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Abstract: The teaching of mathematics has always concerned all the professionals involved in
engineering degrees. Curently students have less interest in these studies, what has caused an
increase of this concern. The lack of awareness of students about the significance of mathematics
in their careers, provoke the decrease of undergraduate students’ motivation, which derives in a
low interest in engineering degrees. The aim of this work is that engineering students achieve a
greater motivation and involvement in first academic courses, through the implementation of real
and technological applications related to their degrees in the learning of mathematical concepts. To
this end, the 2019/2020 and 2020/2021 academics years, the seminar “Applications of Multivariable
Calculus in Engineering” has been held in Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), based on the teaching of Multivariable Calculus by the execution of real problems where
calculus concepts are necessary to solve them. With the aim of analyzing students’ motivation and
assessment of the seminar, anonymous surveys and personal interviews have been conducted. The
number of attending students to the sessions in each academic year has been 16 and all of them have
been participants in the surveys and interviews. The results show that students’ responses were
generally positive and they agree that their motivation to the subject Multivariable Calculus has
increased with the use of real applications of mathematics. The execution of practical problems with
engineering applications improves the acquirement of mathematical concepts, what could imply
an increase of students’ performance and a decrease of the dropout in the first academic courses of
engineering degrees.

Keywords: calculus; engineering education; mathematics education; motivation; STEM

1. Introduction

The economic development of countries is mainly based on technology. Thus, pro-
fessionals in fields related to science, technology, engineering and mathematics (STEM)
are necessary to improve the economy of countries. Technological production implies
encouraging and supporting students to become technological professionals. Therefore,
STEM disciplines are considered essential for the economic development of technological
societies. The potential negative economic impact of undersupply is of concern due to
opportunity costs and loss of competitiveness [1]. In addition, STEM education could
integrate students’ skills and better professional competences. The 21st century, as the age
of information technologies, entails new job prospects and upcoming jobs which require
new skills from professionals. Nowadays, technology is necessary in many jobs such as
science, business, engineering, etc.

Moreover, high occupancy demands for STEM degrees are expected [2,3]. As tech-
nological knowledge and expertise is becoming more specialized and economically in-
creasingly important, ever more jobs specialized in STEM disciplines are required and this
demand is expected to further increase in the upcoming years, as remarked in [4,5].
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However, at the present time in most countries, undergraduate students have less
interest in technological degrees [1,6,7], which is mainly due to the lack of awareness of
the importance of mathematical subjects in first academic courses of these studies. This
lack of awareness derives, in most cases, in the decrease of students’ motivation, which has
as a result a low performance and a high dropout rate in the first years of these degrees.
Thus, the engineering education community work to identify the causes of this situation,
as indicates [2].

The worrying dropout in higher education has gained much interest in academic
research. One third of undergraduate students leave university without obtaining a degree,
mainly during their first academic year [8]. The dropout rate is higher in STEM careers [7].

The importance of students’ motivation and engagement has been analyzed in previ-
ous studies [9,10], and in particular for technological degrees [11]. In first academic years is
essential to promote student engagement [12,13], which involves the improvement of moti-
vation [14,15], relatedness [16], student achievement [17] and academic performance [18],
what imply the decrease of the dropout rate.

Practical and real applications used in mathematics subjects of engineering degrees,
encourage student engagement and motivation [14], as has been studied in previous
works [19–23]. A proper coordination among mathematical subjects and technological
subjects of engineering degrees syllabus contribute to the decrease of dropout rates [24].
Active learning has positive results on the rise of students’ motivation and on the enhance-
ment of their learning, what entails the improvement of their performance, as it is stated
in several studies [25–28]. For instance, the relationship between mathematical creativity
and the relevance of problem-solving in the teaching of mathematics has been studied
in [29]. Moreover, key employee expected abilities involve problem-solving and analytical
thinking skills besides the competences to communicate them. The use of problem-posing
in engineering degrees contributes to increase student involvement. This methodology
consists of exposing a problem to students, related to technological disciplines, which will
lead them to discover what they need to learn to solve this problem. Furthermore, it implies
the development of essential abilities and competences for their career, as they are auton-
omy, continuous learning, critical thinking, planning and communications skills [30,31].
Moreover, the integration of theory and practice entails the improvement of motivation,
what implies an increase of academic performance [32–35].

The purpose of this work is to generate an integrated STEM curricula, connecting
mathematical applications with STEM education. The aim of the present study is to increase
undergraduate engineering students’ motivation by contextualization of mathematical
subjects with technological applications related to the disciplines taught in the following
academic courses of these degrees. The material developed in this work is expected to be in-
troduced for a future adaptation of mathematical subjects’ syllabus in engineering degrees.

Engineering students have to solve engineering problems and mathematical method-
ologies are the tools to solve them. They need to know the usefulness of mathematics and
how essential they are for their degrees and their future careers. In this regard, the motiva-
tion and involvement of students are considered a key element, clarifying the importance
of mathematics for technological subjects and for their future profession.

