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Abstract: Controlling nonlinear dynamics is a long-standing problem in engineering. Harnessing
known physical information to accelerate or constrain stochastic learning pursues a new paradigm
of scientific machine learning. By linearizing nonlinear systems, traditional control methods cannot
learn nonlinear features from chaotic data for use in control. Here, we introduce Physics-Informed
Deep Operator Control (PIDOC), and by encoding the control signal and initial position into the
losses of a physics-informed neural network (PINN), the nonlinear system is forced to exhibit the
desired trajectory given the control signal. PIDOC receives signals as physics commands and learns
from the chaotic data output from the nonlinear van der Pol system, where the output of the PINN is
the control. Applied to a benchmark problem, PIDOC successfully implements control with a higher
stochasticity for higher-order terms. PIDOC has also been proven to be capable of converging to
different desired trajectories based on case studies. Initial positions slightly affect the control accuracy
at the beginning stage yet do not change the overall control quality. For highly nonlinear systems,
PIDOC is not able to execute control with a high accuracy compared with the benchmark problem.
The depth and width of the neural network structure do not greatly change the convergence of
PIDOC based on case studies of van der Pol systems with low and high nonlinearities. Surprisingly,
enlarging the control signal does not help to improve the control quality. The proposed framework
can potentially be applied to many nonlinear systems for nonlinear controls.

Keywords: physics-informed neural networks; van der Pol dynamics; nonlinear control; machine
learning

1. Introduction

Controlling chaos and nonlinear dynamics is a long-standing issue in various en-
gineering disciplines, including aerospace systems design [1]; chemical operations [2];
robotics [3]; biological sciences [4]; mechatronics [5]; and, in particular, microelectron-
ics [6], especially for circuits systems involving semiconductors that elicit nonlinearity for
signal controls [7,8]. In mathematics, chaos is characterized by underlying patterns and
deterministic laws that are highly sensitive to the initial conditions in dynamical systems
and sometimes manifest as solutions for a differential equation (or a representation of the
system) that do not converge to a stationary or periodic function of time but continue to
exhibit seemingly unpredictable behavior [9]. Controlling chaotic nonlinear dynamics has
a simple objective: implementing the desired command in the system to make it behave
“as we wish” or at least make it predictable so that helpless impotence can be eliminated.
However arduous [10], nonlinear control problems are ubiquitous in nature, occurring in
fluid flows, heartbeat irregularities, weather, and climate [11–13]. Hence, addressing such a
problem is worthwhile.

Traditionally, proportional–integral–derivative controllers (PID) are used for control-
ling nonlinear systems [14,15], where closed-loop feedback errors are tuned using linearized
versions of nonlinear, chaotic equations seeking to come as close to the targeted trajectory

Mathematics 2022, 10, 453. https://doi.org/10.3390/math10030453 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030453
https://doi.org/10.3390/math10030453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1511-7597
https://orcid.org/0000-0002-4681-7919
https://doi.org/10.3390/math10030453
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030453?type=check_update&version=1


Mathematics 2022, 10, 453 2 of 20

as possible [16]. Such methods remain commonplace in industry. Notably, with such wide
applications, PID control experiences sluggish and systematic performance due to the
integral term, and increasing the order can lead to system instability [17]. Admittedly,
reducing PID to PI (proportional–integral) or P (proportional) might either increase the
speed or system stability, but neither can learn the features of nonlinear systematic data,
which allows more advanced self-adjust control behavior. Another common approach is to
model the chaotic behaviors as periodic ones and implement trigonometric commands in
hopes of producing predictable periodic system behavior [18]. Model predictive controllers
incorporate statistics seeking good results for fuzzy systems [19].

In recent decades, the skyrocketing usage of big data, assisted by advanced computing
technologies such as GPU computing [20], has led to the enhancement of machine learning
algorithms—specifically, deep neural networks [21]. Deep neural networks can learn and
capture features from highly nonlinear data for accurate predictions, indicating their huge
potential and attracting a great deal of attention in various fields. Encoding physics infor-
mation in the losses of a deep neural network (NN) promises the faster, accurate learning of
physics with neural networks by respecting the basic laws of physics using less labeled data,
commonly recognized as Physics-Informed Neural Networks (PINNs) [22,23]. One of the
most celebrated characteristics of PINNs is their ability to learn from sparse data [24]. Upon
the proposed PINN framework, various PINNs designed for disparate engineering appli-
cations have emerged. Perhaps their most renowned use is in predicting fluid fields [25,26],
but other notable uses include electronics applications [27,28]. Notably, there have been
a few attempts to use the PINN-based method to learn and predict nonlinear dynamical
systems and chaos [29–32], with a notable good attempt by Antonelo et al. [33] to modify
PINN to adjust systematic controls based on the predictions of PINN. Furthermore, PINN
has been used to learn controls for a series of optimal planar orbit transfer problems [34].
However, most applications focus on the “learning” and “discovery” of dynamics with
PINNs, while few actually focus on “controlling” the system—that is, guiding the system
to behave as human-desired signals. Attempts have been made to use NN for controls
as far back as the 1990s [35–37], but these attempts were limited to replacing a block or
parts of the closed-loop framework with an NN rather than directly using the NN-based
framework for signal controls.

Acknowledging the limitations of PINNs and other NN-based controls, a question
emerges: can control signals be incorporated in PINNs for chaotic nonlinear dynamical
systems? To investigate this, we focus on a system proposed by Balthasar van der Pol in
1920 when he was an engineer working for the Philips Company (in the Netherlands) while
studying oscillating circuits [38–40]. The van der Pol system exhibits highly chaotic behav-
ior encompassing wide applications in biology, biochemistry, and microelectronics [41–43].
The traditional control of the van der Pol system usually includes linearizing the system
and adding a forcing term based on the linearized system to impose control [44–47]. A
basic setup of the oscillating van der Pol circuit is illustrated in Figure 1: an external
voltage excites the circuit, inducing a current that can be converted to a charge through
the capacitor [48]. If the semiconductor as indicated in green is equipped, the circuit will
display highly nonlinear behavior that is hard to control and predict. Designing a controller
(red block) for controlling the chaotic, nonlinear behavior in such circuits is our main goal.

