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Abstract: In this paper, a novel enriched three-node triangular element with the augmented interpola-
tion cover functions is proposed based on the original linear triangular element for two-dimensional
solids. In this enriched triangular element, the augmented interpolation cover functions are employed
to enrich the original standard linear shape functions over element patches. As a result, the original
linear approximation space can be effectively enriched without adding extra nodes. To eliminate
the linear dependence issue of the present method, an effective scheme is used to make the system
matrices of the numerical model completely positive-definite. Through several typical numerical
examples, the abilities of the present enriched three node triangular element in forced and free
vibration analysis of two-dimensional solids are studied. The results show that, compared with the
original linear triangular element, the present element can not only provide more accurate numerical
results, but also have higher computational efficiency and convergence rate.

Keywords: interpolation cover functions; finite element method; solid mechanics; free and forced
vibration analysis; low order linear element

1. Introduction

Finite element method (FEM) [1–3] is a mature and powerful numerical method, which
has become one of the most widely used numerical approaches in practical engineering
applications because of its effectiveness and stability. However, the classical FEM also
possesses several distinct disadvantages, for example, the computation accuracy of the
classical FEM is relatively low when the low order linear elements are employed and
the adaptability of FEM to mesh distortion is also relatively weak in the analysis of large
deformation problems [4,5].

Note that the accuracy of the FEM solutions are seriously dependent on the quality
of the used meshes, various the meshfree numerical techniques have also received lots of
research interests in the past years [6–15]. The main difference between the standard FEM
and the meshless numerical techniques is that the used shape functions are constructed
using the scattered field nodes in the problem domain rather than relying on the pre-defined
element. As a result, the approximation of the considered field variables is also independent on
the mesh. Actually, many meshless methods have been developed to solve various engineering
problems. In contrast with the classical boundary element method [16,17] and several boundary-
based discretization techniques [18–25], most of the meshless numerical techniques are the
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domain-based numerical techniques and can be formulated using the weak form or strong
form of the governing partial differential equations (PDE). Several well-developed weak
form meshfree techniques consist of the reproducing kernel particle method (RKPM) [26],
the diffuse element method [27], the element-free Galerkin method [7,28,29], Galerkin/least
squares FEM [30], the radial point interpolation method (RPIM) [6,31] and so on. In
addition, the strong form based meshfree techniques have also been developed, such as the
generalized finite difference method (GFDM) [32–34], the finite point method (FPM) [35,36]
and various collocation techniques [37–40]. All of these different meshless techniques
have their own associated merits, demerits and conditions of applicability. Very nice and
detailed reviews on the developments of the meshless techniques can be found in the
monographs [6]. Nevertheless, it should be pointed out that the meshless methods still can
not match the classical FEM in terms versatility and flexibility in engineering applications
and many challenging problems still remain unsolved so far.

In order to enhance the performance of the standard FEM in engineering computation,
Liu et al. proposed the smoothed FEM (S-FEM) [41–46] which combines traditional FEM
with the generalized strain smoothing techniques with a mathematic base on the novel G
space theory. By invoking the novel G space theory and strain smoothing operations, the
“overly-stiff” stiffness matrices of the standard FEM can be properly softened and then a
softened numerical model with appropriate system stiffness can be obtained. A substantial
numerical examples have demonstrated that the S-FEM possesses many excellent and
attractive properties compared to traditional FEM, such as higher computation accuracy and
efficiency, faster convergence rates and better adaptability to mesh distortion. According to
the different ways in performing the strain smoothing operations, a series of different S-FEMs
have been proposed including the cell-based smoothed FEM (CS-FEM) [47–49], edge-based
smoothed FEM (ES-FEM) [50,51] and the node-based smoothed FEM (NS-FEM) [52,53]. All
of these different S-FEMs possesses their own associated strengths and specific properties,
and these different S-FEMs can be used in various engineering applications.

Different from the smoothed FEM, the present work offers another approach to en-
hance the behaviors of the linear element of standard FEM in solving the two-dimensional
dynamic problems. In this work, the extra interpolation cover functions, which are con-
structed by suitable polynomial bases, are employed to enhance the original linear nodal
shape functions. As a result, the original linear approximation space of the classical FEM
can be markedly enriched and the gradient field of the considered problem can be described
more accurately. The present numerical method, which is named as enriched finite element
method (EFEM), has been introduced by Bathe and his co-workers in solving the wave
propagation problems and static analysis of linear elastic solid mechanics [54–57]. The
numerical experiments have shown that much more accurate numerical results can be pro-
duced with the present EFEM and the extra nodes are not required. In addition, it should
be pointed out that it is quite flexible in constructing the enrichment cover functions accord-
ing to the special problem considered. By using the polynomial bases and the harmonic
trigonometric functions as the enrichment cover functions, Chai et al. have employed the
EFEM to solve the transient wave propagations and acoustic problems [58–60]. The related
numerical results shown that the numerical dispersion error can be markedly suppressed
by the EFEM in wave analysis and much more stable and accurate numerical solutions can
be obtained. Furthermore, the present approach has also been extended to shell analysis
and adaptive analysis [61,62].

In this work, we mainly focus on using the EFEM with simple linear interpolation cover
functions, which has relatively high computation efficiency and is also easy for numerical
integration, to analyze the free and forced vibration problem of the two-dimensional solids.
The abilities of the EFEM for two-dimensional dynamics analysis are carefully examined
through several typical numerical experiments.
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2. Formulation of the FEM Enriched by Interpolation Cover Functions

Consider a two-dimensional bounded problem domain. The standard N triangular
elements are used to discretize the involved problem domain. Using the standard FE
approximation, the interpolation for a scalar field function u has the following form

u =
N

∑
i=1

Niui = Nu (1)

where ui denotes the node coefficients of the field variable and Ni denotes the simple linear
interpolation function for node i (see Figure 1a).
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Figure 1. The illustration of the linear triangular element enriched with interpolation cover functions:
(a) The original linear shape functions; (b) The cover region of the interpolation cover functions;
(c) The overlapping domain of the cover regions.

In the present enriched FE approximation, the standard triangular mesh is still used.
As shown in Figure 1b, the union of all the elements attached to node i is defined as
the cover region Ci [56,58], it is actually the support domain of the usual linear nodal
interpolation function for node i in the standard FE interpolation. Therefore, the element
εm is also can be regarded as the overlapping region of the three surrounding cover region
Ci, Cj and Ck (see Figure 1c). For the considered field variable u at node i, and the standard
FE interpolation is enriched by the following expression [56,58],

Eq
i [u] = L

[
ui ai1 ai2 ai3 · · ·

]T (2)
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in which ui is the usual nodal unknowns and
[

ai1 ai2 ai3 · · ·
]T denotes the addi-

tional unknowns which are associated with interpolation cover functions, L contains the
polynomial bases of degree q.