This study is part of the work “Applications of Mathematics in Engineering”, which
is formed by two seminars: “Applications of Linear Algebra in Engineering” [36] and
“Applications of Multivariable Calculus in Engineering”. These two seminars entail the
mathematical subjects of first academic courses in technological degrees. This study focuses
on the seminar “Applications of Multivariable Calculus in Engineering”, whose purpose is
to present real and technical applications of Multivariable Calculus related to engineering
degrees with the objective of increasing students’ motivation towards the learning of
mathematics in first academic courses. Knowing the need of mathematical concepts to
solve those technical applications, students realized of the importance of mathematics
not only for the execution of their degrees but also for the development of their careers
as engineers.
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This article focuses on these research questions:

• How does the implementation of real and practical applications in mathematical
subjects’ influence on students’ motivation?

• What are the benefits of including real and practical applications in mathematical
subjects of first academic courses in technological degrees?

The results of the study show that for students is really motivating to know what they
will be capable to do in the next courses of their degree. They also realized of how essential
Multivariable Calculus is for their future profession and increased their interest towards
the subject.

These results verifies that this experience lets students obtain a greater understanding
of mathematical concepts, which increases students’ performance in mathematical subjects
of engineering degrees.

2. Materials and Methods

The study has been conducted at the Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), a public university specialised in STEM degrees. The work “Applications of Math-
ematics in Engineering” is formed by two seminars: “Applications of Linear Algebra in
Engineering” [36] and “Applications of Multivariable Calculus in Engineering”, which
started in the 2019/2020 academic year and were undertaken in the first and the second
semester, respectively. Both seminars were organised in weekly sessions of one hour and a
half each session. These sessions have been held also in the 2020/2021 academic year and it
is planned to repeat them during the following years.

Thus, since the 2019/2020 academic year, weekly sessions have been given to first-
year students of the Industrial Engineering Bachelor’s Degree from the Barcelona School
of Industrial Engineering (ETSEIB) of the UPC, this degree lasts four years. Currently,
the syllabus of mathematical subjects in engineering degrees do not content technolog-
ical applications. Mathematical subjects focus on mathematical concepts, they are not
contextualized in the technological disciplines of engineering degrees. The aim of this
work is to contextualize mathematics through the connection of mathematical subjects
with technological disciplines, taught in the following academic courses, and with their
future technological professions. Thus, students will be able to realize of the importance
of mathematics for engineering, as well as they learn engineering applications from the
beginning of their degrees.

The two seminars “Applications of Linear Algebra in Engineering” and “Applications
of Multivariable Calculus in Engineering” are offered in the same semesters in which the
ordinary classes of the compulsory subjects Linear Algebra and Multivariable Calculus
are taught, first and second semesters, respectively, so that the students who wish could
complement in a parallel way and from a practical point of view the theoretical concepts in-
troduced in the ordinary classes. The seminars have been devised with the aim of increasing
students’ motivation and involvement in the early stages of engineering studies. In addi-
tion to the benefits of these sessions, Universitat Politècnica de Catalunya-BarcelonaTech
(UPC) recognizes with 1 European Credit Transfer and Accumulation System (ETCS) the
attendance for students.

This article focuses on the seminar “Applications of Multivariable Calculus in En-
gineering”. In each of the sessions of this seminar, applications illustrating the use of
mathematical concepts related to multivariable calculus in different engineering areas are
explained. The compulsory subject of Multivariable Calculus lasts one semester (14 weeks).
Instead, the optional seminar presented in this work consists of 10 weeks. During the first
two weeks of the semester, students are informed of the existence of this seminar in order
to enable registration; and two other weeks, before the partial and final exams, no seminar
sessions are given. So, this seminar consists of 10 sessions, 8 main sessions and 2 review
sessions. The 8 main sessions are detailed in Table 1.
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Table 1. Applications of Multivariable Calculus in Engineering.

Session Title

1 “Discontinuous phenomena: hysteresis, caustics”
2 “Thom’s catastrophes”
3 “Taylor and Fourier series”
4 “Chain, implicit and inverse theorems”
5 “Inverse kinetics”
6 “Kinematics of mechanisms with links”
7 “Optimization”
8 “Miscellany”

To evaluate the results of this study, anonymous surveys and personal interviews were
conducted, with the aim of analyzing students’ appreciation of the seminar “Applications
of Multivariable Calculus in Engineering”.

Surveys were undertaken at the end of each session and evaluate the impact of the
experience on the students attending to the sessions, as regards the mathematical and
engineering contents, the technological applications and the motivation towards the subject
of Multivariable Calculus. These surveys consisted of five questions which must be valued
on a 5-point scale (1 = Strongly disagree, 2 = Disagree, 3 = Nor agree nor disagree, 4 = Agree,
5 = Strongly agree). In addition, there is the possibility to include an opinion, where students
could explain their impression about the session. The questions set in the surveys were:

Question 1: The assessment of mathematical contents is positive.
Question 2: The assessment of engineering contents is positive.
Question 3: The sessions “Applications of Multivariable Calculus in Engineering” let

students know technological applications of different mathematical concepts.
Question 4: The applications of mathematical concepts achieve to increase the motiva-

tion to the subject Multivariable Calculus.
Question 5: The execution of practical exercises with technological applications im-

prove the learning of mathematical concepts.
With the aim of extracting more opinions from the students attending the sessions

“Applications of Multivariable Calculus in Engineering”, personal interviews have been
undertaken at the end of all the sessions in 2019/2020 and 2020/2021 academic years,
which consisted of several open questions, where students could express in detail their
opinion and assessment of the sessions. It should be noted that, in order to avoid bias in the
answers, the person who interviewed students was not a professor but a master’s student.
The main questions set to students were:

1. What aspects do you assess most positively of these sessions?
2. What applications have been more interesting? Why?
3. How have these sessions influenced on your motivation and on your interest toward

Multivariable Calculus?
4. Have these sessions helped you understand mathematical concepts of the subject

Multivariable Calculus? What applications? What concepts?
5. After these sessions, do you consider that Mathematics are more important and

essential to the development of engineering degrees? How? Why?

