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Abstract: In recent years, significant progress has been made in the field of distributed optimization
algorithms. This study focused on the distributed convex optimization problem over an undirected
network. The target was to minimize the average of all local objective functions known by each
agent while each agent communicates necessary information only with its neighbors. Based on
the state-of-the-art algorithm, we proposed a novel distributed optimization algorithm, when the
objective function of each agent satisfies smoothness and strong convexity. Faster convergence can
be attained by utilizing Nesterov and Heavy-ball accelerated methods simultaneously, making the
algorithm widely applicable to many large-scale distributed tasks. Meanwhile, the step-sizes and
accelerated momentum coefficients are designed as uncoordinate, time-varying, and nonidentical,
which can make the algorithm adapt to a wide range of application scenarios. Under some necessary
assumptions and conditions, through rigorous theoretical analysis, a linear convergence rate was
achieved. Finally, the numerical experiments over a real dataset demonstrate the superiority and
efficacy of the novel algorithm compared to similar algorithms.

Keywords: distributed convex optimization; accelerated method; uncoordinated; undirected network;
linear convergence

1. Introduction

In recent years, with the rapid development of artificial intelligence, big data, etc.,
there has been much attention to distributed optimization problems in multi-agent systems.
As one of the most important fields, distributed optimization methods have gained signifi-
cant growing interest due to the widespread applications in science and engineering areas
such as the transmission of information in wireless sensor networks [1–3], the collaboration
of vehicles in formation control [4,5], speeding up the optimization process in distributed
machine learning [6,7], distributed resource allocation in smart-grid networks [8–10], dis-
tributed control in nonlinear dynamical systems [11,12], etc. Specifically, a distributed
optimization framework can avoid the establishment of long-distance communication
between agents while providing better load balancing for the network. Compared to tradi-
tional centralized optimization, agents in a multi-agent system communicate information
only with their neighbors for distributed optimization. At the same time, the local objective
function of each agent is known only by itself.

Literature Review: Since the DGD (Distributed gradient descent) algorithm was
proposed by Nedic [13] for solving distributed convex problem in multiagent systems, great
progress has been made in the distributed optimization field. Especially, the distributed first-
order methods have attracted many researchers’ attention. Based on consensus theory [14]
and gradient-descent technology, diminishing step-sizes were introduced into the algorithm
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DGD [13], which made the algorithm converge to the exact optimal solution but with a
sublinear rate. When there were constraints of a decision variable, by utilizing the projection
method, Sundhar [15] proposed a stochastic subgradient projection algorithm. Similar
to [13,15], refs. [16–18] also employed the diminishing step-sizes, and these algorithms
could converge linearly. However, diminishing step-sizes will lead to a much slower
convergence rate. Then, the distributed algorithms with constant step-sizes were developed
in [19–32] to overcome the shortcoming. The algorithm EXTRA [19] (Extra: An exact first-
order algorithm for decentralized consensus optimization) and its improvement [20–22]
modified the update rule of DGD by taking the difference of two consecutive iterations
of formulas. Compared to DGD, the linear convergence rate can be verified in EXTRA,
and even the step-size was fixed to a constant; EXTRA was more stable, but two weight
matrices in EXTRA must obey strict conditions called the Mixing Matrix. A different
type of distributed optimization algorithm HSADO (harnessing smoothness to accelerate
distributed optimization) was proposed by Qu and Li [26] when the local objective functions
were convex and smooth. HSADO adopted a gradient-tracking mechanism, which replaced
the gradient term in DGD with a tracking gradient that was the gradient estimation of the
average gradient of the whole network. If the step-sizes were set to constants, HSADO also
can converge to the optimal solution linearly. Based on HSADO, researchers modified to
adapt different scenarios, such as time-varying networks [27,28] and node-varying [29,30]
and accelerated methods [31,32]. Further, researchers studied the primal-dual method in
distributed optimization by utilizing the Augmented Lagrangian function; the original
problem was reformulated in a dual problem. It has been demonstrated that EXTRA
was equivalent to the algorithms in [33,34] by introducing dual variables, and [27] also
provided a primal-dual interpretation for HSADO. Recently, the primal-dual algorithm UG
(A unification and generalization of exact distributed first-order methods) proposed in [35]
unified and generalized the methods EXTRA and HSADO, while it also converged linearly.

Motivations: Among these studies, EXTRA, HSADO, and UG are most related to our
research. The algorithm UG can be regard as a generalization and unification of DGD,
EXTRA, and HSADO. However, each local objective function of the agent in the network
requires to be twice continuously differentiable, which is a rigorous condition in actual
scenarios. In order to obtain linear convergence, fixed constant step-sizes were frequently
adopted in distributed optimization algorithms such as [19,26,35], etc. Unfortunately,
uncoordinated step-sizes for different agents are required rather than the same constant step-
sizes. This situation was first studied in [36], in which an augmented distributed-gradient
method was proposed, but it converged sublinearly. Then, by employing uncoordinated
step-sizes, Lü [30] and Jakovetic [28] both established a global linear convergence of their
algorithms in time-varying undirected and directed networks, respectively. To endow more
independence, time-varying and nonidentical step-sizes of each agent were studied. A
primal-dual fixed-point algorithm with nonidentical step-sizes was proposed by Li [37]
when the object function of each agent was twice differentiable and nonsmooth. Xin [32]
also adopted nonidentical step-sizes in a directed network. With a more relaxed step-size
and network topolog, a distributed primal-dual optimization method in [38] was proposed
by utilizing time-varying step-sizes, which was proved to converge linearly. Until now, to
the best knowledge of the authors, no related studies for the widely used algorithm UG
with uncoordinated, time-varying, and nonidentical step-sizes in an undirected network
were studied. Recently, as optimization processes of large-scale tasks such as deep learning
are getting slower, the convergence rate of distributed optimization algorithms need further
improvement. With the help of Nesterov [39] and Heavy-ball [40] accelerated methods, the
convergence rate of distributed optimization algorithms can be improved. In [32], a Heavy-
ball distributed accelerated method with gradient-tracking technology was proposed to
accelerate the well-known row-stochastic and column-stochastic algorithm [41]. In [31,42], a
better convergence rate was shown by utilizing the Nesterov accelerated method. Moreover,
both the Heavy-ball and Nesterov accelerated methods were introduced to improve the
convergence rate in directed networks for machine learning in [43]. For the widely used
algorithm UG, it is challenging to study whether the simultaneous inclusion of Heavy-
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ball and Nesterov momentum can bring about a faster convergence rate in large-scale
computing and communication tasks.