Inspired by [47] and seeking to compare the application of PINNs [22] to the van der
Pol system, we propose Physics-Informed Deep Operator Control (PIDOC), a PINN-based
control method that incorporates into the loss function of a PINN the generation losses
of NN, the desired control signal, and the initial position of the system. The framework
is tested based on its behavior and its ability to deal with the highly nonlinear system,
while the hyperparameters are also investigated for the better interpretation and potential
application of PIDOC.

The manuscript is arranged as follows: in Section 2 we first formulate the problem
of a van der Pol system and controls (Section 2.1), elaborating the basic system setup in
Section 2.2. In Section 3, the detailed methodologies of formulating and learning with
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PIDOC are described, consisting of deep learning (Section 3.1) and physics-informed
control (Section 3.2). The numerical experiments conducted are briefly summarized in
Section 3.3. Next, Section 4 shows the results and discussion of PIDOC. Section 4.1 analyzes
the behavior of PIDOC given a benchmark problem followed by an in-depth estimation of
the nonlinearity of trajectory convergence in Section 4.2, the estimation of the amplitude
of control signals (Section 4.2.1), the influence of initial positions (Section 4.2.2), and a
nonlinearity analysis (Section 4.2.3). The hyperparameters of the NN (Section 4.3.1) and the
weight of the control signal in PINN is described in Section 4.3.2.Inductor
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Figure 1. The schematic diagram for the van der Pol circuits. Note that the nonlinearity originating
from the semiconductor (the green part) causes the system to generate chaotic behavior. The cycle of
the oscillating circuits generates current, as illustrated by the dashed circle. See text for details.

2. Problem Formulation

The nonlinear control of the chaotic van der Pol system problem here is mainly
inspired by the work of Cooper et al. [47], with a clear problem objective: the successful
implementation of a desired trajectory in the van der Pol system.

2.1. Van Der Pol Dynamics

The van der Pol dynamics describe the oscillatory behavior of a class of nonlinear
equations [38], originally describing the oscillating circuits with semiconductors introduced
in Section 1, as expressed in Equation (1):

d2x
dt2 − µ(1− x2)

dx
dt

+ x = 0 (1)

where if x(t) is referred to as state, ẋ(t) is the rate and ẍ(t) is the acceleration; µ is a scalar
parameter indicating the nonlinearity and the strength of the damping.

The equation exhibits an oscillatory behavior but with a non-constant amplitude,
representing an invariant trajectory set called a “limit cycle” [47]. System trajectories
converge to these invariant orbits given any initial conditions, as shown in Figure 2: Given
six different initial points, all converge to the non-constant limit cycle with a changing
velocity relative to their positions, indicating a non-stable phase. The robustness of the
nonlinear phase suffers, as the system is “trapped” in the set until the control signals cease,
indicating the robustness of the inherent dynamics.

As indicated in Section 1, the main goal is to control such nonlinear behavior. Seeking
to produce a fixed-amplitude oscillation, traditional control methods commonly add forcing
functions to the nonlinear equation as in Equation (2), which allows linear time-invariant
(LTI) feedback control based on a linearized version of the system equation, as in [47]:

d2x
dt2 − µ(1− x2)

dx
dt

+ x = F(t) (2)
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However, in this manuscript such an attempt is not adopted. Our goal is to control
the unsteady state of oscillating dynamics by learning from the original van der Pol
equation. Such an attempt will not suffer from the errors of linearization as in traditional
methods such as PI or PID controllers [14,15,49], and neither does it accumulate errors
in the integrator of PID control. Furthermore, the NN-based control PIDOC is able to
capture the nonlinear chaotic features directly from the van der Pol system data (through
the capacitor in Figure 1). The optimization of minimizing losses is an innate feedback
process to the framework for the control as the errors are reduced each iteration, while the
feed-forward control signal is found using the predictions from the learning of the NN. For
system controls, a classical approach would be to input a sinusoidal or other triangular
functions through modifying F(t) in Equation (2). Meanwhile, we incorporate such a signal
as an external supervision [50] added to PIDOC in this research.

Figure 2. The phase portrait for the nonlinear van der Pol equation when µ = 1. The phase is initiated
from six different points: (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3). As indicated in the different dashed
lines in the box, both converge to the same nonlinear trajectory of the van der Pol inherent dynamics.
Note that the data for this figure were generated using odeint in SciPy library.

2.2. System Simulation

Depicting and emulating the system as described in Figure 1 are both achieved using
a simulation of the van der Pol system that generates nonlinear data which are fed into the
PIDOC for control. In the classical definition of a neural network, such data are considered
as training data used by the neural network to help it “learn” and “predict”. Here, the
Python differential equation solver odeint, part of SciPy library, is adopted to simulate the
van der Pol equation [51]. The odeint is a library containing advanced numerical methods
for solving differential equations, especially for initial value problems [52]. Compared with
other solvers such as scipy.integrate.solve_ivp, odeint is able to generate data with a
higher smoothness [53], promising a “cleaner” data feed for training and learning. In this
research, the van der Pol equation is solved for t = 30 and interpolated with 3000 points
using Equation (1). The error control parameters of the solvers rtol and atol are chosen
as 10−6 and 10−10, respectively [51].

3. Methodology and Algorithm

In this section, we will introduce the basic setup of PIDOC, employing PINN as the
initial position (denoted by I) and control signal (denoted byD, meaning desired trajectory)
encoded within the NN losses for accurate controls.
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3.1. Deep Learning

PIDOC controls nonlinear systems based on “learning” from chaotic data for the
output of a prediction as the control; this is enabled by a deep neural network (DNN). For
the van der Pol system, the DNN is formulated as:

xpred = (KL ◦ σL ◦ . . . ◦ K1 ◦ σ1 ◦ K0)t (3)

where the DNN outputs a desired trajectory xpred given an input of the specific time series
t. K1, K2, . . . , KL, are linear layers; σ1, σ2, . . . , σL are the activation functions, where PIDOC
employs tanh activation functions. For PIDOC, the NN takes time t as the input layer
K0 to transmit through (L− 1)th hidden layers to generate an output xpred through the
output layer KL, supervised from the chaotic data of the van der Pol system xtrain. Here, let
N L ≡ (KL ◦ σL ◦ . . . ◦ K1 ◦ σ1 ◦ K0) denote the Lth-layer NN.