The influence of the implementation of the seminar “Applications of Multivariable
Calculus in Engineering” on the students attending the seminar has been analyzed from the
answers to the surveys and to the interviews undertaken after the sessions of this seminar.

3. Results
3.1. Students’ Mathematical Contents

The 8 main sessions of the seminar “Applications of Multivariable Calculus in Engi-
neering” consists of real and practical applications of the contents developed in the subject
Multivariable Calculus, whose syllabus is:
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1. Continuity and derivability of multivariable functions.
2. Integration of multivariable functions.
3. Laplace transform and Fourier series.

The first three sessions of the seminar are focused in discontinuous phenomena.
Although they are not still included in mathematical subject programmes, discontinuous
phenomena are very common in engineering problems and entail most of the contents
of engineering subjects and contribute to illustrate the importance of these mathematical
theories to solve real engineering problems. The applications developed in sessions 1, 2
and 3 include the Thom’s catastrophes and Taylor and Fourier series.

The sessions 4, 5 and 6 are related to differential calculus and the basic theorems: chain
rule, implicit function theorem and inverse function theorem, which are the basis of a great
number of classical applications in engineering.

The session 7 is about optimization, which is the most important goal of engineering.
The last session, miscellany, deal with the use of engineering vision to solve ap-

plications in order to apply mathematical calculations, concluding that engineers must
complement the use of mathematical tools with their engineering knowledge.

Some practical and real applications explained to the students in the sessions “Ap-
plications of Multivariable Calculus in Engineering” are explained below. They consist
of applications of Multivariable Calculus related to engineering disciplines which can be
understood and learnt by undergraduate students in the first academic courses.

3.1.1. Application 1: A Gravitational Machine

The first application is an example of discontinuous phenomena and it was explained
in the session 1 (Discontinuous phenomena: hysteresis, caustics), where discontinuous
phenomena were introduced highlighting how frequent they are in engineering.

In a gravitational machine appear discontinuous phenomena as it is going to be shown
hereunder. A gravitational machine consists of a flat sheet limited by a parabola, leant on
a horizontal plane. The most important point of this machine is that the center of gravity
(CDG) is variable through the position of a magnet which can be moved on the sheet
surface. Supposing the sheet mass negligible, the CDG would be the magnet position
(Figure 1).
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Figure 1. Centre of gravity.

When the CDG is displaced on the sheet, how will the sheet situate in a stable way?
The stability situation will happen when the CDG is placed in a minimum height,

therefore the stable equilibrium point P on the parabola outline is the relative minimum of
the distance between the CDG and the parabola points, that is, the orthogonal base to the
parabola from the CDG, as it is shown in the following figure (Figure 2).
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Figure 2. Position of the center of gravity.

If CDG is placed on the parabola vertical axis, the equilibrium point could be stable
or instable depending on the CDG height. If the distance between the CDG and the
equilibrium point is a relative minimum, there would be stable equilibrium but if this
distance is a relative maximum, the equilibrium point is the parabola vertex and it would
be instable equilibrium.

If we consider the parabola
{(

z, z2), |z| ≤ 2
}

and the CDG = (0, 2), the distance
between any point on the parabola outline and the CDG placed on the parabola axis
would be:

E =
(

d
(

z, z2
)

, (0, 2)
))2

= z2 +
(

z2 − 2
)2

= z4 − 3z + 4 (1)

If we derivate and equal to zero, we obtain:

D
(

d
((

z, z2
)

, (0, 2)
))2

= 4z3 − 6z = 0 (2)

where z = 0 is a relative maximum and z = ±
√

3
2 are relative minimums.

Therefore, if CDG is = (0,2), there is instable equilibrium in the parabola vertex, V =

(0, 0). In addition, there is stable equilibrium on the parabola outline points P1 =

(√
3
2 , 3

2

)
,

P2 =

(
−
√

3
2 , 3

2

)
. These points are indicated in the following figure (Figure 3):
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Figure 3. Stability of the center of gravity.

If the CDG height is less than 1
2 . there is only one relative extreme, which is the

parabola vertex and, in this case, there would be 1 stable equilibrium point.
Depending on the position of de CDG, there can exist three equilibrium points or only

one equilibrium point. This situation happens not only if the CDG is placed on the parabola
axis but also on any point inside the parabola.
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The question is in what positions of the CDG, there are three equilibrium points
(two stable points and one instable point) and in what positions there is only one stable
equilibrium point. To answer this question, we must analyze in what positions of the CDG
there are three orthogonals, corresponding to two relative minims and one relative maxim
and in what positions there is only one equilibrium point, corresponding to a relative
minim. To solve it we have to make the orthogonals envelope. We must distinguish the area
where there are three orthogonals and the area with only one orthogonal, the separation
between these two areas is the orthogonals envelope. To obtain the expression of this
envelope, we have to do the following calculations.