L = [ 1 xi yi x2
i xiyi y2

i x3
i x2

iyi xiy2
i y3

i . . . yq
i ]︸ ︷︷ ︸

(q+1)(q+2)
2 terms

(3)

in which the used relative coordinate values (xi, yi) are defined in Figure 2, namely
xi = x− xi and yi = y− yi.
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Figure 2. The employed coordinate system in the EFEM formulation: (a) The local coordinates and
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For the convenience of the comparison with the standard FE formulation, Equation (2)
can also be expressed as [56,58],

Eq
i [u] = ui +

[
xi yi x2

i xiyi y2
i . . . yq

i

]
1×
[
(q+1)(q+2)

2 −1
]


ai1
ai2
ai3
...

[
(q+1)(q+2)

2 −1
]
×1︸ ︷︷ ︸

additional interpolation covers

(4)

From Equation (4), it is seen that the present EFEM formulation can be regarded as the
standard FE approximation plus the additional enriched approximation.

Then the global approximation for the considered scalar field function u has the
following form [56,58],

TEq
i [u] =

m

∑
1

(
3

∑
i=1

NiE
q
i [u]

)
=

m

∑
1

(
3

∑
i=1

Niui +
3

∑
i=1

Hiai

)
=

m

∑
1

(
3

∑
i=1

Niui +
3

∑
i=1

n

∑
j=1

Hi,jai,j

)
, (5)

where m stands for the number of all nodes in the problem domain, Ni denotes the original
linear interpolation functions, j represents the added degree of freedoms (DOFs) for each
node, H is the obtained hybrid interpolation function matrix.

Hi = Ni
[

xi yi x2
i xiyi y2

i x3
i x2

iyi xiy2
i y3

i . . . yq
i

]
(6)

From above formulation, it can be found that the present EFEM will become the
standard FEM if the employed polynomial bases only contains the constant term 1. With
this operation, the higher order approximation space can be constructed and then leads to
much higher computation accuracy. Since the original linear nodal shape functions and the
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constructed hybrid nodal shape functions have the totally identical supports, the proposed
EFEM is also able to lead to the sparse system matrices as in the standard FEM.

Actually we can employ any order of polynomial bases as the interpolation cover
functions. More accurate numerical results can also be generated if the high order polyno-
mial interpolation cover functions are employed. However, the high order interpolation
cover functions will result in more nodal unknowns and more computational cost. In this
work, we only use the first order polynomial bases [1 x y] (q = 1) as the interpolation cover
functions. Note that three additional DOFs will be introduced for each node when the first
order polynomial bases are used, hence in this work the abbreviation EFEM-N3 is used to
represent the EFEM with linear interpolation cover functions.

For the plane stress problem considered in this work, the displacement field variables
u and v in element εm (see Figure 1) can be obtained as following based on the above
EFEM-N3 formulation [56],

um
h =

3

∑
i=1

(Niui + Hiau
i ), vm

h =
3

∑
i=1

(Nivi + Hiav
i ), (7)

(au
i )

T =
[

au
i1 au

i2
]
, (av

i )
T =

[
av

i1 av
i2
]
, (8)

in which ui and vi are the usual nodal unknowns as in the standard FEM, au
i and av

i are the
vectors which contain additional unknowns.

Actually Equation (7) can also be expressed in the following matrix form when the
first order polynomial bases [1 x y] are used as the interpolation cover functions,

[
um

h
vm

h

]
=

[
N H

01×3 01×6

01×3 01×6
N H

]
u
au
v
av

 (9)

in which N is the usual linear interpolation function matrix for the standard FEM H is the
constructed hybrid interpolation function matrix for the present EFEM-N3. To improve
the conditioning of the present EFEM-N3 and obtain more stable numerical solutions, the
additional unknowns coefficients are normalized by a/h in this work (in which h denotes
the average mesh size of the used mesh pattern).

Similar as in the standard FE scheme, the related derivatives of the displacement
variable can be obtained using the following usual differentiation rules,[

um
h,x

um
h,y

]
=

[
N,x H,x
N,y H,y

][
u
au

]
,

[
vm

h,x
vm

h,y

]
=

[
N,x H,x
N,y H,y

][
v
av

]
, (10)

in which, [
N,x H,x
N,y H,y

]
= J−1

[
N,r H,r
N,s H,s

]
(11)

in which J is the Jacobian matrix and the required coordinate transformation can be achieved
as similarly as in the standard FE scheme (see Figure 2b).

3. Governing Equations of Dynamics for Linear Elastic Solids

For the two-dimensional linear elastic solid mechanic problems defined in a bounded
domain Ω. The standard Galerkin weak form is as follows [2],∫

Ω
(∇δu)TD(∇u)dΩ−

∫
Ω

δuT(b− ρ
..
u− c

.
u
)
dΩ−

∫
ΓN

δuTtdΓ = 0 (12)

in which ∇ is the differential operator, δu is the arbitrary virtual displacement vector, D is
the material constant matrix, b denotes the body force vector,

..
u and

.
u are the acceleration
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and velocity vectors, ρ and c are the density and damping coefficients of the considered
solids, ΓN is the natural boundary condition and t is the prescribed traction vector on ΓN .

Using the EFEM interpolation shown in Equation (7), the matrix form of Equation (12)
can be obtained by,

M
..
u + C

.
u + Ku = f (13)

M =
ne

∑
i=1

∫
Ωi

NT
i ρNidΩ, C =

ne

∑
i=1

∫
Ωi

NT
i cNidΩ, K =

ne

∑
i=1

∫
Ωi

BT
i DBidΩ (14)

f =
ne

∑
i=1

∫
Ωi

NT
i bdΩ +

nb

∑
i=1

∫
ΓN

NT
i tdΓ, D =

E
1− v2

 1 v 0
v 1 0
0 0 1−v

2

 (15)

in which M is the global mass matrix, ne is the total number of elements in the global mesh
and Ωi denotes element i, nb is the number of elements on the Neumann boundary, Ni is
the involved shape function matrix for element i, C is the matrix containing the damping
effects, K is the global stiffness matrix, E is Young’s modulus and v is Poisson’s ratio, D is a
matrix containing the material parameters, Bi is the strain gradient matrix for element i, f is
the related nodal force vector.

From the formulation in Section 2, the shape function matrix Nt and strain gradient
matrix B for two-dimensional solid mechanics can be obtained by,

Nt =

[
N H 01×3 01×6

01×3 01×6 N H

]
, (16)

B = ∇Nt =

 ∂N/∂x ∂H/∂x 01×3 01×6
01×3 01×6 ∂N/∂y ∂H/∂y

∂N/∂y ∂H/∂y ∂N/∂x ∂H/∂x

, (17)

For the convenience of discussion, the Rayleigh damping is employed here and the
damping matrix C is obtained directly from the mass matrix M and stiffness matrix K by,

C = αM + βK (18)

in which α and β stand for the Rayleigh damping coefficients.
If the damping effects are not considered, for free vibration analysis Equation (13) can

be re-written by,
M

..
u + Ku = 0 (19)

It is easy to find that Equation (19) has the following fundamental solution,

u = u exp(jωt) (20)

in which u is the amplitude of displacement distributions in two dimensions, j =
√
−1 and

ω is the angular frequency.
Taking Equation (20) into Equation (19), we can arrive at,[

K−ω2M
]
u = 0 (21)

It is indicated in Equation (21) that the essence of analyzing the free vibration problems
is to solve the typical eigenvalue problem.