The DNN corresponding to Equation (3) is commonly recognized as a combination of
three layers: input, hidden, and output. This is where the neurons are connected and is
commonly known as a feed-forward NN, which is defined recursively as

Input layer : K0(t) = t ⊂ Rdin

Hidden layer : KL(t) = σ(wLKL−1(t) + bL) ⊂ RKL
, for 1 ≤ L ≤ L− 1

Output layer : KL(t) = wLKL−1 + bL ⊂ Rdout ,
(

xpred ≡ KL(t)
) (4)

For the NN N L(t) : Rdin −→ Rdout , the input time series t is transmitted to the linear
input layer K0 forward through hidden layers from a linear model with wL as weights
and bL as biases activated through an activation function tanh. This generates an output
through KL for NN predictions xpred and can also be interpreted as the controlled dynamics. It
can be seen that there are KL neurons in the Lth layer

(
K0 = din & KL = dout

)
; the weights

and biases are denoted by wL ⊂ RKL×KL−1
and bL ⊂ RKL

[54]. Note that the visualization
of the NN is shown in the blue box in Figure 3.
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Figure 3. The schematic diagram for the PHYSICS-INFORMED DEEP OPERATOR CONTROL framework
inspired by PINN. The system data of the nonlinear van der Pol oscillator are input to the deep
learning framework, as automatic differentiation can encode physics information as in the purple box.
The encoded information is further forwarded to the loss function, as the Langrangian multiplier λ

can enlarge the control signal, which provides feedback to the deep learning scheme for learning the
dynamics and can thereby output the ideal dynamics.

In the PIDOC formulation, a supervised machine learning problem is defined, where
the NN learning is enabled through the supervision of external training data as a formu-
lation for minimizing the loss function, meaning that the NN can capture data structures
through this optimization process, wherein traditional NN approaches L usually involve
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the differences (errors) between the NN predictions and training data. Let L = L(t, p)
denote the loss function, where t is the input time series and p is the parameter vector con-
taining the formations of I , D, and NN. If no external constraints or bounds are enforced,
the optimization problem hence takes the form:

min
t⊂Rdout

L(t, p) (5)

Minimizing L requires recursive iterations over the NN, as in Equation (4). The infor-
mation encoded in L is reduced during iterations given the optimization methods, where
we adopt the limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm,
a quasi-Newton method (L-BFGS-B in TensorFlow 1.x) [55,56]. The optimization is carried
over the iteration loop from the blue box (NN) to the purple box (I & D) to the red box (L),
as shown in Figure 1. The maximum iterations are set as 2× 105. In the PIDOC formulation,
L is calculated based on the mean square errors of the encoded information, as shown in
Section 3.2.

3.2. Physics-Informed Control

The implementation of control signals is enabled through the physics information
inserted into the loss function, mimicking the strategy of PINNs, but instead aiming to
execute a command on the training data so as to tune the system to a stable stage. The
formulation of the loss function includes the mean square errors (MSEs) of the NN genera-
tion MSENN , the initial conditions MSEI , and the desired trajectory MSED multiplied by
a Lagrangian multiplier λ so as to enlarge the control signal:

L = MSENN + MSEI + λMSED (6)

where the NN generation errors MSENN are computed as the MSE for the difference
between the training data xtrain and the NN-predicted output xpred:

MSENN :=
1
N

N

∑
i=1

∣∣∣xtrain − xpred

∣∣∣
2

(7)

The initial position loss MSEI is computed as the MSE between the given initial
conditions of D with the system predictions xpred at the initial:

MSEI :=
1
N

N

∑
i=1

∣∣∣x0
pred − x0

D
∣∣∣
2

(8)

where x0
pred denotes the initial position (0th in the array in Python) of NN prediction; x0

D
denotes the initial position of desired trajectory.

The control signal losses MSED are the mean square error of the differences between
the zero- and second-order derivatives of the position between the NN predictions (output)
and the desired control trajectories. In short, MSED imposes our desired control on PIDOC:

MSED :=
1
N

N

∑
i=1

∣∣∣∣∣

(
dx2
D

dt2 −
dx2

pred

dt2

)
+
(

xD − xpred

)∣∣∣∣∣

2

(9)

Here, MSED incorporates the control, while the multiplication of λ in Equation (6)
allows us to tune the weight of the signal. The optimization problem formulated in
Equation (5) can hence be considered as a multi-objective gradient-based optimization,
as the objective of control can be tuned through λ. Specifically, it has been reported that
the limited-memory BFGS method has been widely applied for large-scale unconstrained
optimization [57].
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The classical control approach uses a square wave or triangular function as signals [58].
For circuit systems specifically, applying a sinusoidal wave is a common practice, as in the
work of Cooper et al. [47]. Here, for applications of PIDOC, we also applied a sinusoidal
wave multiplied by an adjustable multiplier Λ to control the amplitude of the phase:

xD(t) = Λ sin(t), =⇒ ẋD(t) = Λ cos(t), ẍD(t) = −Λ sin(t) (10)

Given xD , the output phase portrait (x(t)-ẋ(t) diagram) is expected to have a circular
trajectory. However, to make the PIDOC adjustable with the desired trajectory amplitude
Λ, one should modify Equation (7) so as to cause the NN losses to contain information on
the trajectory amplitude with the same training data:

MSENN :=
1
N

N

∑
i=1

∣∣∣∣xtrain −
xpred

Λ

∣∣∣∣
2

(11)

To perform a decent system behavior analysis, we used four parameters for comparing
the behaviors involved in designing and applying PIDOC for control, as follows.