The orthogonal in: (
z, z2

)
=

{
(β, α) :

β− z
−2z

= α− z2
}

(3)

The expression of the orthogonal is:

0 = β− z + 2z
(

α− z2
)
= β + (2α− 1)z− 2z3 (4)

To eliminate z, we calculate the derivative:

0 = DZ
(

β− z + 2z
(

α− z2
)
) = (2α− 1)− 6z2 (5)

with these 2 expressions, we can obtain that:

z2 = 2α−1
6 ⇒ 0 = β + z

(
(2α− 1)− 2 2α−1

6

)
⇒ 0 = β + z 2

3 (2α− 1)⇒

⇒ β2 = z2 4
9 (2α− 1)2 = 2α−1

6
4
9 (2α− 1)2

(6)

As a result, it can be deduced that the envelope expression is:

β2 =
16
27

(
α− 1

2

)3
(7)

That is a cusp curve that separates the triple orthogonality area from the simple
orthogonality area, as it is shown in this figure (Figure 4):
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Figure 4. Cusp curve.

If the CDG is placed over the cusp, the gravitational machine will have three equilib-
rium points. In the figure, CDG1 is placed over the cusp and in this case the two stable
equilibrium points are P1 and P2 and the instable equilibrium point is the parabola vertex V.
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If the CDG is placed under the cusp, the gravitational machine has one equilibrium
point. In the figure, CDG2 is under the cusp and the only one stable point is P.

The following expressions represent these conditions:

CDG(β, α)


β2 < 16

27

(
α− 1

2

)3
⇒
{

2 STABLE

1 INSTABLE

β2 > 16
27

(
α− 1

2

)3
⇒ 1 STABLE

(8)

Now we are going to analyze the machine behavior when the CDG moves from a
position over the envelope to a position under it. In this case the system will lose one stable
equilibrium point. Therefore, it will provoke a discontinuity.

To show it, we are going to study the following figure (Figure 5).
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Figure 5. Machine behavior.

If CDG moves slowly among the points G1, G2 and G3, the equilibrium point changes
continuously among the points P1, P2 and P3, respectively.

If CDG changes from G3 to G4, the parabola falls discontinuously, the equilibrium
point jumps from P3 to P4. The disruption occurs when β ∼= −0.28.

In the case that α = 0.4 and the CDG changes horizontally, there will not be disruption
because the CDG is always under the envelope.

3.1.2. Application 2: Euler’s Arc

The second example, explained in session 3, is an application of Thom’s catastrophes
and of Fourier and Taylor’s series.

Supposing a compressed arc (with length π) and a load m slightly off-center (ε), as it is
represented in the following figure (Figure 6):
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Figure 6. Compressed arc.

The beam resistance depends on two control parameters (m,ε), which must be modelled
by the Thom’s 2nd catastrophe.

Expressing the arc with the following function:

f (s), 0 ≤ s ≤ π (9)

Fourier analysis establishes that periodic functions can be modelled by additions of
harmonics of different periods. Therefore, the bean function can be expressed as an addition
of sinus of different periods:

f (s) = ∑ cn sin ns (10)

In this example, supposing one or two harmonics, it is obtained that:

m =0, ε = 0⇒ f (s) ∼= r sin s (11)

If the elastic module is µ = 1
π , potential energy and elastic energy are:

VP = m f
(π

2
+ ε
)

(12)

VE =
1

2π

∫ π

0
( f ′′ (s))2 1(

1 + ( f ′(s))2
)3 ds (13)

Applying Taylor (ε�):

VP = mx cos ε + mz(− sin 2ε) ∼= mx
(

1− ε2

2

)
+ mz(−2ε) (14)

The variable x depends on the variable z because the beam distance does not change
when the beam distorts:

d =
∫ π

0

√
1− ( f ′(s))2ds (15)

In both cases (considering one or two harmonics) this distance is the same:

d =
∫ π

0

√
1− (r cos s)2ds ∼=

∫ π
0

√(
1 + 1

2 r2 cos2 s + −1
8 r4 cos4 s

)
ds =

= π
4
(
4− r3 − 3

16 r4 − 5
64 r6) (16)

d =
∫ π

0

√
1− (xcoss + 2z cos 2s)2ds ∼= . . . =

= π
4
(
4− x2 − 4z2 − 3

16 x4 − 3x2z2 − 5
64 x6) (17)
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Equaling the two expressions below and applying Taylor approximation:

x ∼= ao + a2z2 +a4z4 =⇒ ao = r, a2 = −
2
r
− 3r

4
, a4 =

−2
r3 (18)

It is obtained x as an implicit function of z:

x ∼= r + z2
(
−2

r
− 3r

4

)
+ z4−2

r3 (19)

Now we can obtain the elastic energy depending only on z:

VE ∼= . . . = constant +
(

3 +
13
8

r2
)

z2 (20)

The total energy is the addition of the potential and the elastic energy:

V = VP + VE ∼= constant− 2mεz +
((

3 +
13
8

r2
)
−m

(
2
r
+

3r
4

))
z2 − 2m

r3 z4 (21)

which is the expression of the Thom’s 2nd catastrophe with vertex (supposing ε = 0):

mo =

(
3 +

13
8

r2
) (

2
r
+

3r
4

)−1
∼=

3
2

r− 1
4

r3 (22)