Statement of Contributions: Throughout this article, we mainly focus on the applica-
tion of distributed convex optimization method over an undirected network. We propose a
novel distributed optimization algorithm with uncoordinated, time-varying, and noniden-
tical step-sizes and accelerated momentum terms, which has a faster linear convergence
rate and can apply to more scenarios. To summarize, three contributions are as follows:

• Based on the distributed optimization methods [19,26,35], we designed and discussed
a faster distributed optimization accelerated algorithm, named UGNH (UG with
Nesterov and Heavy-ball accelerated methods), which solves the distributed convex
problems over an undirected network. In particular, the momentum with the Nesterov
and Heavy-ball methods together improve the convergence rate, which can be seen in
the numerical experiments.

• Compared to related algorithms, in our algorithm, not only the step-sizes but the
coefficients of momentum terms (for convenience, we call them coefficients for short
later) are uncoordinated, time-varying, and nonidentical, which are locally chosen for
each agent. Through convergence analysis, the step-sizes and coefficients are more
flexible than most existing methods. Meanwhile, if the local objective functions satisfy
the conditions that are smooth and strongly convex, we can obtain an upper bound
of step-sizes and coefficients. Under the upper bounds, the sequences generated by
UGNH converge to the exact optimal solutions linearly.

• In contrast to related algorithms, the upper bounds of the largest step-sizes and
coefficients of UGNH are more relaxed, which only depend on the parameters of
objective functions and the topology of the network. Meanwhile, there can be zero
step-sizes and coefficients (not all) among agents.

Organization: The rest of this article is arranged as follows. In Section 2, we describe
the distributed problem and provide some necessary assumptions. In Section 3, we discuss
the development of relevant distributed optimization algorithms and two classical accel-
erated methods and then propose a new distributed accelerated algorithm. Convergence
analysis is detailed in Section 4. In Section 5, numerical experiments are provided to
demonstrate the superiority and efficiency of our algorithm. Finally, Section 6 concludes
this article and provides some research directions for the future.

Basic Notation: Throughout the rest of this article, unless otherwise specified, all
vectors are considered as column vectors, and n is the number of agents in network. The
real-number set, the natural-number set, and the m-dimensional real column vector are
denoted by R, N, and Rm, respectively. The subscript notations i, j ∈ {1, 2, · · · , n} represent
the indices of the agents, while the superscript notation t represents an index for the
iteration step, e.g., xt

i represents the ith agent’s decision variable at the jth iteration; 0n ∈ Rn

,1n ∈ Rn, and In ∈ Rn×n denote an n-dimensional zero vector, one vector, and an identity
matrix, respectively. For a matrix P, pij denotes the element at the i-th row and the j-th
column of P, while its spectral radius and spectral norm are defined as ρ(P) and ‖P‖,
respectively. Similarly, ‖x‖ denotes the 2-norm for vector x. The transpose of a vector x
and a matrix P are denoted by xT and PT , respectively. For a vector r = [r1, r2, · · · , rn]

T ,
diag(r) represents a diagonal matrix, the diagonal elements of which equal to the vector
r. The notation ⊗ represents the Kronecker product. Let ∇ f (x) : Rm → Rm denote the
gradient of f (x) at x.

2. Preliminaries

This section describes the formulation of the distributed optimization problem and
some necessary basic assumptions related to network and function.



Mathematics 2022, 10, 357 4 of 17

2.1. Problem Formulation

Consider an undirected network of n agents, which cooperatively solve the optimiza-
tion problem written in the following form over a common variable x ∈ Rm:

min
x∈Rm

f (x) =
1
n

n

∑
i=1

fi(x) (1)

Here, each local objective function fi : Rm → R with a convex property is possessed
by agent i, which exchanges local information only with its neighbors. Our main target was
to design a distributed optimization algorithm, a decision variable of which can linearly
converge to the optimal solution that minimizes the average of all local objective functions.
The optimal average objective value of problem (1) is defined as f (x̃∗) , where x̃∗ ∈ Rm

is the optimal decision variable. Then, the global optimal solution of (1) is denoted by
x∗ ∈ Rnm, where x∗ = 1n ⊗ x̃∗.

As a local copy of the global decision variable is saved at each agent, optimization
problem (1) can be solved in a distributed way by iterating the decision variable. In this
study, network is described as G = {V, E}, where V = {1, 2, · · · , n} is the vertex set
that represents the agents of the network, and E = {(i, j)|i, j ∈ V} is the edges set. In an
undirected network, an edge (i, j) ∈ E implies that an edge (j, i) ∈ E too. Meanwhile,
agent i and agent j can exchange information with each other. Let Ni = {j|(i, j) ∈ E} ∪ {i}
denote the set of all neighbors of agent i. Then, formulation (1) can be rewritten as follows:

min
x∈Rnm

f (x) =
1
n

n

∑
i=1

fi(xi) (2)

where x =
[
xT

1 , xT
2 , · · · , xT

n
]T ∈ Rnm, xi = xj for ∀i, j ∈ V. Recently, it has been proved that

a new equality 1
α L

1
2 x = 0 is equivalent to the consensus condition xi = xj in [33], where α

is the step-size, and L = I − P is a Laplace matrix. Then, the primal-dual method can be
introduced to solve (2) by utilizing the Augmented Lagrangian function, which is also a
cornerstone of our algorithm.

Next, some necessary assumptions about the underlying graph and local objec-
tive functions are formalized, which are a common standard in related distributed
optimization studies.