The accuracy of the control of the state (NN predictions) by PIDOC can be quantified
by computing the absolute error of the mean value between the desired position xD with
the PIDOC output xpred averaged over the data samples N:

∣∣E
∣∣ ≡

∣∣∣E x(t)

∣∣∣ =
∣∣∣∣∣

1
N

N

∑
i=1

( xpred − xD
xD

)∣∣∣∣∣ (12)

where N = 3000 in our case is achieved by applying PIDOC to the van der Pol system.
The average value of the objective function (or loss function in the NN) L quantifies

the accuracy of control (NN prediction) during the optimization process, as shown in
Equation (5). This is called the mean losses L and calculated as the number of losses per
iteration:

L =
1
M

M

∑
i=1

(L) (13)

where M is the number of iterations, which is not fixed and is dependent on the convergent
criteria of L-BFGS-B [55].

Computed power consumption can be quantified by recalling the machine running
time (timeit.default_timer() module in Python), which is symbolized as T , meaning
computation time. Note that the training of the neural network is carried out on Google
Colab [59]; hence, the unit of the exact time may not accurately reflect the computer
platform, yet the quantity differences can qualitatively reflect the system behavior.

Since the computation times are collected over an uncertain number of iterations M,
averaging T over M and normalizing it over a benchmark time T̂ † could lead to a decent
quantification of the computing time per iteration during the NN learning, which is called
the mean normalized time T̃ :

T̃ =
T
M

1
T̂ †

(14)

where the computing time of the benchmark problem T̂ † is averaged through
T̂ † = T †/M†, where T † is the total computing time and M† is the number of iterations of
the benchmark problem, which will be elaborated in Section 3.3.

3.3. Numerical Experiments

The systematic behavior of PIDOC is analyzed through numerical experiments cov-
ering two aspects: the capacity of PIDOC for controlling different systems and how the
hyperparameters and intrinsic structure of PIDOC affect its control process. Initially, we
apply a benchmark problem for estimating the control process of PIDOC which considers:
the amplitude of the desired trajectory Λ = 2 in Equation (10); the van der Pol system with
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nonlinear parameter µ = 1 in Equation (1); an initial point of (1, 0) that corresponds to
Figure 2; the Lagrange multiplier λ = 1 as in Equation (6); a neural network of 30 neurons
for each 6 layers (denoted as 6× 30), considering N = 3000 from an empirical basis. We
first apply PIDOC to control the benchmark problem and analyze its system behavior.
Furthermore, to consider how PIDOC behaves differently in different systems, we first
change the trajectory amplitude Λ from 1 to 5 and study the PIDOC behavior, followed by
changing the initial positions (1, 0), (5, 0), and (0, 5) in order to study how initial positions
may affect PIDOC controls. Next, we change the nonlinearity in µ in Equation (1) to check
how PIDOC controls function in different nonlinear systems. Regarding the PIDOC basic
architecture and its influence on the control signals, we first change the NN architecture
(blue box in Figure 3) and apply PIDOC to the benchmark problem of µ = 1; furthermore,
we increase the number of layers as we try to apply PIDOC for controlling systems with
high nonlinearities (µ = 5 in Equation (1)). To study whether the enlargement of the
control signal can increase or decrease the effectiveness of controls, the Lagrange multiplier
λ in Equation (6) is changed for five different values, 0, 1, 10, 103, ∞, to test the PIDOC’s
systematic behavior. Note that for λ = ∞, we only save the MSED term and eliminate the
rest, as this numerically represents λ −→ ∞. The estimation of the van der Pol system and
PIDOC architecture is based on the benchmark problem, only changing the parameters to
be investigated. To eliminate the errors of reloading Google Colab for the calculation of the
training time and other parameters, the numerical experiments are carried out once more
for each table to investigate each factor in each section.

4. Results and Discussion
4.1. System Behavior Analysis

The PIDOC framework is first applied to the benchmark problem, as introduced in
Section 3.3. The systematic behavior is tested based upon the phase portrait, the time
scheme of position x(t), and the acceleration ẍ(t), as shown in Figure 4. From Figure 4A, it
can be seen that PIDOC successfully implements control in the desired trajectory, as shown
by the red dashed line converging to the circle of Λ = 2, removing the chaotic behavior of
the van der Pol system shown by the blue dashed line. However, it can be seen in Figure 4B
that the control scheme of PIDOC, as shown by the red line, exhibits a phase difference
from the desired route, shown by the black line. It can also be observed in Figure 4C the
PIDOC-controlled scheme displays an oscillating behavior, as indicated by the red line.

Figure 4. The system behavior of the use of PIDOC to control the van der Pol dynamics applied to
the benchmark problem. (A) the phase portrait of the desired trajectory D, the PIDOC-controlled
signal, and the van der Pol inherent dynamics. (B) Plot of position x(t) against time t. (C) Plot of
acceleration ẍ(t) against time t.

Three characteristics of PIDOC control can be concluded from Figure 4: (1) PIDOC
successfully implemented the control to guide the system behavior based upon D; (2) The
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PIDOC-controlled dynamics exhibit a phase lag with the desired signals; (3) the acceleration
ẍ(t) exhibits a fluctuating behavior. For (2) and (3), the following explanations are provided:
the phase difference in (2) (Figure 4B) is attributed to the PIDOC aiming to follow the given
initial positions I encoded in Equation (6). The stochasticity for (3) observed in Figure 4C
can be attributed to both the stochastic nature of NN training and the numerical differential
of position x(t). The weights wL in Equation (4) are randomized and renewed throughout
the iterations so as to approximate the nonlinear data given for training. While they
seem smooth for the first-order approximation of x(t) in Figure 4B, the higher-order terms
ẍ(t) will enlarge the stochasticity of the signal. Moreover, in the formulation of PIDOC,
as adopted from PINNs [22,23,54], automatic differentiation also elicits errors, such as
those encoded in L (Equation (6)) [60]. Both can also be counted as factors explaining the
fluctuations in Figure 4C.