For forced vibration analysis, we actually should solve the second-order time-dependent
dynamic problems which is governed by the matrix equation shown Equation (13). In
practice, many different types of direct time integration schemes have been developed for
solving the structural dynamic problems, here the widely used Newmark method, which
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is an unconditionally stable direct time integration technique, is used for the analysis of
dynamic problems, the following assumptions are used in the Newmark method,

t+∆t .
u = t .

u +
[
(1− δ)t ..

u + δt+∆t ..
u
]
∆t

t+∆tu = tu +t .
u∆t +

[(
1
2 − α

)t ..
u + αt+∆t ..

u
]

∆t2 (22)

in which ∆t stands for the time step for time integration, δ and α are the undetermined
coefficients which are related to the integration accuracy.

In addition, the following equilibrium equation at time t + ∆t should also be used,

Mt+∆t ..
u+Ct+∆t .

u + Kt+∆tu = t+∆tf (23)

Since no numerical damping effects will be introduced to the numerical solution when
δ = 1

2 and α = 1
4 , so these two parameters are used in this work. Combining Equations (22)

and (13), at time t + ∆t we can obtain [2],(
4

∆t2 M +
2

∆t
C + K

)
t+∆tu =t+∆t f + M

(
4

∆t2
tu +

4
∆t

t .
u +t ..

u
)
+ C

(
2

∆t
tu +t .

u
)

, (24)

Then the complete numerical solution can be finally obtained by recursively using
Equations (22)–(24).

4. The Linear Dependence Issue

We have known that one major issue in the EFEM formulation is the linear dependence
(LD) issue of the obtained system discretized equations [56,58]. To obtain stable numerical
solution, this linear dependence issue should be addressed carefully. Actually, the origin of
the involved linear dependence issue in EFEM is that the approximation of the considered
field variable is constructed by employing the linear dependent shape functions, hence the
obtained system matrices are usually singular. To address the LD problem of the EFEM and
make the obtained system matrices to be positive definite, Kim and Bathe directly remove
all the cover DOFs on the Dirichlet boundary and it is shown that the linear dependence
issue indeed can be completely removed [56]. However, the overly-constrained global
discretized equations are actually obtained with this operation and in essence we do not
need to remove all the cover DOFs on the Dirichlet boundary. In consequence, this operation
always lead to the unnecessary loss of computation accuracy. In this work, we use a new
scheme to address the LD of the EFEM. In this scheme, the minimum superfluous cover
DOFs are eliminated to ensure that the resultant global system matrices are completely
positive definite, hence the computation accuracy can be largely maintained. Furthermore,
due to the linear dependence issue the imposition of the Dirichlet boundary condition in
the EFEM is quite different from that in the standard FEM, hence the accurate imposition of
the Dirichlet boundary condition in the EFEM framework is also discussed in detail within
this work.

If the first order complete polynomials are employed as the cover functions, in the
EFEM formulation we can obtain nine nodal shape functions for each triangular element.
(see Figure 3).
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Here Nl (l = i, j, k) represent the conventional linear interpolation functions in a
standard linear triangular element.

Ni =
1

2A
[(

xjyk − xkyj
)
+
(
yj − yk

)
x +

(
xk − xj

)
y
]

Nj =
1

2A [(xkyi − xiyk) + (yk − yi)x + (xi − xk)y]

Nk =
1

2A
[(

xiyj − xjyi
)
+
(
yi − yj

)
x +

(
xj − xi

)
y
] (25)

From Ref. [58], we can obtain the following theorem.

Theorem 1. For the approximation space spanned by the nine shape functions in Figure 3,
span

{
Ni Nj Nk Nix Njx Nkx Niy Njy Nky

}
= span

{
1 x y x2 xy y2 }.

The related proofs for the above theorem are not given here, more details can be
found in Ref. [58]. Based on Theorem 1 and the related analysis in Ref. [58], it is known
that the five nodal shape functions span

{
Ni Nj Nk Nix Njx

}
are definitely linear

independent and span
{

Ni Nj Nk Nix Njx
}
= span

{
1 x y x2 xy

}
, hence

another term in
{

Niy Njy Nky
}

in which the y2 term is contained should be found
out, then the completely quadratic approximation space can be obtained. From Equation
(25), it is clear that any one in

{
Niy Njy Nky

}
will contain the y2 term and can be

used when xi 6= xj 6= xk. However, Niy or Nky can be used when xi = xk, Niy or Njy can
be used when xi = xj.

From Ref. [58], we also can obtain the following theorem.

Theorem 2. For the normal mesh without singular node, once the six linearly independent shape
functions are used for any single element, the LD of the obtained system discretized equations based
on the global mesh will be completely removed.

Using Theorems 1 and 2, the linear dependence problem of the EFEM can be can be
completely removed without any loss in computation accuracy.

5. Imposition of the Dirichlet Boundary Condition

We have known that the natural boundary condition (BC) can be directly imposed in
the EFEM which is quite similar as in the conventional FEM [56,58]. However, the Dirichlet
BC cannot be imposed directly in the EFEM and should be carefully discussed.

Taking the mesh pattern in Figure 4 for example, the Dirichlet BC u = 0 for a considered
scalar field is prescribed on x = 0. To accurately apply this Dirichlet BC, all the y cover
DOFs should be firstly eliminated. Furthermore, to address the linear dependence issue, in
the global mesh six linear independent shape functions which can exactly construct the
complete quadratic approximation space should be employed for at least one triangular
element. This kind of element should be determined very carefully based on Theorem 1.

For instance, when we choose the element 1-5-2 as the initial element. Due to the Dirichlet
BC u = 0 on x = 0, two y cover DOFs N1y and N2y should be firstly eliminated, then the remain-
ing nodal shape functions for element 1-5-2 are

{
N1 N5 N2 N1x N5x N2x N5y

}
.

Note that x1 = x2 here, so the shape function N5y will not contain y2 term, hence
span

{
N1 N5 N2 N1x N5x N2x N5y

}
6= span

{
1 x y x2 xy y2 }, namely

the element 1-5-2 is not appropriate as the initial element which should have six linearly
independent shape functions to eliminate the linear dependence issue.

However, the element 1-4-5 is appropriate as the initial element. Due to the Dirichlet BC u = 0
on x = 0, the y cover DOF N1y should be firstly eliminated. Based on the analysis in Section 3, it is
clear that the following six nodal shape functions

{
h1 h4 h5 h1x h4x h5y

}
are linearly

independent and
{

h1 h4 h5 h1x h4x h5y
}

=span
{

1 x y x2 xy y2 }.
Finally, the linear dependence problem of the EFEM can be completely removed using

above analysis and discussion, and the Dirichlet BC can also be accurately imposed.
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6. Numerical Results

Several supporting numerical experiments will be considered in this section to as-
sess the abilities of the proposed method for free and forced vibration analysis of two-
dimensional linear elastic solids.