Consequently:

V ∼= −
3
r2 z4 − 2

r
(m−mo)z2 − 2rεz (23)

The maxim load decreases quickly when ε increases, as it represents the Thom’s cusp
represented in the following figure (Figure 7):

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 21 
 

 

𝑑 = ∫ √1 − (xcos 𝑠 + 2𝑧 cos 2𝑠)2
𝜋

0

𝑑𝑠 ≅ ⋯ = (20) 

=
𝜋

4
(4 − 𝑥2−4𝑧2 −

3

16
𝑥4 − 3𝑥2𝑧2 −

5

64
𝑥6) (21) 

Equaling the two expressions below and applying Taylor approximation: 

𝑥 ≅ 𝑎𝑜 + 𝑎2𝑧
2 +𝑎4𝑧

4⟹ 𝑎𝑜 = 𝑟,  𝑎2 = −
2

𝑟
−
3𝑟

4
,  𝑎4 =

−2

𝑟3
 (22) 

It is obtained x as an implicit function of z: 

𝑥 ≅ 𝑟 + 𝑧2 (−
2

𝑟
−
3𝑟

4
) + 𝑧4

−2

𝑟3
 (23) 

Now we can obtain the elastic energy depending only on z: 

𝑉𝐸 ≅ ⋯ = constant + (3 +
13

8
𝑟2) 𝑧2 (24) 

The total energy is the addition of the potential and the elastic energy: 

𝑉 = 𝑉𝑃 + 𝑉𝐸 ≅ constant − 2𝑚𝜀𝑧 + ((3 +
13

8
𝑟2) − 𝑚(

2

𝑟
+
3𝑟

4
)) 𝑧2 −

2𝑚

𝑟3
 𝑧4 (25) 

which is the expression of the Thom’s 2nd catastrophe with vertex (supposing 𝜀 = 0): 

𝑚𝑜 = (3 +
13

8
𝑟2) (

2

𝑟
+
3𝑟

4
)
−1

≅
3

2
𝑟 −

1

4
𝑟3 (26) 

Consequently: 

𝑉 ≅ −
3

𝑟2
𝑧4 −

2

𝑟
(𝑚 −𝑚𝑜)𝑧

2 − 2𝑟𝜀𝑧 (27) 

The maxim load decreases quickly when ε increases, as it represents the Thom’s cusp 

represented in the following figure (Figure 7): 

 

Figure 7. Thom’s cusp. 

3.1.3. Application 3: Crank and Connecting Rod 

This exercise, explained in session 4, is an example of the implicit function theorem, 

which has many applications in mechanic in order to relation the different parameters 

operating in a mechanism.  

This application is the crank/connecting rod system of explosion motors (see Figure 

8), which consists of: 

• one crank moving with an angle 𝜃; 

• one connecting rod whose movement depends on the crank turn; 

• one piston moving horizontally on an axis. 

Figure 7. Thom’s cusp.

3.1.3. Application 3: Crank and Connecting Rod

This exercise, explained in session 4, is an example of the implicit function theorem,
which has many applications in mechanic in order to relation the different parameters
operating in a mechanism.

This application is the crank/connecting rod system of explosion motors (see Figure 8),
which consists of:

• one crank moving with an angle θ;
• one connecting rod whose movement depends on the crank turn;
• one piston moving horizontally on an axis.
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Supposing that the crank length r and the connecting rod length L are known, this
system has three position parameters:

• x: piston distance to the crank turn center;
• θ: crank angle;
• ϕ: connecting rod angle.

These three parameters are related according to the following expressions:{
x = r cos θ + L cos ϕ

r sin θ = L sin ϕ
(24)

There are three parameters to determine the position and two equations which relate
them. One of the three parameters could be expressed in function of the other two pa-
rameters and act as a control parameter determining those two parameters following the
equations below.

Fixing the value of one from the three variables, we would obtain a system with two
equations and two unknown factors, which would have a unique solution.

Applying the implicit function theorem:

(x, θ, ϕ)
f→ (x− r cos θ − L cos ϕ, r sin θ − L sin ϕ) (25)

Calculating the derivative matrix:

D f =

(
1 r sin θ L sin ϕ
0 r cos θ −L cos ϕ

)
(26)

According to this theorem, one variable acts as implicit (control variable) if the minor
formed by the other columns is different to zero.

If we calculate the minor of the variable x:

det
(

r sin θ L sin ϕ
r cos θ −L cos ϕ

)
= −rL(sin θ cos ϕ + cos θ sin ϕ) =

= −rL sin(θ + ϕ) 6= 0 if(θ + ϕ) 6= 0, π

(27)

Therefore, x acts as a control parameter except for the neutrals:

(θ + ϕ)= 0 , π ⇐⇒ x =
L + r
L− r

(28)

Indeed, the crank turn can be reversed in neutrals.
If we calculate the minor of the variable θ:

det
(

1 L sin ϕ
0 −L cos ϕ

)
= −L cos ϕ 6= 0 (29)

Therefore, the crank angle θ is a control parameter for all the values.
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3.1.4. Application 4: Articulated Arm

However, in order to simplify the above computation and the further ones, a key tool
is the matrix of the linear map. Let us obtain the matrix of f in ordinary basis.