4.2. Nonlinearity and Trajectory Convergence
4.2.1. Amplitude of Control Trajectory

By changing the amplitudes of the desired trajectories, the capacity of PIDOC to
execute different control signals is tested, as indicated in Section 3.3. With the given five
trajectories of Λ = 1∼5, the phase portraits are shown in Figure 5A. The losses corresponding
to each trajectory during the NN training are shown in Figure 5B. Figure 5A demonstrates
that as the trajectory amplitude Λ increases, the difference between the PIDOC controls
and D becomes more evident. However, PIDOC exhibits a good signal implementation
and is able to remove the inherent dynamics successfully for both amplitudes of the desired
trajectories. Figure 5B indicates the losses reduced to the lowest value as compared with
other Λ with the least iterations. For example, Λ = 2 & 3 losses are have the same numerical
value, the same as Λ = 4 & 5, for a value between 102 and 103.

The absolute mean errors (Equation (12)), training time, mean losses (Equation (13)),
and mean normalized time (Equation (14)), corresponding to Figure 5 and shortened to
“PIDOC estimates”, are shown in Table 1, which provides information that cannot be
clearly seen in Figure 5. The |E | values indicate that for targeted trajectories with higher
amplitudes, the relative errors are lower. For trajectories with higher values, the training
time T will be higher. The average losses L show a good agreement in Figure 5, except
for Λ = 1, which shows an evidently higher mean loss than the other trajectories. One
can explain such a phenomenon through the instability of the generation of weights and
biases in neural network training caused by the loss explosion, which is common for neural
networks. For the normalized mean time T̃ , an unanticipated phenomenon involving
shorter T̃ with higher amplitudes of trajectories is reported.

A B

Λ
Λ
Λ
Λ
Λ

Figure 5. Systematic behavior analysis of PIDOC applied to different trajectory amplitudes Λ. (A) The
phase portrait of the inherent dynamics, with five different desired trajectories Λ = 1, 2, . . . , 5 marked
in blue solid lines and the corresponding PIDOC-controlled outputs marked in red dotted lines.
(B) the loss function–iteration diagram for the five trajectories.
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Table 1. Parameter estimation of the trajectory amplitude Λ. † The benchmark setup used for
parameter tuning.

Λ |E| T L T̃
1 2.2501× 10−4 1.9554× 104 2.3630× 103 1.0000

2 † 2.2520× 10−4 1.4098× 104 1.0562× 103 0.5642
3 2.2413× 10−4 2.0273× 104 1.1336× 103 0.9275
4 2.2330× 10−4 2.0759× 104 1.4812× 103 0.8074
5 2.2241× 10−4 2.1210× 104 1.6920× 103 0.8443

4.2.2. Initial Positions

Given three different initial positions I , (1, 0), (5, 0), and (0, 5), the PIDOC control
and systematic responses are shown in Figure 6. Note that the information of I is encoded
to PIDOC within the physics-informed control in Equations (6) and (8). Figure 6A indicates
that all the PIDOC controls with different Is successfully converge to the desired trajectory,
with the control I of (0, 5) exhibiting a slightly higher fluctuation, as shown by the green
line, and the control I of (5, 0) exhibiting a strong trajectory mismatch at the initial stage,
as indicated by the pink line. The losses in Figure 6B indicate that when I is (1, 0), PIDOC
exhibits the lowest loss, while when I is (5, 0) the loss is the highest, which agrees well
with Figure 6A. Figure 6C shows that PIDOC with I of (5, 0) and (0, 5) displays slightly
weaker fluctuations, as shown by the red and orange dashed lines compared with the
green one. Specifically, both PIDOC controls for three Is have an obvious phase difference,
yet all converge to the desired trajectory. Recall our estimation for Figure 4; such a phase
difference can be attributed to the approximation of initial positions by PIDOC as we
encode such information in Equation (8), which can explain the phase difference seen in
Figure 6C fairly well.

A B

C

Λ

Figure 6. Systematic behavior estimation of PIDOC applied to the control signals Λ = 2 with different
initial positions. Note that D and vdP in the plot legend stand for the desired trajectory and van
der Pol inherent dynamics. (A) Phase portrait of the desired trajectory; inherent dynamics given
three different initial points: (1, 0), (5, 0), and (0, 5); and PIDOC-controlled trajectories given three
initial positions. (B) The loss function–iteration diagram is given three different initial points. (C) The
acceleration ẍ(t)–time plot of the desired trajectory D, van der Pol inherent dynamics, and the three
PIDOC-controlled routes given different initial positions.

The PIDOC estimates corresponding to Figure 6 are shown in Table 2. It can be
deduced from Table 2 that the, for I = (0, 5), PIDOC has the highest absolute mean error,
while I = (1, 0) has the lowest. The difference in the |E | for points (5, 0) and (0, 5) may
seem to conflict with the visualization in Figure 6A,B. However, the PIDOC control for
I = (5, 0) (pink line in Figure 6A) has a strong trajectory variation at the initial stage
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with a good convergence to the desired trajectory later, which is also represented by the
black dashed line in Figure 6C. Yet, for I = (0, 5) (green line in Figure 6A), the trajectory
fluctuation is far more obvious for the whole PIDOC controls, accounting for the higher
|E | value in Table 2. For T and T̃ , such a trend also holds. For L, I = (5, 0) displays an
obviously higher value, showing a good agreement with Figure 6B.

Table 2. Parameter estimation for initial position I . † The benchmark setup used for parameter tuning.

I |E| T L T̃
(1, 0) † 2.2520× 10−4 1.4098× 104 1.0562× 103 1.0000
(5, 0) 3.6666× 10−4 2.8535× 104 7.1597× 103 2.4050
(0, 5) 4.0497× 104 2.9442× 104 2.5417× 103 3.3887

4.2.3. System Nonlinearity

Nonlinearity is a key part of control, especially for chaotic systems such as those
studied here. For van der Pol oscillating circuits, systematic nonlinearities are represented
by different µ values, varying from µ = 1, 3, 5, 7, 9, for testing PIDOC controls. Figure 7A
depicts the phase portrait of such intrinsic nonlinear dynamics. After imposing the PIDOC
controls, Figure 7B shows the output control with different µ values. Figure 7C corresponds
to Figure 7A, showing how x(t) evolves over time with the van der Pol inherent dynamics.
Figure 7D corresponds to Figure 7D, showing the time evolution of x(t) for PIDOC controls.
Figure 7E shows the loss function–iteration diagrams of different PIDOC controls for
systems with different nonlinearities.