6.1. Free Vibration Analysis of a Cantilever Beam

The first considered numerical example is a cantilever beam. As shown in Figure 5,
the geometry parameters of this cantilever beam is thickness t = 1, width D = 10 and length
L = 100. The plane stress condition is considered here and the related material parameters
are Poisson’s ratio v = 0.3, Young’s modulus E = 2.1 × 1011 and mass density ρ = 8 × 10−10.
This is a very common benchmark problem in the free vibration analysis and has been
investigated detailedly by many researchers using different numerical methods [63,64].
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Figure 5. A two-dimensional cantilever beam.

6.1.1. Computation Accuracy Study

To examine the behaviors of the present EFEM-N3 in free vibration analysis, a series
of standard regular triangular mesh with different average element sizes (see Figure 6) are
employed in the numerical computation. The first 10 natural frequencies calculated by
the linear triangular element (FEM-T3), bilinear quadrilateral element (FEM-Q4), the edge-
based smoothed FEM (ES-FEM) [41,50] and the present EFEM-N3 are given in Tables 1–3.
For comparison, the numerical results using the commercial software package ABAQUS
with a very fine triangular mesh (4221 nodes and 8000 elements) are also listed in the tables
as the reference solutions. We can see that the numerical errors of the natural frequencies
from the standard FEM-T3 and FEM-Q4 are relatively large. This is because the computation
accuracy of the low order linear elements in the standard FEM is not sufficiently high,
especially when the relatively coarse meshes are used. The ES-FEM solutions are clearly
better than those from the standard FEM, while the proposed EFEM-N3 can provide the
most accurate numerical results. In addition, it is also evident that the quality of numerical
solutions from all four different numerical methods will become worse with the increase of
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the mode order. Nevertheless, the behaviors of the present EFEM-N3 are markedly better
than other methods. Furthermore, the first 10 mode shapes of the cantilever beam from
the EFEM-N3 are depicted in Figure 7, we can see that the physical vibration mode can be
accurately predicted by the present EFEM-N3.
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Figure 6. The standard triangular mesh with regular node distribution for the cantilever beam.
(a) Mesh 1 (10 × 1); (b) Mesh 2 (20 × 2); (c) Mesh 3 (40 × 4).

Table 1. The natural frequency solutions from different elements using Mesh 1 (22 nodes, 20 elements).

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 1704.07 999.94 1060.41 826.44 822.41
2 9550.05 6077.08 6486.92 4997.09 4932.71
3 12,898.51 12,863.12 12,879.18 12,833.79 12,823.96
4 23,636.40 16,422.55 17,676.71 13,310.92 12,993.08
5 38,878.90 30,961.53 33,611.81 24,522.67 23,611.65
6 40,960.87 38,921.06 39,070.31 37,946.19 36,009.93
7 60,074.90 49,338.69 54,156.41 38,482.34 38,443.95
8 66,226.33 65,982.06 66,621.04 53,047.17 49,578.22
9 81,228.50 71,244.04 79,745.90 64,058.56 63,912.57
10 94,589.79 94,728.11 96,638.13 69,457.19 63,974.64

Table 2. The natural frequency solutions from different elements using Mesh 2 (63 nodes, 80 elements).

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 1119.29 871.76 855.74 823.84 822.41
2 6617.08 5263.48 5180.43 4944.89 4932.71
3 12,849.69 12,837.12 12,840.31 12,827.62 12,823.96
4 17,162.01 14,010.46 13,829.41 13,038.27 12,993.08
5 30,745.07 25,816.34 25,565.29 23,729.46 23,611.65
6 38,620.23 38,573.48 38,608.10 36,259.33 36,009.93
7 46,401.47 40,002.13 39,764.95 38,455.45 38,443.95
8 63,385.94 56,042.63 55,964.71 50,037.34 49,578.22
9 64,681.80 64,493.66 64,650.99 63,995.63 63,912.57
10 81,520.49 73,610.95 73,943.12 64,678.33 63,974.64

6.1.2. Convergence Study

Several uniform meshes with varying node intervals shown in Figure 6 are employed
to assess the convergence properties of the different numerical approaches in free vibration
analysis. The following relative error indicator for the calculated natural frequency results
are used,

Re =
∣∣∣∣ f num − f re f

f re f

∣∣∣∣× 100% (26)
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in which f num and f re f represent the natural frequency results from the different elements
and the corresponding reference solutions, respectively.

Table 3. The natural frequency solutions from different elements using Mesh 3 (205 nodes,
320 elements).

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 906.83 835.16 827.37 822.74 822.41
2 5425.61 5019.96 4975.61 4935.85 4932.71
3 12,833.24 12,828.32 12,828.93 12,825.28 12,823.96
4 14,254.61 13,263.55 13,150.15 13,002.27 12,993.08
5 25,852.78 24,200.63 23,997.99 23,631.32 23,611.65
6 38,493.15 37,078.50 36,775.32 36,045.90 36,009.93
7 39,398.63 38,479.58 38,488.49 38,447.96 38,443.95
8 54,244.91 51,308.85 50,906.49 49,637.97 49,578.22
9 64,160.33 64,109.88 64,146.76 63,980.08 63,912.57
10 70,011.80 66,507.56 66,022.83 64,006.94 63,974.64
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Figure 7. The first 10 vibration modes of cantilever beam calculated by EFEM-N3: (a) Mode one;
(b) Mode Two; (c) Mode Three; (d) Mode Four; (e) Mode Five; (f) Mode six; (g) Mode Seven;
(h) Mode Eight; (i) Mode Nine; (j) Mode Ten.

For the first and second order vibration mode of the cantilever beam, the relative error
indicator Re of the obtained natural frequency results from different elements versus the
average meshsize h are plotted in Figure 8. It can be found that the ES-FEM shows better
convergence properties than the proposed EFEM-N3. Nevertheless, the convergence rate
of the present EFEM-N3 is still markedly higher than the standard FEM.

6.1.3. Computation Efficiency Study

Now we have known that the EFEM-N3 behaves better than the traditional FEM in
computation accuracy and convergence rate for free vibration analysis. However, from the
related formulation in Section 2 we can find that more nodal unknowns and more expensive
numerical integration are involved in the present EFEM-N3 than the other elements. Here
the uniform meshes shown in Figure 6 with different average meshsizes are again used
and the first two natural frequency results are discussed to investigate the computation
efficiency of the EFEM-N3. Figure 9 displays the corresponding relative error indicator
results versus the solution time for different elements. We can see that the proposed EFEM-
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N3 is much more time-consuming compared to other methods when the same mesh pattern
is used. However, the relative error indicator from the EFEM-N3 is the smallest for the same
computational cost. These findings indicate that the EFEM-N3 has higher computation
efficiency than the other three elements for free vibration analysis.
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frequencies of the cantilever beam. (a) Mode 1, (b) Mode 2.