2.2. Assumptions

Assumption 1 ([35]). The network G = {V, E} is connected, undirected, and simple. In particular,
there are no self-loops of any agent and no multiple links between any two agents.

Assumption 2 ([19]). A non-negative symmetric doubly stochastic weight matrix P =
{

pij
}
∈ Rn×n

is defined to represent network G. The weight of the matrix P satisfies the following three conditions:

• Non-negative: pij =

{
> 0, j ∈ Ni
= 0, otherwise

• Symmetric: pij = pji

• Doubly stochastic: ∑n
i=1 pij = ∑n

j=1 pij = 1

Assumption 3. Each local objective function fi : Rm → R, i ∈ V is smooth with Lipschitz constant
ψi and strongly convex with parameter µi. Mathematically, there exits ψi > 0, µi ≥ 0(∑ µi > 0),
for any x, y ∈ Rm such that:

‖∇ fi(x)−∇ fi(y)‖ ≤ ψi‖x− y‖

fi(x)− fi(y) ≥ ∇ fi(x)T(x− y) +
µi
2
‖x− y‖
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Remark 1. Assumption 1 ensures that each agent can directly or indirectly affect other agents
in the network. Assumption 3 is a standard assumption in convergence analysis of distributed
optimization methods. Especially, under the assumption of strongly convex for each function, there
exists a unique global optimal solution to problem (1). Moreover, for the global objective function f ,
we define ψ̄ =

(
1
n

)
∑n

i=1 ψi as the global Lipschitz constant and µ̄ =
(

1
n

)
∑n

i=1 µi as the global
strongly convex parameter.

3. Algorithm Development

In this section, Section 3.1 describes the development of some related algorithms.
Section 3.2 describes the Nesterov and Heavy-ball accelerated methods for the distributed
optimization algorithm. Section 3.3 describes the proposed algorithm UGNH and the
relationship between UGNH and the previous algorithms.

3.1. Related Algorithms

In this subsection, we focus on some classical algorithms DGD, EXTRA, HSADO, and
UG, which are related to the proposed algorithm and give them a simple explanation.

In [13], Nedic and Ozdaglar proposed a standard distributed gradient descent method
DGD. The method updated the decision variable at each agent through its neighbors and
the local negative gradient’s direction, as follows:

xt+1
i = ∑

j∈Ni

pijxt
j − αt∇ fi

(
xt

i
)

(3)

where αt was the step-size, which satisfied αt > 0, ∑∞
t=0 αt = ∞, and ∑

(
αt)2

< ∞; the
matrix P satisfied Assumption 2. The variable xt

i stored in the agents is the local estimate of
x at the t-th iteration. It was proved that sequences generated by DGD cannot converge to
the exact optimal solution x∗ when employing a fixed step-size, i.e., αt = α. By taking an
appropriately diminishing step-sizes, DGD can converge accurately, but the convergence
rate was sublinear.

To acquire linear convergence, Shi [19] proposed a new method EXTRA by modifying
the update rule of DGD (3). There were two steps performed as follows:

x1
i = ∑

j∈Ni

pijx0
j − α∇ fi

(
x0

i

)
(4)

xt+1
i =xt

i + ∑
j∈Ni

pijxt
j − ∑

j∈Ni

p̃ijxt−1
j − α

(
∇ fi

(
xt

i
)
−∇ fi

(
xt−1

i

))
(5)

where the step-size α > 0 was a constant, the matrix P satisfied Assumption 2, while
P̃ = I+P

2 was appropriate. Compared to DGD (3), an initial condition (4) and one more
iteration (5) were added. Notably, the step-size was a constant, but EXTRA can linearly
converge to the exact optimal solution as long as the step-size was chosen appropriately.

Based on DGD (3), Qu and Li [26] proposed a novel distributed algorithm HSADO by
using gradient-tracking technology. An auxiliary variable zt

i was introduced to estimate the
network-wide gradient average 1

n ∑n
i=1∇ fi

(
xt

i
)

at the t-th iteration for agent i. As a result,
the gradient contribution−α∇ fi

(
xt

i
)

in (3) was replaced by −αzt
i . The specific updating

rules were as follows:

xt+1
i = ∑

j∈Ni

pijxt
j−αzt

i (6)

zt+1
i = ∑

j∈Ni

pijzt
j+∇ fi

(
xt+1

i

)
−∇ fi

(
xt

i
)

(7)

where the step-size α > 0 was a constant, and the matrix P satisfied Assumption 2. Under
the previous assumptions, initialized with x0

i ∈ Rm and z0
i = ∇ fi

(
x0

i
)
, a global linear

convergence rate could be gained when choosing an appropriate fixed step-size.
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Recently, a novel distributed optimization algorithm UG was proposed in [35], which
used the primal-dual method to solve the equivalent problem (2). Through tuning parame-
ters, the algorithm subsumed the well-known algorithm EXTRA and HSADO. Updating
rules were as follows:

xt+1
i = ∑

j∈Ni

pijxt
j − α

(
∇ fi

(
xt

i
)
+ zt

i
)

(8)

zt+1
i = zt

i − ∑
j∈Ni

lij

∇ f j

(
xt

j

)
+ zt

j − ∑
q∈Nj

k jqxt
q

 (9)

where the step-size α > 0 was a constant; xt
i was primal variable; and zt

i was dual variable,
which were initialized to x0

i ∈ Rm and z0
i = 0m, respectively. For using more-compact

notation, we defined P =
{

pij
}

, L =
{

lij
}

, and K =
{

kij
}

. The matrix L = In − P and the
matrix K ∈ Rn×n are symmetric with the property that there exists some constant λ such
that K1n = λ1n.

By analyzing when the matrix K is chosen properly, the algorithm UG is equivalent
to: (1) EXTRA, when K = 1

α P and (2)HSADO, when K = 0n. For others, K = µ̄+ψ̄
2 In and

K = µ̄+ψ̄
1+λn

P (λn is the smallest eigenvalue of matrix P) are appropriate for K = kIn and
K = kP, respectively. There are no extra computational variables and no communication
relationships with other agents in the formula K, so (8) and (9) are easy to implement. As
UG unifies and generalizes previous methods, we mainly focused on it.