This example, explained in session 5, is an application of inverse kinetics, which is,
calculating input position, speed, etc., from outputs position, speed, etc.

This application explains the work of a robot articulated arm, whose scheme is repre-
sented in the following figure (Figure 9), which is composed by:

• a shoulder situated in the coordinates origin;
• an upper arm with length 5 and an angle θ > 0 from the vertical;
• an elbow situated at the end of the upper arm;
• a lower arm with length 4 and angle ϕ < π from the upper arm;
• a hand situated at the end of the lower arm, in the coordinates (x, y);
• torsion motors in the articulations (the shoulder and the elbow).

The analysis consists of a direct and an inverse kinetics study of the articulated arm.
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The direct kinetics study obtains the hand position from the shoulder and elbow
angles, as it is calculated hereunder.

]0, π[x]0, π[
f→ Ω. (30)

(θ, ϕ)→ (x, y) (31){
x = 5 sin θ + 4 sin(θ + ϕ)
y = 5 cos θ + 4 cos(θ + ϕ)

(32)

The hand speed is calculated applying the chain rule, as it indicated hereunder:( .
x
.
y

)
= (D f )

( .
θ
.
ϕ

)
, D f =

(
5 cos θ + 4 cos(θ + ϕ) 4 cos(θ + ϕ)
−5 sin θ − 4 sin(θ + ϕ) −4 sin(θ + ϕ)

)
(33)

what is really interesting in robots is calculating the shoulder and the elbow rotor speeds
from the hand position, that is, the inverse kinetics study. To obtain these speeds, it is
necessary to apply the chain rule, the inverse function theorem and the implicit function
theorem, as it is carried out in the following example.

If the output is M = (5, 4), it is asked to obtain the shoulder and the elbow speeds
.
θ

and
.
ϕ.
It is clear to see that is a functional dependence between the hand position (x, y) and

the shoulder and the elbow positions (θ, ϕ) since there is only one possible triangle which
determine the hand position from the shoulder and the elbow positions. Therefore

Ω
f−1

→ ]0, π[x]0, π[ (34)
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(x, y)→ (θ, ϕ) (35)

Applying the inverse function theorem, it is confirmed the f−1 derivability:

detD f = −20 cos θ sin (θ + ϕ) + 20 sin θ cos (θ + ϕ) =

= −20 sin(θ − (θ + ϕ)) = −20 sin ϕ 6= 0
(36)

The relation between the shoulder and the elbow speeds, and the hand speed is:( .
θ
.
ϕ

)
= (D f )−1

( .
x
.
y

)
(37)

The hand position M = (5, 4) corresponds to the angles = π
2 , ϕ = π

2 .
Replacing in the expression below, it is obtained that:( .

θ
.
ϕ

)
=

(
4 4
−5 0

)−1( .
x
.
y

)
=

1
20

(
0 −4
5 4

) ( .
x
.
y

)
(38)

.
θ = −1

5
.
y (39)

.
ϕ =

1
4

.
x+

1
5

.
y (40)

3.1.5. Application 5: Electrical Dispatch

This example, explained in session 7, is about the most important goal of engineering,
which is the optimization of all the technological process.

The problem of the electrical dispatch deals with assigning the electrical central
productions to the required power. All the distributions companies need to calculate the
production of each supply central P1, · · · , Pn to cover the instant demand P.

In each moment, it must be decided, which centrals act and with what power, con-
sidering the cost of productions of those supply centrals. The objective is reaching the
minimum production cost.

The production cost of each supply electrical central is defined by the expression:

Cj = αj + β j Pj + γjP2
j , 1 ≤ j ≤ n, αj, β j, γj > 0 (41)

The problem is, if we have several supply electrical centrals which have quadratic
production costs and there is a certain demand P lower than the maximum, knowing the
power distribution of the different centrals and the first central that must be stopped.

To illustrate the solving of this problem, we are going to use an example with only
three supply electrical centrals, whose costs are hereunder indicated:

C1 = 7 + P1+P2
1 . (42)

C2 = 4 + 2P2 + 2P2
2 (43)

C3 = 2 + 4P3 + 3P2
3 (44)

Total power is the three powers sum:

P = P1 + P2 + P3 (45)

Total cost production of the three centrals is the cost productions sum:

C =
(
7 + P1 + P2

1
)
+
(
4 + 2P2 + 2P2

2
)
++

(
2 + 4(P− P1 − P2) + 3(P− P1 − P2)

2
)
=

= 13 + 4P− 3P1−2P2+P2
1+2P2

2 + 3(P− P1 − P2)
2

(46)
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To minimize the cost, the cost partial derivatives are calculated and equaled to zero:

D1C = −3 + 2 P1 − 6(P− P1 − P2) = −3− 6P + 8P1 + 6P2 = 0 (47)

D2C = −2 + 4 P2 − 6(P− P1 − P2) = −2− 6P + 6P1 + 10P2 = 0 (48)

The system obtained is compatible determined, therefore has a unique solution, which
is:

P∗1 = 1
22 (9 + 12P)

P∗2 = 1
22 (−1 + 6P)

⇒ P∗3 =
1

22
(−8 + 4P) (49)

This solution is valid only if P∗1 , P∗2 , P∗3 ≥ 0:

P∗1 > 0, ∀P (50)