Mathematics 2022, 10, 456 13 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 22 
 

 

(a) 

(b) 

Figure 9. Comparison of the computation efficiency of the different elements. (a) Mode 1, (b) Mode 2. 

6.1.4. Effects of Mesh Distortion 
In this section, we will evaluate the effects of the mesh distortion on the computation 

accuracy for different elements. Both uniform mesh with regular node distributions and 
distorted mesh with irregular node distributions are used here. The distorted mesh is di-
rectly obtained from the uniform mesh using the following treatments [47], 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1og10(Time)

1o
g 1

0(
Re

)

 

 

FEM–T3
ES–FEM
FEM–Q4
EFEM–N3

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

1og10(Time)

1o
g 1

0(
Re

)

 

 

FEM–T3
ES–FEM
FEM–Q4
EFEM–N3

Figure 9. Comparison of the computation efficiency of the different elements. (a) Mode 1, (b) Mode 2.

6.1.4. Effects of Mesh Distortion

In this section, we will evaluate the effects of the mesh distortion on the computation
accuracy for different elements. Both uniform mesh with regular node distributions and
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distorted mesh with irregular node distributions are used here. The distorted mesh is
directly obtained from the uniform mesh using the following treatments [47],{

xir = xre + h · rc · βir
yir = yre + h · rc · βir

(27)

in which xre and yre are original node coordinate values of the uniform mesh, h is the average
nodal space, rc ∈ [−1, 1] is a random number, βir ∈ [0, 0.5] is a prescribed irregularity
indicator, xir and yir are the node coordinate values of the obtained distorted mesh.

We can see from Figure 10 that the number of nodes is same for the uniform mesh
and distorted mesh, and larger irregularity indicator βir will lead to more distorted mesh.
Tables 4 and 5 list the first 10 natural frequency results from different elements using two
distorted meshes (see Figure 10). For computation, the corresponding results from the
uniform mesh and the reference solutions are also listed in the tables. From the results, it is
seen that the computation accuracy of the standard linear elements (FEM-T3 and FEM-Q4)
will degrade clearly when the distorted mesh pattern is employed. The performance of the
ES-FEM is better than the traditional FEM, while the present EFEM-N3 behaves best among
all the considered elements because the calculated numerical solutions are still very good
using the distorted mesh and these findings are even more clear for the larger irregularity
indicator. This means that the present EFEM-N3 has higher tolerance in the mesh distortion
than the other elements.
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Figure 10. Two distorted meshes obtained from the uniform mesh using different irregularity
indicators. (a) The irregularity indicator βir = 0.25, (b) The irregularity indicator βir = 0.45.

Table 4. The calculated natural frequencies (Hz) from different elements using the distorted mesh
shown in Figure 10a.

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 1122.20 880.70 863.63 823.81 822.41
2 6611.69 5314.24 5218.07 4945.35 4932.71
3 12,848.43 12,837.54 12,840.35 12,827.54 12,823.96
4 17,091.48 14,196.79 13,970.51 13,040.24 12,993.08
5 30,885.01 26,093.70 25,793.25 23,737.90 23,611.65
6 38,619.45 38,580.22 38,615.20 36,274.70 36,009.93
7 46,957.70 40,508.40 40,139.30 38,455.24 38,443.95
8 63,665.54 56,599.45 56,450.22 50,068.29 49,578.22
9 64,732.78 64,529.76 64,683.06 63,995.51 63,912.57
10 81,946.64 74,204.78 74,725.45 64,739.58 63,974.64

6.2. Free Vibration Analysis of a Shear Wall

The second considered numerical example is a shear wall. As shown in Figure 11,
the shear wall has four openings and the fully clamped boundary condition is applied at
its bottom edge. The related material constants are mass density ρ = 1, Young’s modulus
E = 1000 and Poisson’s ratio v = 0.2. Assuming that this shear wall is in plane stress
condition with thickness t = 1. The standard triangular mesh with 952 elements and
599 nodes (see Figure 12) is used in the calculation and Table 6 lists the computed first
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10 natural frequency results from different elements. The reference results are obtained
from the commercial software package ABAQUS using very refined triangular meshes
(17,136 elements and 17,644 nodes). From the results shown in the table, we can again find
that more accurate natural frequency results can be predicted by the present EFEM-N3 than
the other mentioned elements. In addition, Figure 13 also gives the first 10 vibration modes
from the present EFEM-N3. We can observe that the proposed EFEM-N3 indeed behaves
very well in predicting the mode shape in free vibration analysis.

Table 5. The calculated natural frequencies (Hz) from different elements using the distorted mesh
shown in Figure 10b.

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 1145.59 898.93 884.98 823.97 822.41
2 6737.77 5455.77 5369.86 4947.20 4932.71
3 12,853.75 12,837.90 12,843.17 12,828.10 12,823.96
4 17,179.78 14,586.04 14,420.32 13,050.46 12,993.08
5 31,362.44 26,581.86 26,471.00 23,766.85 23,611.65
6 38,629.17 38,580.54 38,633.98 36,352.11 36,009.93
7 47,501.75 40,940.73 40,865.35 38,457.08 38,443.95
8 63,711.47 57,399.92 57,474.63 50,197.60 49,578.22
9 64,801.35 64,531.84 64,743.80 63,998.94 63,912.57
10 82,916.05 75,850.72 76,237.81 64,908.02 63,974.64

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 22 
 

 

3 3 4.8

3
3

3
1.

8
1.

8
1.

8
1.

8
3

 
Figure 11. A shear wall in plane stress condition for free vibration analysis. 

 
Figure 12. The standard triangular mesh for the shear wall. 

 
(a) (b) 

Figure 11. A shear wall in plane stress condition for free vibration analysis.

6.3. Forced Vibration Analysis of a Cantilever Beam

A cantilever beam is considered for forced vibration analysis in this section (see
Figure 14). The plane stress condition is assumed here and the related material parameters
are mass density ρ = 1, Young’s modulus E = 1 and Poisson’s ratio v = 0.3. The Rayleigh
damping coefficients are taken as α = 0.005 and β = 0.272. A tip harmonic force f = cos(0.05t)
is subjected to the right end of the cantilever beam in y direction and the Newmark time
integration scheme is used for temporal discretization. The uniform mesh pattern with
node interval h = 0.2 is employed to discretize the problem domain and the temporal
discretization step is ∆t = 0.01. Figure 15 shows the transient response results of the right
end of the cantilever from different elements. The reference results are from the traditional
FEM-Q4 using a very fine mesh (4221 nodes and 4000 elements). From Figure 15, we can
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observe that all the different numerical methods are able to produce very similar transient
response results. However, the EFEM-N3 results are closest to the reference solutions
than the other methods. This numerical experiment demonstrates that the proposed
EFEM-N3 also behaves very well and can provide better solutions than other methods in
dynamic analysis.
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Table 6. The obtained natural frequencies (Hz) results from different elements for the shear wall.