3.2. Distributed Accelerated Methods

In this section, centralized Nesterov and Heavy-ball accelerated methods will be
introduced. With them, many distributed optimization algorithms can converge faster.

For the gradient-descent algorithm, i.e., xt+1
i = xt

i − α∇ fi
(
xt

i
)
, the best achievable

convergence is O
((

κ−1
κ+1

)t
)

; κ = ψ̄
µ̄ denotes the condition number of the objective function.

If ψ̄ is much larger than µ̄ so that κ is large, then the gradient descent becomes quite slow.
To accelerate the gradient descent, Polyak [40] proposed a method called Heavy-ball for
updating decision variable. The specifics was as follows:

xt+1
i = xt

i − α∇ fi
(
xt

i
)
+ γ

(
xt

i − xt−1
i

)
(10)

where γ was the momentum-accelerated coefficient, and the term γ
(

xt
i − xt−1

i

)
was used

to accelerate the convergence of the decision variable. It had been proved that under the
appropriate step-size α and the coefficient γ, the momentum-accelerated method could

achieve a convergence rate of O
((√

κ−1√
κ+1

)t
)

, which was obviously faster.

Inspired by conjugate gradient methods [44], history gradient information can improve
the convergence rate for distributed first-order optimization algorithms. Nesterov proposed
a method called CNGD [40] (Centralised Nesterov Gradient Descent method) as follows:

xt+1
i = yt

i − α∇ fi
(
yt

i
)

(11)

yt+1
i = xt+1

i + γ
(

xt+1
i − xt

i

)
(12)

where α =
√

µ̄
ψ̄

, γ =

√
ψ̄−√µ̄√
ψ̄+
√

µ̄
. It had been proved that CNGD achieved the best conver-

gence rate among all centralized gradient methods within first-order algorithms. Under

the previous assumptions, CNGD achieved a faster convergence rate O
((

1−
√

µ̄
ψ̄

)t
)

,

compared to the CGD’s convergence rate O
((

1− µ̄
ψ̄

)t
)

.
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It is notable that the two accelerated methods have been adapted in many distributed
algorithms, such as [42,43], etc. In this study, we devoted ourselves to studying the two
accelerated methods on UG.

3.3. The Proposed Algorithm

The recent studies [35,42] are the most relevant to our work. Based on these works,
considering that the Nesterov and Heavy-ball accelerated methods are very helpful for
achieving a faster convergence, we added them into UG simultaneously. Meanwhile, in
order to apply in many more scenarios, the step-sizes and coefficients were designed as
uncoordinated, time-varying, and nonidentical. Combining together, we propose a new
distributed optimization algorithm named UGNH as follows:

xt+1
i =

n

∑
j=1

pijyt
j − αt

i
(
∇ fi

(
yt

i
)
+ zt

i
)
+ γt

i

(
xt

i − xt−1
i

)
(13)

yt+1
i = xt+1

i + γt
i

(
xt+1

i − xt
i

)
(14)

zt+1
i = zt

i −
n

∑
j=1

lij

(
∇ f j

(
yt

j

)
+ zt

i −
n

∑
q=1

k jqyt
q

)
(15)

where i, j ∈ V, t ∈ N, the step-sizes αt
i > 0, and accelerated momentum coefficients γt

i ≥ 0
are uncoordinated, time-varying, and nonidentical, which are locally chosen at each agent.
At the t-th iteration, each agent stores three variables: the primal decision variable xt

i ∈ Rm,
the temporary variable yt

i ∈ Rm, and the dual variable zt
i ∈ Rm, which start with initial

states: x0
i ∈ Rm, y0

i ∈ Rm and z0
i = 0m. The update of UGNH at each agent i is formally

described in Algorithm 1.

Algorithm 1 The update of the algorithm UGNH at each agent i

1: Initialization: each agent starts with: x0
i ∈ Rm, y0

i ∈ Rm and z0
i = 0m.

2: for t = 0, 1, 2, · · · do
3: Update the primal decision variable xi as follows:

xt+1
i = ∑n

j=1 pijyt
j − αt

i
(
∇ fi

(
yt

i
)
+ zt

i
)
+ γt

i

(
xt

i − xt−1
i

)
4: Update the temporary variable yt+1

i as follows:

yt+1
i = xt+1

i + γt
i

(
xt+1

i − xt
i

)
5: for j = 1, 2, · · · , n do
6: for q = 1, 2, · · · , n do
7: Calculate ztemp = ∑n

j=1 lij
(
∇ f j

(
yt

j

)
+ zt

i −∑n
q=1 k jqyt

q

)
8: end for
9: Update the dual variable zi as follows:

zt+1
i = zt

i − ztemp
10: end for
11: end for

It is clear that UGNH is a primal-dual method; γt
i

(
xt

i − xt−1
i

)
is the Heavy-ball ac-

celerated term in (13), (14) is the Nesterov accelerated term, and (15) is the dual variable
iteration. It also can be easy to verify that UGNH is equivalent to UG if αt

i = α, γt
i = 0m.

Further, it can be equal to EXTRA and HSADO if the matrix K is chosen properly.

Remark 2. For the sake of compaction and brevity, let the dimension m = 1. Other multiple
dimensions can be similarly proved.

As a result, we define:xt =
[
xt

1, xt
2, · · · , xt

n
]T ∈ Rn, yt =

[
yt

1, yt
2, · · · , yt

n
]T ∈ Rn,

zt =
[
zt

1, zt
2, · · · , zt

n
]T ∈ Rn and ∇F

(
yt) = [

∇ f1
(
yt

1
)
,∇ f2

(
yt

2
)
, · · · ,∇ fn

(
yt

n
)]T ∈ Rn, other
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notations latter used are defined as before. Then, UGNH can be compactly reformulated in a martix
form as follows:

xt+1 = Pyt − Γt
α

(
∇F
(
yt)+ zt)+ Γt

γ

(
xt − xt−1

)
(16)

yt+1 = xt+1 + Γt
γ

(
xt+1 − xt

)
(17)

zt+1 = zt −L
(
∇F
(
yt)+ zt −Kyt) (18)

where αt =
[
αt

1, αt
2, · · · , αt

n
]T ∈ Rn and γt =

[
γt

1, γt
2, · · · , γt

n
]T ∈ Rn represent step-sizes and

coefficients, respectively. Furthermore,we define Γt
α = diag

(
αt) ∈ Rn×n and Γt

γ = diag
(
γt) ∈ Rn×n.