A

B

C

D

E

Figure 7. System analysis of PIDOC considering the nonlinearity of the van der Pol systems with
different µ. (A) The inherent dynamics of different van der Pol systems with different µ marked in
dashed lines with different colors, with the desired control trajectory D marked in black. (B) The
phase portrait of the desired trajectory corresponding to PIDOC applied to different systems of
different nonlinearities. (C) The position plot showing the time t of the system’s inherent dynamics.
(D) The position plot with time t of the PIDOC controlled dynamics. (E) the loss function—iterations
plot of PIDOC applied to van der Pol systems of different nonlinearities. Note that the colors used for
different PIDOC controls of different nonlinearities all correspond to subfigure (A).

Figure 7E shows the obvious lower losses for a system with a low nonlinearity of
µ = 1, along with more iterations with µ = 1 & 7. Comparing Figure 8A,C, we observe the
high nonlinearities in the phase portrait displayed at x(t): a lower frequency with a specific
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band structure of a “sharp band shape” indicated in the waves in Figure 8C (specifically
for the blue and orange dashed lines). From Figure 8B, we see two “inner circles” attached
to the two sides for high nonlinearities, as can be observed in the blue and orange dashed
lines. Moving to Figure 8D, a specific “double wave” shape can be observed; a smaller
wave and a bigger wave are represented by blue and orange dashed lines. Comparing
Figure 8B,D, one can conclude that the “double wave” structure observed contributes to
the smaller circles seen in the phase portrait. Comparing Figure 8D,C, one deduce that the
reason for the “small wave” generation is the sharp band structure observed in Figure 8C:
the high nonlinearity generates a sharp wave structure, rendering imposing the control
signal of sinusoidal function significantly more difficult.

Figure 8. The plot of velocity ẋ(t) and acceleration ẍ(t) and their corresponding errors regarding
time t and considering cases of different nonlinearities. Note that the colors used for cases in van der
Pol systems of different nonlinearities are shown in the legend on the right side, where D stands for
the desired control trajectory. (A) The acceleration ẍ(t)-t diagram. (B) The errors in the acceleration.
(C) The acceleration ẋ(t)-t diagram. (D) the errors in the velocity.

Corresponding to Figure 7, Table 3 shows the PIDOC estimates for different nonlinear-
ities. It can be observed that for µ = 1, 3, . . . , 9, the |E | values are in the same range, with a
slight difference in the numerical values that would not be expected intuitively based on
Figure 7. The T values increase with the nonlinearities. The mean losses L fluctuate but
show an increasing trend with a higher nonlinearity, with a loss explosion observed for
µ = 9, as explained for Table 1. The mean normalized time T̃ shows that the computational
burden reduces each iteration with higher nonlinearities.

Table 3. Parameter estimation of the nonlinearity on µ. † The benchmark setup used for parame-
ter tuning.

µ |E| T L T̃
1 † 2.2520× 10−4 1.4098× 104 0.0106× 105 1.0000
3 2.4732× 10−4 2.3042× 104 0.0266× 105 0.3889
5 2.1821× 10−4 2.4628× 104 0.0579× 105 0.4253
7 2.4079× 10−4 2.7107× 104 0.0353× 105 0.1488
9 2.9083× 10−4 3.2397× 104 2.6962× 105 0.7477

To further explore the similar values of |E |, we create Figure 8. Figure 8A,C show
the acceleration and velocities of the PIDOC controls marked as dashed lines in different
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colors in the right legend compared with the desired trajectory marked as black solid lines.
Figure 8B,D show the differences (or errors) in velocities and accelerations calculated by

Eẍ(t) = ẍD(t)− ẍpred(t), Eẋ(t) = ẋD(t)− ẋpred(t) (15)

It can be seen that the acceleration errors Eẍ(t) of different systems with different
nonlinearities exhibit the same frequency as the control signal in Figure 8A,B. The errors in
velocities Eẋ(t) do not show such evident trends, yet all seemingly fluctuate in the same
frequency as that seen in Figure 8D. We can therefore conclude on a significant characteristic
of PIDOC controls: due to the imposition of I , there will be a phase lag for PIDOC controls,
as reported in Figure 4. Such phase lags generate a so-called error, or difference, between
the control signal and PIDOC control. For van der Pol systems of different nonlinearities,
the errors exhibit the same frequency and similar wave range values. The similarities of the
range values and frequencies combined explain why PIDOC controls exhibit similar errors
to those reported in Table 3. Such a phase lag leads to the successful implementation of
the controls for relatively low nonlinearities, as seen in Figure 4, yet still exhibits imperfect
control for high nonlinearities.

4.3. Hyperparameters and Control
4.3.1. Deep Neural Networks

To test how the neural network structures variate the control process, two cases are
set up for investigation: (1) the benchmark problem with reduced neurons and layers, of
six different sets: neural network structures of 1× 30, 3× 30, 6× 30, 1× 10, 3× 10, 6× 10;
and (2) the increased neurons and layers for controlling van der Pol system with high
nonlinearity of µ = 5, of five different sets: NN layers of 6, 9, 15, 30, 50, with 30 neurons
per layers. The aim of case (1) is to investigate whether reduced neurons and layers in
the neural network, as one expects reduced capabilities of approximating nonlinear data,
can still implement controls of high quality, as observed in Figure 4. Particularly, it has
been reported by Pinkus [61] that a single hidden layer neural network can approximate
nonlinear mappings, followed by a physics-informed practice by Lu et al. [54]. We therefore
specifically test PIDOC with a single hidden layer for testing its ability for controlling the
van der Pol system. The aim of the case (2) is to investigate whether increased approxi-
mation capacity can tackle the control of highly nonlinear systems as we made effort in
Figure 7.