Mode FEM-T3 FEM-Q4 ES-FEM EFEM-N3 Reference

1 0.1081 0.1044 0.1032 0.1022 0.1011
2 0.3681 0.3580 0.3553 0.3522 0.3497
3 0.3855 0.3839 0.3836 0.3830 0.3825
4 0.6312 0.6029 0.5916 0.5846 0.5767
5 0.8094 0.7773 0.7677 0.7594 0.7532
6 0.9503 0.9275 0.9214 0.9131 0.9094
7 1.0352 1.0061 0.9983 0.9894 0.9857
8 1.1459 1.1247 1.1158 1.1060 1.1007
9 1.2045 1.1673 1.1552 1.1454 1.1389
10 1.2276 1.1944 1.1844 1.1763 1.1724
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7. Conclusions

In this work, a novel linear triangular element enriched by interpolation cover func-
tions (EFEM-N3) is used in tackling the two-dimensional dynamic problems. The following
instructive points can be obtained through the considered numerical experiments:

(a) By employing the proposed scheme in addressing the LD problem in the EFEM-N3,
the potential LD issue can be completely removed and then the totally symmetric
positive-definite system can be achieved, hence very stable numerical solutions can
then be generated.

(b) Compared to the conventional FEM, the proposed EFEM-N3 in this work behaves
much better in convergence rate and computation accuracy, and much more natural
frequency results and force response results can be obtained, this is because the initial
linear approximation space used in the conventional FEM is effectively enhanced by
using the constructed interpolation cover functions.

(c) Although no extra nodes are needed in the present EFEM-N3 compared to the high
order standard elements, more nodal unknowns are involved and larger size system
matrices are always obtained, hence the present EFEM-N3 is clearly more numerically
expensive. Nevertheless, the present EFEM-N3 still possesses higher computation
efficiency in the solution of free and forced vibration analysis.

(d) The proposed EFEM-N3 is also less sensitive to the mesh distortion than the other
conventional elements and quite reliable numerical results can still be produced even
if very distorted meshes are employed. Therefore, the present method is very suitable



Mathematics 2022, 10, 456 19 of 21

for different areas of engineering applications with complex geometries because the
mesh distortion cannot be completely avoided in these cases.

Author Contributions: Conceptualization, Y.L. and S.D.; methodology, Y.C.; software, W.L.; vali-
dation, Y.L., S.D. and Y.C.; formal analysis, Y.L.; investigation, Y.L.; resources, Y.C.; data curation,
Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visualization, Y.L.;
supervision, Y.C.; funding acquisition, Y.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by State Key Laboratory of Ocean Engineering (Shanghai Jiao
Tong University) (Grant No. GKZD010081).

Data Availability Statement: +e data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: We thank Qifan Zhang for the support provided in setting up the numerical model.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2000.
2. Bathe, K.J. Finite Element Procedures, 2nd ed.; Prentice Hall: Watertown, MA, USA, 2014.
3. Chai, Y.B.; Li, W.; Liu, G.R.; Gong, Z.X.; Li, T.Y. A superconvergent alpha finite element method (SαFEM) for static and free

vibration analysis of shell structures. Comput. Struct. 2017, 179, 27–47. [CrossRef]
4. Chopra, M.B.; Dargush, G.F. Finite-element analysis of time-dependent large-deformation problems. Int. J. Numer. Methods Eng.

1992, 16, 101–130. [CrossRef]
5. Moresi, L.; Dufour, F.; Mühlhaus, H.B. A Lagrangian integration point finite element method for large deformation modeling of

viscoelastic geomaterials. J. Comput. Phys. 2003, 184, 476–497. [CrossRef]
6. Liu, G.R. Mesh Free Methods: Moving Beyond the Finite Element Method; CRC Press: Boca Raton, FL, USA, 2009.
7. Belytschko, T.; Lu, Y.Y.; Gu, L. Element-free Galerkin methods. Int. J. Numer. Methods Eng. 1994, 37, 229–256. [CrossRef]
8. Chen, J.S.; Hillman, M.; Chi, S.W. Meshfree methods: Progress made after 20 years. J. Eng. Mech. 2017, 143, 04017001. [CrossRef]
9. You, X.Y.; Li, W.; Chai, Y.B. A truly meshfree method for solving acoustic problems using local weak form and radial basis

functions. Appl. Math. Comput. 2020, 365, 124694. [CrossRef]
10. Liu, C.S.; Qiu, L.; Lin, J. Simulating thin plate bending problems by a family of two-parameter homogenization functions. Appl.

Math. Model. 2020, 79, 284–299. [CrossRef]
11. Li, W.; Zhang, Q.; Gui, Q.; Chai, Y.B. A coupled FE-Meshfree triangular element for acoustic radiation problems. Int. J. Comput.

Methods 2021, 18, 2041002. [CrossRef]
12. Lin, J.; Zhang, Y.H.; Reutskiy, S.; Feng, W. A novel meshless space-time backward substitution method and its application to

nonhomogeneous advection-diffusion problems. Appl. Math. Comput. 2021, 398, 125964. [CrossRef]
13. Chai, Y.B.; You, X.Y.; Li, W. Dispersion Reduction for the Wave Propagation Problems Using a Coupled “FE-Meshfree” Triangular

Element. Int. J. Comput. Methods 2020, 17, 1950071. [CrossRef]
14. Lin, J.; Feng, W.; Reutskiy, S.; Xu, H.; He, Y. A semi-analytical method for solving a class of time fractional partial differential

equations with variable coefficients. Appl. Math. Lett. 2021, 112, 106712. [CrossRef]
15. Qiu, L.; Lin, J.; Wang, F.J.; Qin, Q.H.; Liu, C.S. A homogenization function method for inverse heat source problems in 3D

functionally graded materials. Appl. Math. Model. 2021, 91, 923–933. [CrossRef]
16. Wu, T.W. Boundary Element Acoustics: Fundamentals and Computer Codes; WIT Press: Southampton, UK, 2000.
17. Gu, Y.; Lei, J. Fracture mechanics analysis of two-dimensional cracked thin structures (from micro- to nano-scales) by an efficient

boundary element analysis. Results Math. 2021, 11, 100172. [CrossRef]
18. Wang, F.; Fan, C.M.; Zhang, C.; Lin, J. A localized space-time method of fundamental solutions for diffusion and convection-

diffusion problems. Adv. Appl. Math. Mech. 2020, 12, 940–958. [CrossRef]
19. Li, J.P.; Gu, Y.; Qin, Q.H.; Zhang, L. The rapid assessment for three-dimensional potential model of large-scale particle system by

a modified multilevel fast multipole algorithm. Comput. Math. Appl. 2021, 89, 127–138. [CrossRef]
20. Li, J.P.; Fu, Z.J.; Gu, Y.; Qin, Q.H. Recent advances and emerging applications of the singular boundary method for large-scale

and high-frequency computational acoustics. Adv. Appl. Math. Mech. 2021, 14, 315–343. [CrossRef]
21. Fu, Z.J.; Chen, W.; Wen, P.H.; Zhang, C.Z. Singular boundary method for wave propagation analysis in periodic structures. J.