4. Convergence Analysis

This section analyzes in detail the linear convergence of decision variable sequences
generated by UGNH when step-sizes and coefficients are chosen properly. First, we define
some notations that may frequently be used later.

x̄t =
1
n

1T
n xt, z̄t =

1
n

1T
n zt, Jn =

1
n

1n1T
n , ψ̃ = max

i∈V
{ψi},

a = ‖P− Jn‖, b = ‖In − Jn‖, c = ‖P− In‖, d = ‖L‖(ψ̃ + ‖K‖)

Moreover, considering that the step-sizes and coefficients are uncoordinated, time-
varying, and nonidentical, there are many possible numerical values that may be difficult
to handle. By employing a small trick, we only studied the supremum and infimum of the
step-sizes and coefficients. The specific definitions are as follows:

αmax = sup
t≥0

max
i∈V

{
αt

i
}

, αmin = in f
t≥0

min
i∈V

{
αt

i
}

, γ̃ = sup
t≥0

max
i∈V

{
γt

i
}

In addition, let ξα = αmax − αmin be the difference between αmax and αmin, and let
Φ = αmax

αmin
be the condition number.

Before giving the main results, we introduce some helpful supporting lemmas for the
convergence analysis.

4.1. Supporting Lemmas

Lemma 1 ([26]). Under Assumption 3, the global objective function f is ψ̄-smooth and µ̄-strongly
convex. For any x ∈ R and 0 < α < 2

ψ̄
, we have:

‖x− α∇ f (x)− x∗‖ ≤ ζ‖x− x∗‖

where ζ = max{|1− ψ̄α|, |1− µ̄α|}.

Lemma 2 ([19]). Assumption null {In − P} = span{1}, matrix P satisfies Assumption 2, x∗ is
the optimal solution when x∗ satisfies the following conditions:

• x∗ = Px∗ (consensus)
• 1T

n∇F(x∗) = 0 (optimality)

Lemma 3 ([32]). Assume that a matrix P ∈ Rn×n and a vector ε ∈ Rn are non-negative and
positive, respectively; if Pε < $ε with $ > 0, we have ρ(P) < $.

4.2. Main Results

In this section, the linear-convergence analysis of the proposed algorithm is carried out
in detail. Similar to relevant studies, we mainly focus on the following four mathematical
expressions at the (t + 1)-th iteration: xt+1 − 1n ⊗ x̄t+1, 1n ⊗ x̄t+1 − x∗, xt+1 − xt, and
zt+1 − z∗. For convenience, let Ξt+1

1 , Ξt+1
2 , Ξt+1

3 , and Ξt+1
4 represent the four expressions,

respectively. Among them, by introducing the norm, ‖Ξt+1
1 ‖ is described as a consensus
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violation, ‖Ξt+1
2 ‖ as an optimal residual, ‖Ξt+1

3 ‖ as a state difference, and ‖Ξt+1
4 ‖ as a

dual error.
Next, we spared no effort to bound the four norm expressions at the (t+ 1)-th iteration

through their estimates at the t-th iteration in terms of linear combinations. Subsequently,
based on Assumptions 1–3, we established a linear inequalities system for convergence
analysis. In what follows, consensus violation ‖Ξt+1

1 ‖ is bounded first.

Lemma 4. ∀ t > 0, the following inequality holds:

‖Ξt+1
1 ‖ ≤(a + bαmaxψ̃)‖Ξt

1‖+ bαmaxψ̃‖Ξt
2‖+ (bαmaxψ̃ + a + b)γ̃‖Ξt

3‖+ bαmax‖Ξt
4‖ (19)

Proof of Lemma 4. Considering (16) and (17), we have:

xt+1 =Pxt − Γt
α

(
∇F
(
yt)+ zt)+ PΓt−1

γ Ξt
3 + Γt

γΞt
3 (20)

Note that (In − Jn)xt+1 = Ξt+1
1 , (In − Jn)P = P− Jn and (P− Jn)1n = 0n, multiplying

(In − Jn) on both sides of (20), then:

Ξt+1
1 =(P− Jn)Ξ

t
1 + (In − Jn)Γt

γΞt
3 − (In − Jn)Γt

α

(
∇F
(
yt)−∇F(x∗)

)
− (In − Jn)Γt

α

(
zt +∇F(x∗)

)
+ (P− Jn)Γt−1

γ Ξt
3 (21)

Based on the fact zt − z∗ = zt +∇F(x∗) [35] and Assumption 3, taking the norm on
both sides of (21), then:

‖Ξt+1
1 ‖ ≤‖P− Jn‖‖Ξt

1‖+ ‖In − Jn‖αmaxψ̃
(
‖Ξt

1‖+ ‖Ξt
2‖
)
+ ‖In − Jn‖αmaxψ̃γ̃‖Ξt

3‖
+ ‖In − Jn‖αmax‖Ξt

4‖+ ‖P− Jn‖γ̃‖Ξt
3‖+ ‖In − Jn‖γ̃‖Ξt

3‖ (22)

Recalling the definition of a and b, then:

‖Ξt+1
1 ‖ ≤a‖Ξt

1‖+ bαmaxψ̃‖Ξt
1‖+ bαmaxψ̃‖Ξt

2‖+ bαmaxψ̃γ̃‖Ξt
3‖

+ bαmax‖Ξt
4‖+ (a + b)γ̃‖Ξt

3‖ (23)

Rearranging the terms in (23), the result in Lemma 4 is obtained.

