t, ζ = 0.1, β = π/8, e = 1, L = 6 m and v change from 50 m/s
to 52 m/s. We find that the system exhibits regular dynamic behavior, mainly containing
periodic points (Birkhoff type), invariant curves, and Aubry–Mather sets (the definition of
Aubry–Mather sets can be found in [33]), see Figure 3. Moreover, the existence of invariant
curves also ensures that the kinetic energy of the ball is always bounded. For the same
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parameter condition, i.e., only choosing v = 52 m/s, e = 0.99, the dissipation introduced by
the coefficient of restitution e destroys the regular dynamic behavior in the nondissipative
case and generates a low-energy periodic point, see Figure 4.

(a) global graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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52.5

t(mod2π)

v

periodic point

invariant curve
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(b) local graph

Figure 3. Regular dynamic behavior containing reriodic points, invariant curves, and Aubry–
Mather sets.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

t(mod2π)

v

(a) Iterate 10× 104 time

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(mod2π)

v

(b) Iterate 10× 104 times and keep last 10× 103

iterates

Figure 4. A low-energy periodic point.

5. Conclusions

In this work, we consider a two-sided vibro-impact energy harvester (VI-EH) system.
Our main objective is to investigate whether the structure of the system will be destroyed
by the impact of the ball. For this objective, we study the nondissipative and dissipative
cases of the system, respectively. We show that the dynamics of the system are described
by the use of a 2D implicit map, and the existence of invariant curves in the nondissipative
case is proved by using Moser’s twist theorem. Thus, in nondissipative case, the kinetic
energy of the ball is always bounded, and the structure of system is not destroyed by the
impacts of the ball. Furthermore, by numerical analysis we also obtain that the dynamical
behavior of this system is regular. After the introduction of dissipation, the dissipation
destroys the regular dynamical behavior in the nondissipative case, and a periodic point
with low energy appears. In summary, the structure of the system was not destroyed, and
the theoretical analysis shows that this is mainly related to the smoothness of the system.
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