P∗2 > 0⇔ P ≥ 1
6

(51)

P∗3 > 0⇔ P ≥ 2 (52)

Therefore, the solution is valid only if P ≥ 2.
If P decreases under P = 2, the solution below is not valid. From this value, P∗3 turns

to be negative, what indicates that the third central must be the first central to stop.
In this case only the other two centrals act and the production cost is:

C = 7 + P1 + P2
1 + 4 + 2(P− P1) + 2(P− P1)

2 (53)

The cost derivative calculation equaled to zero is:

P∗1 =
1
6
(1 + 4P) (54)

P∗2 =
1
6
(−1 + 2P)⇔ 1

2
≤ P ≤ 2 (55)

P∗3 = 0 (56)

Therefore, if P decreases under P = 1
2 , P∗3 turns to be negative, what indicates that the

second central must stop.
In this case, the only one central which supplies power is the first central and in this

case the distribution is:
P∗1 = P, P∗2 = P∗3 = 0 siP≤ 1

2
(57)

3.2. Students’ Surveys and Interviews Results

Up to now, two editions of the seminar “Application of Multivariable Calculus in
Engineering” have been held, corresponding to the second semester of the 2019/2020 and
2020/2021 academic years. The contents explained in these sessions has been studied
considering the answers to the anonymous questionnaires and to the personal interviews
conducted to students.

Students’ surveys of the sessions undertaken until now have been analyzed. The
surveys were held in the 2019/2020 and 2020/2021 academic years, after each of the
sessions. The number of attending students to the sessions has been 16 and all of them
have been participants in the surveys. The results obtained in these two academic years
did not have relevant differences. In the following figures the answers to each question
for all the sessions in both years are presented. So, for each figure, 256 represents the total
number of cases, which are the answers of 16 students in each of the 8 sessions and during
two academic years.
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The answers to the first question (Figure 10) show that most of the students, almost
90% of the total 256 answers of students, agree with the mathematical contents developed
in the sessions.
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Figure 10. Answers to question 1: The assessment of mathematical contents is positive.

Likewise, in the answers to the second question (Figure 11), it can be observed that
almost 90% of the total 256 answers of students agree with the engineering contents
explained in the sessions.
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Figure 11. Answers to question 2: The assessment of engineering contents is positive.

According to the answers to question 3, almost 90% of the total 256 answers of students
think that the sessions “Applications of Multivariable Calculus in Engineering” let them
know technological applications of different mathematical concepts (Figure 12).

Almost 70% of the total 256 answers of students agree that applications of mathematical
concepts achieve to increase their motivation to the subject Multivariable Calculus, as the
answers to question 4 (Figure 13) show.
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Figure 12. Answers to question 3: The sessions “Applications of Multivariable Calculus in Engineer-
ing” let students know technological applications of different mathematical concepts.
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Figure 13. Answers to question 4: The applications of mathematical concepts achieve to increase the
motivation to the subject Multivariable Calculus.

More than 70% of the total 256 answers of students state that the execution of practical
exercises with technological applications improves the learning of mathematical concepts
(Figure 14).

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 12. Answers to question 3: The sessions “Applications of Multivariable Calculus in Engineer-

ing” let students know technological applications of different mathematical concepts. 

Almost 70% of the total 256 answers of students agree that applications of mathemat-

ical concepts achieve to increase their motivation to the subject Multivariable Calculus, as 

the answers to question 4 (Figure 13) show.  

 

Figure 13. Answers to question 4: The applications of mathematical concepts achieve to increase the 

motivation to the subject Multivariable Calculus. 

More than 70% of the total 256 answers of students state that the execution of practi-

cal exercises with technological applications improves the learning of mathematical con-

cepts (Figure 14). 

 

Figure 14. Answers to question 5: The execution of practical exercises with technological applica-

tions improve the learning of mathematical concepts. 

5 0

21

109
121

0

20

40

60

80

100

120

140

Strongly
disagree

Disagree Nor agree
nor disagree

Agree Strongly
agree

5 4

88 85

74

0
10
20
30
40
50
60
70
80
90

100

Strongly
disagree

Disagree Nor agree
nor disagree

Agree Strongly
agree

5 5

65

77

104

0

20

40

60

80

100

120

Strongly
disagree

Disagree Nor agree
nor disagree

Agree Strongly
agree

Figure 14. Answers to question 5: The execution of practical exercises with technological applications
improve the learning of mathematical concepts.

The response of the attending students to these sessions in 2019/2020 and 2020/2021
academic years has been very positive. As can be observed in the above figures, the
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number of students who agree or strongly agree with the statements about the seminar is
higher than the number of students who nor agree nor disagree, except for the question
4 (Figure 13). The reason is that some students have answered that although they assess
positively the contents of the seminar, they were already motivated to the study of Calculus
Multivariable before attending to the seminar.

It is also worth mentioning some students’ comments expressed in the open questions
asked in the anonymous surveys in both years, such as:

• These sessions let know real applications of mathematics in engineering, which gives
more sense to the study of mathematics.

• Discovering that discontinuous phenomena produced in engineering processes can be
modeled by mathematical theories increases the motivation towards the learning of
mathematics.

• The use of mathematical concepts in technological applications, as they are implicit
function theorem or Taylor and Fourier series, let students realize about the need of
mathematics in engineering.