Lemma 5. ∀ t > 0, the following inequality holds:

‖Ξt+1
2 ‖ ≤(αmaxψ̃ + ξαψ̃)‖Ξt

1‖+ (ζ + ξαψ̃)‖Ξt
2‖+ (αmaxψ̃ + ξαψ̃ + 2)γ̃‖Ξt

3‖+ ξα‖Ξt
4‖ (24)

Proof of Lemma 5. Multiplying Jn on both of (16), and substituting yt = xt + Γt−1
γ Ξt

3,
we have:

Jnxt+1 =Jnxt − JnΓt
α

(
∇F
(
yt)+ zt)+ JnΓt−1

γ Ξt
3 + JnΓt

γΞt
3 (25)

To get the related terms, recalling the fact that z̄t+1 = z̄t = · · · = z̄0 = 0 (e.g., Jnzt = 0)
in [35], we add some useful items and delete them in (25) as follows:

Jnxt+1 =Jnxt − αmax Jn∇F
(

Jnxt)+ αmax Jn
(
∇F
(

Jnxt)−∇F
(
yt))+ JnΓt−1

γ Ξt
3 + JnΓt

γΞt
3

+ Jn
(
1n ⊗ αmax − Γt

α

)(
∇F
(
yt)−∇F(x∗)

)
+ Jn

(
1n ⊗ αmax − Γt

α

)(
zt +∇F(x∗)

)
(26)

By applying ∇ f (x) = 1
n 1n∇F(x), subtracting x∗ on the sides of (26), we then obtain:

Ξt+1
2 =1n

(
x̄t − x̃∗ − αmax∇ f

(
x̄t))+ αmax Jn

(
∇F
(

Jnxt)−∇F
(
yt))+ JnΓt−1

γ Ξt
3 + JnΓt

γΞt
3

+ Jn
(
1n ⊗ αmax − Γt

α

)(
∇F
(
yt)−∇F(x∗)

)
+ Jn

(
1n ⊗ αmax − Γt

α

)(
zt +∇F(x∗)

)
(27)
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Taking the norm on both sides of (27) and using Lemma 1, then:

‖Ξt+1
2 ‖ ≤ζ‖Ξt

2‖+ αmax‖Jn‖ψ̃‖Ξt
1 − Γt−1

γ Ξt
3‖+ ‖Jn‖(αmax − αmin)ψ̃‖yt − x∗‖

+ ‖Jn‖(αmax − αmin)‖Ξt
4‖+ 2‖Jn‖γ̃‖Ξt

3‖
≤ζ‖Ξt

2‖+ αmaxψ̃‖Ξt
1‖+ αmaxψ̃γ̃‖Ξt

3‖+ ξαψ̃‖Ξt
1‖+ ξαψ̃‖Ξt

2‖
+ ξαψ̃γ̃‖Ξt

3‖+ ξα‖Ξt
4‖+ 2γ̃‖Ξt

3‖ (28)

Rearranging the terms in (28), the desired results can be obtained.

Lemma 6. ∀ t > 0, the following inequality holds:

‖Ξt+1
3 ‖ ≤(c + αmaxψ̃)‖Ξt

1‖+ αmaxψ̃‖Ξt
2‖+ (αmaxψ̃γ̃ + 2γ̃)‖Ξt

3‖+ αmax‖Ξt
4‖ (29)

Proof of Lemma 6. Substituting yt = xt + Γt−1
γ Ξt

3 in (16), then subtracting xt on both sides,
then:

Ξt+1
3 =P

(
xt + Γt−1

γ Ξt
3

)
− xt − Γt

α

(
∇F
(
yt)+ zt)+ Γt

γΞt
3

=(P− In)Ξ
t
1 − Γt

α

(
∇F
(
yt)−∇F(x∗)

)
+ Γt

αΞt
4 +

(
PΓt−1

γ + Γt
γ

)
Ξt

3 (30)

The second equality is based on (P− In)1n = 0n; recalling the definition of c and
taking the norm on both sides of (30), we have:

‖Ξt+1
3 ‖ ≤c‖Ξt

1‖+ αmaxψ̃‖yt − x∗‖+ αmax‖Ξt
4‖+ 2γ̃‖Ξ3‖

=c‖Ξt
1‖+ αmaxψ̃‖Ξt

1‖+ αmaxψ̃‖Ξt
2‖+ αmaxψ̃γ̃‖Ξt

3‖+ αmax‖Ξt
4‖+ 2γ̃‖Ξt

3‖ (31)

Rearranging the terms in (31) , the result in Lemma 6 is obtained.

Lemma 7. Let Assumptions 2–3 and Lemma 2 hold. ∀ t > 0, the following inequality holds:

‖Ξt+1
4 ‖ ≤ d‖Ξt

1‖+ d‖Ξt
2‖+ dγ̃‖Ξt

3‖+ a‖Ξt
4‖ (32)

Proof of Lemma 7. Noting (P− Jn)1n = 0n and adding ∇F(x∗) on both sides of (18),
we have:

zt+1 +∇F(x∗) =zt +∇F(x∗)−L
(
∇F
(
yt)+ zt −Kyt)

=P
(
zt +∇F(x∗)

)
+LKyt − (In − P)

(
∇F
(
yt)−∇F(x∗)

)
(33)

=(P− Jn)
(
zt − z∗

)
+LK

(
yt − x∗

)
−L

(
∇F
(
yt)−∇F(x∗)

)
The third equality of (33) is from the following fact in [35] and Lemma 2:
z̄t+1 = z̄t = · · · = z̄0 = 0, Jn∇F(x∗) = 0n and LK1n = 0n.
Recalling the definition of d, taking the norm on both sides of (33),we have:

‖Ξt+1
4 ‖ ≤ ‖P− Jn‖‖Ξt

4‖+ (‖L‖ψ̃ + ‖L‖‖K‖)‖yt − x∗‖ = a‖Ξt
4‖+ d‖yt − x∗‖ (34)

Substituting yt = xt + Γt−1
γ Ξt

3 in (34) and rearranging the terms can yield the desired
result.

With the Lemmas 4–7 above, we established the main convergence result as follows.