Figure 9A,B shows for reduced NN layers and neurons all exhibits good control
implementations, with a slightly trajectory variation at the beginning stage for neural
network structure 3× 10 as indicated in the pink line with higher losses. Figure 9C plot the
intrinsic dynamics of van der Pol system with µ = 5, as comparing with the controlled phase
in Figure 9D: with increasing layers the controlled phase shows reduced nonlinearities,
especially for layers L = 6 and 50 for comparing the light and pure blue dashed lines—the
vortex-liked shape on the two sides of the phase when x ≈ 1.2 evidently reduced with
increasing layers. For different layers the losses show a similar trends as reported in
Figure 9E. Notably, Figure 9A also indicate that single hidden layer neural network shows
good approxibilities, with better phase control than neural network structure of 3× 10.

Numerical investigation of Figure 9A,B represented by PIDOC estimates for µ = 1
are shown in Table 4. The |E | and T are in approximately the same range for different
NN structures. The losses evidently higher for neural network of 3× 30 and 6× 10. The
higher losses for neural network of 3× 10 can be captured in Figure 9B; yet for bigger L
for neural network of 3× 30 and 6× 10, we can account it for the high loss fluctuations at
the beginning stage, as also reported Table 1. For T̃ we reports neural network structure
3× 30 took higher training time per iterations, and for 3× 10 and 6× 10 the T̃ values are
slightly higher.

The PIDOC estimates of highly nonlinear van der Pol system of µ = 5 are shown in
Table 5. The values |E | are basically in the same range. A generally higher training time
T and normalized training time per iterations T̃ are reported for increasing layers. The
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increase on T̃ indicates the optimization described in Equation (5) stops earlier with more
layers, resulting in fewer iterations.

 

 

 

A

B C

D

E

Figure 9. System behavior analysis of how the neural network structure tunes the control process
of PIDOC for µ = 1 and µ = 5. (A) the phase portrait of PIDOC controls considering different
neural network structures; the solid black line D denotes the desired trajectory, the blue solid line
vdP denotes the van der Pol inherent dynamics. Different colored cross dots, as marked in the
legend, denote different neural network structures. Note that subfigures (A,B) share the same color
representation of the neural network structure. (B) The loss function–iteration diagram for different
neural network structures as applied to the benchmark problem of µ = 1. (C) The inherent van der
Pol dynamics (marked as a blue solid line) when µ = 5. (D) The phase portrait of PIDOC applied
to highly nonlinear van der Pol system of µ = 5 corresponds to subfigure (C). Note that the black
solid line D is the desired trajectory. Different neural network structures are denoted by cross dots in
different colors, as indicated in the legend. (E) The loss function–iteration diagram corresponds to
subfigure (D).

Table 4. Parameter estimation of the NN structure considering layers and neurons in the benchmark
setup. † The benchmark setup used for parameter tuning where µ = 1.

Layers Neurons |E| T L T̃
1 30 2.2472× 10−4 1.2558× 104 691.4871 0.9229
3 30 2.2474× 10−4 1.2853× 104 3.8015× 105 1.2450

6 † 30 † 2.2520× 10−4 1.1098× 104 1.0562× 103 1.0000
1 10 2.2441× 10−4 1.0823× 104 1.1010× 103 0.7572
3 10 2.1779× 10−4 1.1285× 104 1.9470× 103 1.0958
6 10 2.2439× 10−4 1.1444× 104 6.6087× 103 1.0144



Mathematics 2022, 10, 453 15 of 20

Table 5. Parameter estimation of the neural network structure regarding layers and neurons, estimat-
ing a highly nonlinear van der Pol system with µ = 5. † The benchmark neural network structure
used for parameter tuning, adopting the van der Pol system with high nonlinearities.

Layers Neurons |E| T L T̃
6 † 30 † 2.3083× 10−4 1.9409× 104 3.1732× 103 1.0000
9 30 2.3091× 10−4 1.9591× 104 8.6195× 103 6.9859

15 30 2.3055× 10−4 2.0028× 104 3.4388× 103 5.4510
30 30 2.2702× 10−4 2.0759× 104 8.2714× 103 3.4597
50 30 2.2431× 10−4 2.1228× 104 3.9537× 103 33.7096

From the PIDOC implementations to different systems of nonlinearities, it can be
deduced that PIDOC is not robust in controlling highly nonlinear systems—i.e., µ > 3—as
should be outlined as the limitations. One can explain this by the fact that the physics-
informed control losses are not robust enough to enforce the control signals. It should
be noted that most existing nonlinear control methods for van der Pol systems usually
take µ = 1 as the default setting [44,47]. Hence, attempting to control van der Pol systems
of higher nonlinearities is a potential future reseach direction, especially for comparing
PIDOC with traditional control theories, given the limited existing works.

4.3.2. Lagrange Multiplier

It is natural to think that by enlarging the control signal we might expect a better
control implementation. Curious about the effects of control signals, we applied different
Lagrange multipliers λ = 0, 1, 10, 103, ∞ for testing the systematic control accuracy. For
λ = 0, there are simply no control signals encoded in the loss, and PIDOC is reduced to
a normal neural network with only the initial position encoded as a soft constraint. The
problem thence turned into a standard neural network learning and fitting problem. For
λ = ∞, we simply eliminate Equations (8) and (9), as the control signals turn to infinity. The
phase portrait, the time evolution of position x(t), and the ẍ(t) of different λs are shown in
Figure 10.