Sound Vib. 2018, 425, 170–188. [CrossRef]
22. Fu, Z.J.; Xi, Q.; Li, Y.; Huang, H.; Rabczuk, T. Hybrid FEM–SBM solver for structural vibration induced underwater acoustic

radiation in shallow marine environment. Comput. Methods Appl. Mech. Eng. 2020, 369, 113236. [CrossRef]
23. Li, J.P.; Zhang, L. High-precision calculation of electromagnetic scattering by the Burton-Miller type regularized method of

moments. Eng. Anal. Bound. Elem. 2021, 133, 177–184. [CrossRef]

http://doi.org/10.1016/j.compstruc.2016.10.021
http://doi.org/10.1002/nag.1610160203
http://doi.org/10.1016/S0021-9991(02)00031-1
http://doi.org/10.1002/nme.1620370205
http://doi.org/10.1061/(ASCE)EM.1943-7889.0001176
http://doi.org/10.1016/j.amc.2019.124694
http://doi.org/10.1016/j.apm.2019.10.036
http://doi.org/10.1142/S0219876220410029
http://doi.org/10.1016/j.amc.2021.125964
http://doi.org/10.1142/S0219876219500713
http://doi.org/10.1016/j.aml.2020.106712
http://doi.org/10.1016/j.apm.2020.10.012
http://doi.org/10.1016/j.rinam.2021.100172
http://doi.org/10.4208/aamm.OA-2019-0269
http://doi.org/10.1016/j.camwa.2021.03.003
http://doi.org/10.4208/aamm.OA-2020-0356
http://doi.org/10.1016/j.jsv.2018.04.005
http://doi.org/10.1016/j.cma.2020.113236
http://doi.org/10.1016/j.enganabound.2021.09.001


Mathematics 2022, 10, 456 20 of 21

24. Li, J.P.; Zhang, L.; Qin, Q.H. A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering.
Appl. Math. Lett. 2021, 112, 106746. [CrossRef]

25. Gu, Y.; Fan, C.M.; Fu, Z.J. Localized method of fundamental solutions for three-dimensional elasticity problems: Theory. Adv.
Appl. Math. Mech. 2021, 13, 1520–1534.

26. Liu, W.K.; Jun, S.; Zhang, Y.F. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 1995, 20, 1081–1106. [CrossRef]
27. Nayroles, B.; Touzot, G.; Villon, P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput.

Mech. 1992, 10, 307–318. [CrossRef]
28. Li, X.; Li, S. A fast element-free Galerkin method for the fractional diffusion-wave equation. App. Math. Lett. 2021, 122, 107529.

[CrossRef]
29. Li, X.; Li, S. A linearized element-free Galerkin method for the complex Ginzburg-Landau equation. Compu. Math. Appl. 2021, 90,

135–147. [CrossRef]
30. Harari, I.; Hughes, T.J.R. Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting

boundary conditions in unbounded domains. Comput. Methods Appl. Mech. Eng. 1992, 98, 411–454. [CrossRef]
31. Xu, Y.Y.; Zhang, G.Y.; Zhou, B.; Wang, H.Y.; Tang, Q. Analysis of acoustic radiation problems using the cell-based smoothed

radial point interpolation method with Dirichlet-to-Neumann boundary condition. Eng. Anal. Bound. Elem. 2019, 108, 447–458.
[CrossRef]

32. Qu, W.Z.; He, H. A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading. Appl. Math.
Lett. 2022, 124, 107664. [CrossRef]

33. Qu, W.Z.; Gao, H.W.; Gu, Y. Integrating Krylov deferred correction and generalized finite difference methods for dynamic
simulations of wave propagation phenomena in long-time intervals. Adv. Appl. Math. Mech. 2021, 13, 1398–1417.

34. Fu, Z.J.; Xie, Z.Y.; Ji, S.Y.; Tsai, C.C.; Li, A.L. Meshless generalized finite difference method for water wave interactions with
multiple-bottom-seated-cylinder-array structures. Ocean Eng. 2020, 195, 106736. [CrossRef]

35. Oñate, E.; Perazzo, F.; Miquel, J. A finite point method for elasticity problems. Comput. Struct. 2001, 79, 2151–2163. [CrossRef]
36. Li, X.; Li, S. A finite point method for the fractional cable equation using meshless smoothed gradients. Eng. Anal. Bound. Elem.

2022, 134, 453–465. [CrossRef]
37. Wang, F.; Zhao, Q.; Chen, Z.; Fan, C.M. Localized Chebyshev collocation method for solving elliptic partial differential equations

in arbitrary 2D domains. Appl. Math. Comput. 2021, 397, 125903. [CrossRef]
38. Xi, Q.; Fu, Z.J.; Zhang, C.Z.; Yin, D.S. An efficient localized Trefftz-based collocation scheme for heat conduction analysis in two

kinds of heterogeneous materials under temperature loading. Comput. Struct. 2021, 255, 106619. [CrossRef]
39. Xi, Q.; Fu, Z.J.; Wu, W.J.; Wang, H.; Wang, Y. A novel localized collocation solver based on Trefftz basis for Potential-based Inverse

Electromyography. Appl. Math. Comput. 2021, 390, 125604. [CrossRef]
40. Wang, F.; Wang, C.; Chen, Z.T. Local knot method for 2D and 3D convectiondiffusion-reaction equations in arbitrary domains.

Appl. Math. Lett. 2020, 105, 106308. [CrossRef]
41. Zeng, W.; Liu, G.R. Smoothed finite element methods (S-FEM): An overview and recent developments. Arch. Comput. Method Eng.

2018, 25, 397–435. [CrossRef]
42. Chai, Y.B.; Li, W.; Lei, M.; Liu, G.R. Analysis of coupled structural-acoustic problems based on the smoothed finite element

method (S-FEM). Eng. Anal. Bound. Elem. 2014, 42, 84–91.
43. Li, W.; Gong, Z.X.; Chai, Y.B.; Cheng, C.; Li, T.Y.; Zhang, Q.F.; Wang, M.S. Hybrid gradient smoothing technique with discrete

shear gap method for shell structures. Comput. Math. Appl. 2017, 74, 1826–1855. [CrossRef]
44. Chai, Y.B.; Li, W.; Gong, Z.X.; Li, T.Y. Hybrid smoothed finite element method for two dimensional acoustic radiation problems.