Theorem 1. Suppose that Assumptions 1–3 hold. Considering the sequences {xt}, {yt}, and {zt}
generating by the proposed algorithm UGNH and combining Lemmas 4–7 in a linear-inequalities
system, we have:
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‖Ξt+1

1 ‖
‖Ξt+1

2 ‖
‖Ξt+1

3 ‖
‖Ξt+1

4 ‖

 ≤ H


‖Ξt

1‖
‖Ξt

2‖
‖Ξt

3‖
‖Ξt

4‖

 (35)

where the matrix H ∈ R4×4 is given as below:

H =


a + bαmaxψ̃ bαmaxψ̃ bαmaxψ̃γ̃ + aγ̃ + bγ̃ bαmax

αmaxψ̃ + ξαψ̃ ζ + ξαψ̃ αmaxψ̃γ̃ + ξαψ̃γ̃ + 2γ̃ ξα

c + αmaxψ̃ αmaxψ̃ αmaxψ̃γ̃ + 2γ̃ αmax
d d dγ̃ a


The largest step-size satisfies:

αmax < min
{

ε1 − aε1

bψ̃ε1 + bψ̃ε2 + bε4
,

ε3 − cε1

ψ̃ε1 + ψ̃ε2 + ε4
,

1
ψ̄

}
(36)

The maximum momentum coefficient satisfies:

γ̃ < min
{

ε1 − aε1 − bαmaxψ̃ε1 − bαmaxψ̃ε2 − bαmaxε4

bαmaxψ̃ε3 + aε3 + bε3
,

µ̄αmaxε2 − ξαψ̃ε2 − αmaxψ̃ε1 − ξαψ̃ε1 − ξαε4

αmaxψ̃ε3 + ξαψ̃ε3 + 2ε3
,

ε3 − αmaxψ̃ε2 − cε1 − αmaxψ̃ε1 − αmaxε4

αmaxψ̃ε3 + 2ε3
,

ε4 − dε1 − dε2 − aε4

dε3

}
(37)

And the conditional number satisfies:

1 ≤ Φ <
ε4 + ψ̃ε2 + ψ̃ε1

ε4 + ψ̃ε2 + 2ψ̃ε1 − µ̄ε2
(38)

where ε1, ε2, ε3, and ε4 are arbitrary constants, which obey the following picking rules:

ε2 > 0, ε1 <
µ̄ε2

ψ̃
, ε3 > cε1, ε4 >

dε1 + dε2

1− a
(39)

Then, the spectral radius of the matrix H is strictly less than 1, i.e., ρ(H) < 1, which is
the desired result.

Proof of Theorem 1. According to Lemmas 4–7, we can immediately get the inequalities
(35). Then, we provide some necessary conditions for parameters ψ̃, γ̃ and Φ, such that
ρ(H) < 1. Based on Lemma 3, let ε = [ε1, ε2, ε3, ε4]

T ∈ R4 be a positive vector, if Hε < ε,
then ρ(H) < 1. According to the definition of H above, the inequality Hε < ε is equivalent
to the following four inequalities:

(bαmaxψ̃ + a + b)γ̃ε3 < ε1 − aε1 − bαmaxψ̃ε1 − bαmaxψ̃ε2 − bαmaxε4 (40)

(αmaxψ̃ + ξαψ̃ + 2)γ̃ε3 < ε2 − αmaxψ̃ε1 − ξαψ̃ε1 − ζε2 − ξαψ̃ε2 − ξαε4 (41)

(αmaxψ̃ + 2)γ̃ε3 < ε3 − cε1 − αmaxψ̃ε1 − αmaxψ̃ε2 − αmaxε4 (42)

dγ̃ε3 < ε4 − dε1 − dε2 − aε4 (43)
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According to Lemma 1, if 0 < αmax < 1
ψ̄

, ζ = 1− µ̄αmax, then (41) is equivalent to the
following inequality:

(αmaxψ̃ + ξαψ̃ + 2)γ̃ε3 < µ̄αmaxε2 − αmaxψ̃ε1 − ξαψ̃ε1 − ξαψ̃ε2 − ξαε4 (44)

To make sure that the parameter γ̃ is positive, it implies that the right sides of
(40) and (42)–(44) are positive. Immediately, we can get the following conditions:

αmax <
ε1 − aε1

bψ̃ε1 + bψ̃ε2 + bε4
(45)

ξα <
µ̄αmaxε2 − αmaxψ̃ε1

ε4 + ψ̃ε2 + ψ̃ε1
; ε1 <

µ̄ε2

ψ̃
(46)

αmax <
ε3 − cε1

ψ̃ε1 + ψ̃ε2 + ε4
; ε3 > cε1 (47)

ε4 >
dε1 + dε2

1− a
(48)

Recalling that ξα = αmax − αmin, Φ = αmax
αmin

as the conditional number, (46) further
implies that :

1 ≤ Φ <
ε4 + ψ̃ε2 + ψ̃ε1

ε4 + ψ̃ε2 + 2ψ̃ε1 − µ̄ε2
(49)

Now, we attempt to select the proper vector ε = [ε1, ε2, ε3, ε4]
T such that the parameters

αmax, γ̃ and Φ are available. Based on (46)–(48), an arbitrary positive constant ε2 is chosen
first, and then we choose ε1 from (46), finally choosing ε3 and ε4 from (47) and (48),
respectively. Hence, according to (45) and (47), and the requirement of 0 < αmax < 1

ψ̄
in (44),

the upper bound of the largest step-size αmax shown in (36) can be obtained. Furthermore,
according to (46), the upper bound of the conditional number Φ demonstrated in (30) can
be obtained. Besides, the upper bound of the maximum coefficient γ̃ can yield from (40)
and (42)–(44). Above all, the proof is finished.

Remark 3. According to Theorem 1, a linear convergence rate of the proposed algorithm can be
easily obtained if the parameters αmax, γ̃ and Φ follow the conditions (36)–(38), respectively. It is
noteworthy that these parameters only depend on the topology of the network and objective functions.
Although some global parameters such as µ̄, ψ̄ and ψ̃ are needed when designing step-sizes and the
coefficients, these parameters can be easily pre-calculated without much effort.