• Applications of Multivariable Calculus in mechanics and robotics increase the curiosity
and the interest of students towards mathematical subjects.

The information extracted from students’ answers in personal interviews in both
academic years is presented hereunder:

• The real applications shown in the sessions “Applications of Multivariable Calculus in
Engineering” let students realize of the usefulness of mathematics for their degree and
for their future career.

• Applications studied in this seminar have been very practical and students will use
them in their future profession. Learning to solve real engineering problems shows
students how essential mathematical subjects are for engineers.

• Seeing how mathematics can be applied in engineering motivates to learn mathematics
in order to be able to use them in the future as engineers.

• Seeing technological applications of mathematics increases the interest towards the
subject.

• These applications help students understand related mathematical concepts as the
implicit function theorem, the Fourier series or the calculations of maximums and
minimums in functions defined in compact sets.

• Interesting applications: Zeeman machine solved with Thom’s catastrophes theory
and Taylor series and the crank/connecting rod system of explosion motors using the
implicit function theorem.

• It has been very impressive knowing no technological applications of Thom’s catastro-
phes, such as the analysis of dogs’ behavior and sociological applications.

• Students knew that mathematics were necessary for engineering but, attending this
seminar, they have discovered that mathematics are also necessary for other different
disciplines.

• Mathematics are not subjects to prepare students for beginning the degree, mathemat-
ics are applications in the future work of engineers.

4. Discussion

In this work we contribute to develop an integrated STEM curriculum, introducing an
implementation of mathematical applications integrated in STEM education. This study
provides a connection of mathematical subjects with technological disciplines and with
engineering careers, with the objective of enhancing the motivation and engagement of
engineering students.

In the present engineering curriculum, the first two academic courses content very few
engineering subjects, but consist of mathematics, science, communications and electives
subjects. With the implementation developed in this work, mathematical subjects should
cover real applications related to the main area of students enrolled degree, offering
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a wider view in STEM education [37,38], what would involve the improvement of the
understanding and learning of mathematical concepts, as [39] states.

The main issue of this work has been the relevance of solving real and technolog-
ical problems in the teaching of mathematics, since students’ analytical thinking skills
are enhanced with the use of mathematical problem solving [29,30,40]. In addition, the
implementation of real and practical problems in basic sciences subjects promote student
engagement and motivation in STEM degrees [14,19–21]. Considering the results shown
in Figure 13, it can be seen that almost the 70% of the total 256 answers of students agree
that applications of mathematical concepts achieve to increase their motivation to the
subject of Multivariable Calculus, what will lead to reduce dropout, since it is connected to
motivation [14], student achievement [17] and academic performance [11]. In the results of
Figure 14, it has been shown that according to more than the 70% of the total 256 answers of
students, the applications explained in the seminar, let them learn mathematical concepts
trough practical examples. This fact increases their motivation to mathematics, as it is
confirmed in previous studies such as [28]. In addition, as shows Figure 12, almost the 90%
of the total 256 answers of students state that with this sessions they have known multiple
real application of Multivariable Calculus in engineering and other disciplines, what attain
to encourage and motivate them to the learning of the subject, as it was analyzed in several
studies [14,19,20].

The answers to the questions taken to the students in the personal interviews after
the sessions “Applications of Multivariable Calculus in Engineering”, show that most of
the practical problems have impressed students because they have discovered that Multi-
variable Calculus have applications in many different areas. Moreover, it is to highlight
that for students is really motivating to know what they will be capable to do in the next
academic courses, using the concepts of Multivariable Calculus. They also realized of
how essential Multivariable Calculus is for their future career and increased their interest
towards the subject.

The results obtained in this study support that this experience contribute to an im-
provement of students’ learning of mathematical concepts, as it was concluded in [33],
which involves the increase of students’ performance in mathematical subjects of engineer-
ing degrees, as it was studied in previous works such as [25].

5. Conclusions

This study was carried out at the Universitat Politècnica de Catalunya-BarcelonaTech
(UPC), a university focused on STEM fields. The work is based on the teaching of Multi-
variable Calculus by the execution of real and technological applications where Calculus
concepts are necessary to solve them. The aim of this work is to generate and integrated
STEM curriculum, presenting a contribution about the relationship among mathematical
applications and STEM education. The work provides evidence that it is possible to increase
students’ motivation through the implementation of engineering applications in the learn-
ing of mathematics, what could imply an improvement of the learning of mathematics and
therefore, an increase of students’ performance and a decrease of the dropout in the first
academic courses of engineering degrees. This entails a rise of interest in STEM degrees,
which are essential for the economic growth of technological countries.

In view of the success of the seminar “Applications of Multivariable Calculus in
Engineering”, more real applications are planned to be developed. These sessions are going
to be repeated in the second semester of the next academic year 2021/2022. Likewise, the
seminar “Applications of Linear Algebra in Engineering” is going to be repeated in the
first semester of the next academic year. These two seminars cover the most mathematical
subjects of the first academic course in engineering degrees.

It is also planned to conduct surveys and interviews to the students attending the
seminar of the following academic year with the aim of collecting a greater sample of
surveys results and more information about students’ experience in these sessions.
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With the results obtained, it is expected that the contents developed in this work
will be included in a future adaptation of mathematical subjects’ syllabus in engineering
degrees.
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