Appl. Acoust. 2016, 103, 90–101. [CrossRef]
45. Chai, Y.B.; Gong, Z.X.; Li, W.; Li, T.Y.; Zhang, Q.F. A smoothed finite element method for exterior Helmholtz equation in two

dimensions. Eng. Anal. Bound. Elem. 2017, 84, 237–252. [CrossRef]
46. Chai, Y.B.; Li, W.; Gong, Z.X.; Li, T.Y. Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering

problems. Ocean Eng. 2016, 116, 129–141. [CrossRef]
47. Chai, Y.B.; Gong, Z.X.; Li, W.; Li, T.Y.; Zhang, Q.F.; Zou, Z.H.; Sun, Y.B. Application of smoothed finite element method to

two-dimensional exterior problems of acoustic radiation. Int. J. Comput. Methods 2018, 15, 1850029. [CrossRef]
48. Jiang, C.; Zhang, Z.Q.; Gao, G.J.; Liu, G.R. A modified immersed smoothed FEM with local field reconstruction for fluid–structure

interactions. Eng. Anal. Bound. Elem. 2019, 107, 218–232. [CrossRef]
49. Liu, M.Y.; Gao, G.J.; Zhu, H.F.; Jiang, C.; Liu, G.R. A cell-based smoothed finite element method (CS-FEM) for three-dimensional

incompressible laminar flows using mixed wedge-hexahedral element. Eng. Anal. Bound. Elem. 2021, 133, 269–285. [CrossRef]
50. Chai, Y.B.; You, X.Y.; Li, W.; Huang, Y.; Yue, Z.J.; Wang, M.S. Application of the edge-based gradient smoothing technique to

acoustic radiation and acoustic scattering from rigid and elastic structures in two dimensions. Comput. Struct. 2018, 203, 43–58.
[CrossRef]

51. Li, W.; Chai, Y.B.; Lei, M.; Li, T.Y. Numerical investigation of the edge-based gradient smoothing technique for exterior Helmholtz
equation in two dimensions. Comput. Struct. 2017, 182, 149–164. [CrossRef]

52. Liu, G.R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K.Y. A node-based smoothed finite element method (NS-FEM) for upper
bound solutions to solid mechanics problems. Comput. Struct. 2009, 87, 14–26. [CrossRef]

http://doi.org/10.1016/j.aml.2020.106746
http://doi.org/10.1002/fld.1650200824
http://doi.org/10.1007/BF00364252
http://doi.org/10.1016/j.aml.2021.107529
http://doi.org/10.1016/j.camwa.2021.03.027
http://doi.org/10.1016/0045-7825(92)90006-6
http://doi.org/10.1016/j.enganabound.2019.08.025
http://doi.org/10.1016/j.aml.2021.107664
http://doi.org/10.1016/j.oceaneng.2019.106736
http://doi.org/10.1016/S0045-7949(01)00067-0
http://doi.org/10.1016/j.enganabound.2021.10.018
http://doi.org/10.1016/j.amc.2020.125903
http://doi.org/10.1016/j.compstruc.2021.106619
http://doi.org/10.1016/j.amc.2020.125604
http://doi.org/10.1016/j.aml.2020.106308
http://doi.org/10.1007/s11831-016-9202-3
http://doi.org/10.1016/j.camwa.2017.06.047
http://doi.org/10.1016/j.apacoust.2015.10.012
http://doi.org/10.1016/j.enganabound.2017.09.006
http://doi.org/10.1016/j.oceaneng.2016.02.034
http://doi.org/10.1142/S0219876218500299
http://doi.org/10.1016/j.enganabound.2019.07.010
http://doi.org/10.1016/j.enganabound.2021.09.008
http://doi.org/10.1016/j.compstruc.2018.05.009
http://doi.org/10.1016/j.compstruc.2016.12.004
http://doi.org/10.1016/j.compstruc.2008.09.003


Mathematics 2022, 10, 456 21 of 21

53. Chai, Y.B.; Li, W.; Li, T.Y.; Gong, Z.X.; You, X.Y. Analysis of underwater acoustic scattering problems using stable node-based
smoothed finite element method. Eng. Anal. Bound. Elem. 2016, 72, 27–41. [CrossRef]

54. Ham, S.; Bathe, K.J. A finite element method enriched for wave propagation problems. Comput. Struct. 2012, 94, 1–12. [CrossRef]
55. Chai, Y.B.; Bathe, K.J. Transient wave propagation in inhomogeneous media with enriched overlapping triangular elements.

Comput. Struct. 2020, 237, 106273. [CrossRef]
56. Kim, J.; Bathe, K.J. The finite element method enriched by interpolation covers. Comput. Struct. 2013, 116, 35–49. [CrossRef]
57. Kim, J.; Bathe, K.J. Towards a procedure to automatically improve finite element solutions by interpolation covers. Comput. Struct.

2014, 131, 81–97. [CrossRef]
58. Chai, Y.B.; Li, W.; Liu, Z.Y. Analysis of transient wave propagation dynamics using the enriched finite element method with

interpolation cover functions. Appl. Math. Comput. 2022, 412, 126564. [CrossRef]
59. Gui, Q.; Zhou, Y.; Li, W.; Chai, Y.B. Analysis of two-dimensional acoustic radiation problems using the finite element with cover

functions. Appl. Acoust. 2022, 185, 108408. [CrossRef]
60. Wu, F.; Zhou, G.; Gu, Q.Y.; Chai, Y.B. An enriched finite element method with interpolation cover functions for acoustic analysis

in high frequencies. Eng. Anal. Bound. Elem. 2021, 129, 67–81. [CrossRef]
61. Jeon, H.M.; Lee, P.S.; Bathe, K.J. The MITC3 shell finite element enriched by interpolation covers. Comput. Struct. 2014, 134,

128–142. [CrossRef]
62. Jun, H.; Yoon, K.; Lee, P.S.; Bathe, K.J. The MITC3+ shell element enriched in membrane displacements by interpolation covers.

Comput. Methods Appl. Mech. Eng. 2018, 337, 58–80. [CrossRef]
63. Liu, G.R.; Gu, Y.T. A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Sound Vib. 2001,

246, 29–46. [CrossRef]
64. Dai, K.Y.; Liu, G.R. Free and forced vibration analysis using the smoothed finite element method (SFEM). J. Sound Vib. 2007, 301,

803–820. [CrossRef]

http://doi.org/10.1016/j.enganabound.2016.08.005
http://doi.org/10.1016/j.compstruc.2012.01.001
http://doi.org/10.1016/j.compstruc.2020.106273
http://doi.org/10.1016/j.compstruc.2012.10.001
http://doi.org/10.1016/j.compstruc.2013.09.007
http://doi.org/10.1016/j.amc.2021.126564
http://doi.org/10.1016/j.apacoust.2021.108408
http://doi.org/10.1016/j.enganabound.2021.04.017
http://doi.org/10.1016/j.compstruc.2013.12.003
http://doi.org/10.1016/j.cma.2018.04.007
http://doi.org/10.1006/jsvi.2000.3626
http://doi.org/10.1016/j.jsv.2006.10.035

	Introduction 
	Formulation of the FEM Enriched by Interpolation Cover Functions 
	Governing Equations of Dynamics for Linear Elastic Solids 
	The Linear Dependence Issue 
	Imposition of the Dirichlet Boundary Condition 
	Numerical Results 
	Free Vibration Analysis of a Cantilever Beam 
	Computation Accuracy Study 
	Convergence Study 
	Computation Efficiency Study 
	Effects of Mesh Distortion 

	Free Vibration Analysis of a Shear Wall 
	Forced Vibration Analysis of a Cantilever Beam 

	Conclusions 
	References