Figure 10A shows the phase portrait of PIDOC controls with different λs, indicating
that the pure neural network learning of van der Pol dynamics displays a fluctuation
in the area around [x(t), ẋ(t)] ≈ [0.5,−1.5] for the red dashed line. The pink and green
lines for λ = 1 & 10 PIDOC indicate generally good controls, as both converge to the
circular trajectories. However, as shown in the zoomed view in Figure 10B, one can discern
with a very high λ that the PIDOC becomes difunctionalized as the controlled trajectory
shrinks to a very low value (≈10−4). Figure 10C,D are the positions x(t) and accelerations
ẍ(t) for control signals (λ) of different weights. Both the subfigures indicate that when λ
approaches a high value (103 & ∞), the positions and accelerations shrink to a very low
value, as can be observed from the blue and orange lines corresponding to Figure 10A.
Notably, it can also be observed that a robust acceleration fluctuation occurs at t ≈ 21 in
the red dashed line, corresponding to the phase fluctuations in Figure 10A, as the errors of
neural network approximations. Such errors can also be attributed to the stochastic nature
of neural networks, as we previously explained for Figure 4.
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A B

C

D

Figure 10. System behavior analysis of the effects of the Lagrange multiplier on the control signal
implementation for PIDOC. Note that the black solid line D is the desired trajectory, the blue solid
line vdP denotes the van der Pol inherent dynamics, and the controlled routes of different Lagrange
multiplier values are denoted in differently colored dashed lines. Note that all the colors in the
subfigures are marked the same as those represented in the legend in subfigure (A). (A) The phase
portrait of the PIDOC controls. (B) Zoomed view of rescaled Lagrange multipliers λ = 103 and λ = ∞.
(C) The position x(t) against time t for the desired trajectory D, van der Pol inherent dynamics, and
different PIDOC controls. (D) The acceleration ẍ(t) against time t for the desired trajectory D, van
der Pol inherent dynamics, and different PIDOC controls.

Table 6 numerically reveals how the weights of control signals affect the PIDOC
estimates. From the values of |E |, one can deduce for λ = 103 and ∞ that there are evidently
higher errors. The training time T basically stays the same for both cases. However, it
should be noted that there is an increasing L as λ increases, yet when the control signal is
eliminated, L is reduced to a very low value as the problem turns into pure neural network
learning. The T̃ values increases significantly for λ = 103 and ∞, which are connected with
Figure 10A,B, indicating the increasing computational burden throughout the iterations
and low-quality control caused by the high weights of control signals in PIDOC. From such
results, we can further propose an explanation for the implementation of physics-informed
controls: the high weights of control signals lead to the deprivation of information in the
training data. Such deprivation may “confuse” the learning of the neural network, as it is
mainly designed for stochastic data-based learning and shows robust capabilities given a
humongous dataset and no external constraint [21,23]. Hence, as the core of deep learning,
even when the goal is control, the given data are always key. We hence conclude that even
the when the training data of the van der Pol system are nonlinear, they will still contribute
greatly to the successful implementation of PIDOC controls.

Table 6. Parameter estimation of the Lagrange multiplier λ or enlarging or eliminating the effects
of the control signal in the physics-informed loss. † The benchmark setup used for the parameter
tuning.

λ |E| T L T̃
0 1.0181× 10−4 7.0409× 103 415.1019 0.6867

1 † 1.0221× 10−4 6.2442× 103 5835.0830 1.0000
10 0.8626× 10−4 6.4437× 103 2419.3699 0.9709
103 2.1127× 10−4 6.5846× 103 45,516.0465 47.2085
∞ 2.1127× 10−4 6.7030× 103 3.7753 52.9858
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5. Concluding Remarks and Future Works

This manuscript describes a century-old yet widely encountered problem: controlling a
nonlinear van der Pol dynamical system with a novel approach using physics-informed neu-
ral networks. Instead of adopting the traditional paradigm of learning and predicting using
physics-informed neural networks, we use such networks for controlling nonlinear systems.
A new framework based on physics-informed neural networks PHYSICS-INFORMED DEEP

OPERATOR CONTROL (PIDOC) is presented, which consists of a deep neural network and
physics-informed control, including the desired control trajectories and initial positions.
PIDOC is fed with systematic nonlinear data to control the van der Pol circuits and out-
put the controlled signals. To investigate the behavior and properties of PIDOC, we first
tackled benchmark control problems for systematic analysis, then designed three sets of
numerical experiments for testing the effects of the amplitudes of desired trajectories Λ,
different initial points I , and system nonlinearities, as represented by µ. We then tuned the
hyper-parameters to change the neurons and layers of the neural network to study two
questionss: (1) Does a neural network with a smaller volume still show the same capability
for controls applied to the benchmark problem? (2) Can increasing the neural network
volume lead to better capabilities with regard to controlling van der Pol systems with
high nonlinearities? We also intended to verify the ability of single-hidden-layer neural
networks to approximate nonlinear systems for part of the control. We also changed the
Lagrange multiplier λ to a weight factor to check how the desired trajectories guide PIDOC
as control signals.

Our results indicate that PIDOC controls exhibit a higher stochasticity for higher-
order terms, which can be attributed to the stochastic nature of deep learning, with the
successful implementation of the desired trajectory on the benchmark problem. PIDOC
also demonstrates the ability to increase the trajectory amplitudes with lower absolute
mean errors. For systems with different initial points, our numerical experiments show
that for points that are further away, PIDOC can still successfully implement controls with
higher fluctuations at the initial stage. However, as we increase the system nonlinearities,
the PIDOC outputs become less ideal than the benchmark problems, as two vortex-linked
structures occur on the phase portrait, with an evidently higher loss observed for systems
with high nonlinearities. A neural network with a decreased PIDOC volume also shows a
good control implementation with the van der Pol system of µ = 1, while increasing the
layers does not cause systems with high nonlinearity µ = 5 to follow the desired trajectory
as well as the benchmark problem. It should be noted that increasing the layers does
generate an improvement in the output-controlled signals, as the vortex-linked structures
in phase portrait vanished, making the system more predictive. Increasing the weights of
the control signals in PIDOC does not improve the control qualities based on the output.
Even when the systematic data are nonlinear and chaotic, they still contribute greatly to
the PIDOC, as the method is intrinsically a deep learning-based control method.

Considering the successful implementation of the van der Pol systems, further investi-
gations on using PIDOC to impose control on other systems such as the Lorentz system
could provide more insight. Additionally, a comparison of the control properties based on
PIDOC and deterministic controls—i.e., Cooper et al. [47]—could also be a potential direct
research. Specifically, comparing PIDOC with idealized nonlinear feedforward (open-loop),
linearized feedback, and combined approaches could lead to unveiling more properties of
PIDOC. Improvements in PIDOC or the development of further models tackling systems
with high nonlinearities are significant goals to be addressed in future research.
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