Remark 4. Being uncoordinated and being nonidentical are two important characteristics often
designed in many related studies, considering that step-sizes and coefficients might be changed
with time variance in some practical scenarios. In our algorithm, step-sizes and coefficients were
designed as uncoordinated, time-varying, and nonidentical. Furthermore, the largest step-size
and coefficients were chosen according to their bounds shown in Theorem 1, which only depend
on the the communication network and the objective functions. Notably, there is a bound of a
conditional number, such that when the largest step-size is chosen, the smallest step-size needs to be
chosen carefully.

5. Numerical Experiments

In this section, some necessary numerical experiments in a real dataset are provided to
illustrate the efficiency and superiority of our algorithm. In the experiments, we considered
a binary-classification logistic-regression problem in the Wisconsin breast cancer dataset
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provided in the UCI Machine Learning Repository [45]. The problem can be described in
the following form:

min
x∈Rd

1
n

n

∑
i=1

1
ni

ni

∑
j=1

ln
(

1 + exp
(
−yijaT

ij x
))

+
τ

2
‖x‖ (50)

with each local objective function fi written as follows:

fi(x) =
1
ni

ni

∑
j=1

ln
(

1 + exp
(
−yijaT

ij x
))

+
τ

2
‖x‖ (51)

where n is the number of the agent in network, and d is the dimension of the decision
variable. Each agent i is assumed to have an equal data samples ni, i.e., ni =

N
n (N is the

total data samples). aij ∈ Rd represents the feature vector of the jth data sample at the ith
agent, while yij ∈ {−1, 1} denotes the corresponding label. The regularization term τ

2 ‖x‖
with parameter λ = 1 was set to avoid over-fitting.

In the experiments, we set N = 200 as training data, and d = 9 represents the feature
in the real dataset. Meanwhile, we simulated a randomly undirected network generated
by the Erdos–Renyi network with n = 10 nodes and edge probability p = 0.7. Then,
we compared the proposed algorithm UGNH to relevant algorithms: EXTRA, HSADO,
and UG.

Figures 1–5 show the results of our experiments, and the main conclusions are as
follows:

Iterations

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
s
id

u
a
l

0

the proposed algorithm

EXTRA

UG

HSADO

Figure 1. Performance comparisons between the proposed algorithm and related algorithms.

• Figure 1 indicates that the proposed algorithm UGNH promotes the convergence
rate compared to the related algorithms in the real dataset; thus, UGNH is effective
and superior. From Figure 2, the sequences generated by UGNH, EXTRA, UG, and
HSADO can converge to the optimal solutions as expected. Avoiding confusion of the
figure, only one dimension of each decision variable is exhibited.
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• Figure 3 means that UGNH with the Nesterov momentum and the Heavy-ball mo-
mentum improved the convergence rate compared to the algorithm with only one or
no momentum.

• In Figure 4, we can conclude that step-size is usually chosen very small; the larger
step-size leads to a faster convergence rate if it is chosen under the upper bound.
For the coefficient, a similar result can be obtained in Figure 5. Comparing the two
figures, it can be concluded that small changes in step-size are more influential than
that of the coefficient.

Iteration

0 1000 2000 3000 4000 5000 6000

v
a

lu
e

s
 o

f 
x
[i
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

the proposed algorithm

EXTRA

UG

HSADO

Figure 2. One dimension of variable between the proposed algorithm and related algorithms.

Iterations

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
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id

u
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l

0

the proposed algorithm

with N momentum

with H momentum

No momentum

Figure 3. Performance comparisons between the proposed algorithm and the method without
momentum terms.
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Iterations

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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id
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a
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Figure 4. Performance comparisons between different step-sizes.

Iterations

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

s
id

u
a

l

0

Figure 5. Performance comparisons between different momentum coefficients.

6. Conclusions

In this study, a novel uncoordinated, time-varying, and nonidentical distributed
optimization accelerated algorithm was proposed. It was mainly applied to handle the
distributed optimization convex problem in an undirected network, where all agents are in
an effort to optimize the average of all local objective functions collaboratively. When the
largest step-size and the maximum coefficient do not exceed some estimated upper bounds,
which have been provided in Theorem 1, the convergence rate of UGNH is linear under the



Mathematics 2022, 10, 357 16 of 17

condition that each local objective function is smooth and strongly convex. Besides, these
parameters only depend on the topology of the network and the local objective function.

It is worth noting that to achieve a faster linear convergence rate, the Heavy-ball and
Nesterov accelerated methods were simultaneously added into the algorithm, which pro-
vides a new way for accelerating convergence of other distributed optimization algorithms.
Furthermore, the experiment results verified the effective and superior performance in a
real dataset. However, UGNH is not suitable for all scenarios, and there are some more
in-depth areas worth studying, such as the time-varying network architecture, random link
failures, asynchronous communication between agents, directed networks, and so on. In
all, these problems are worthy of further study and are our future research direction.
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29. Nedić, A.; Olshevsky, A.; Shi, W.; Uribe, C.A. Geometrically convergent distributed optimization with uncoordinated step-sizes.

In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3950–3955.
30. L’́u, Q.; Li, H.; Xia, D. Geometrical convergence rate for distributed optimization with time-varying directed graphs and

uncoordinated step-sizes. Inf. Sci. 2018, 422, 516–530. [CrossRef]
31. Qu, G.; Li, N. Accelerated distributed Nesterov gradient descent. IEEE Trans. Autom. Control 2019, 65, 2566–2581. [CrossRef]
32. Xin, R.; Khan, U.A. Distributed heavy-ball: A generalization and acceleration of first-order methods with gradient tracking. IEEE

Trans. Autom. Control 2019, 65, 2627–2633. [CrossRef]
33. Mokhtari, A.; Ribeiro, A. DSA: Decentralized double stochastic averaging gradient algorithm. J. Mach. Learn. Res. 2016, 17,

2165–2199.
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