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Abstract: In the cloud computing and big data era, data analysis jobs are usually executed over
geo-distributed data centers to make use of data locality. When there are not enough resources to
fully meet the demands of all the jobs, allocating resources fairly becomes critical. Meanwhile, it is
worth noting that in many practical scenarios, resources waiting to be allocated are not infinitely
divisible. In this paper, we focus on fair resource allocation for distributed job execution over multiple
sites, where resources allocated each time have a minimum requirement. Aiming at the problem,
we propose a novel scheme named Distributed Lexicographical Fairness (DLF) targeting to well
specify the meaning of fairness in the new scenario considered. To well study DLF, we follow a
common research approach that first analyzes its economic properties and then proposes algorithms
to output concrete DLF allocations. In our study, we leverage a creative idea that transforms DLF
equivalently to a special max flow problem in the integral field. The transformation facilitates our
study in that by generalizing basic properties of DLF from the view of network flow, we prove that DLF
satisfies Pareto efficiency, envy-freeness, strategy-proofness, relaxed sharing incentive and 1

2 -maximin
share. After that, we propose two algorithms. One is a basic algorithm that stimulates a water-filling
process. However, our analysis shows that the time complexity is not strongly polynomial. Aiming
at such inefficiency, we then propose a new iterative algorithm that comprehensively leverages
parametric flow and push-relabel maximal flow techniques. By analyzing the steps of the iterative
algorithm, we show that the time complexity is strongly polynomial.

Keywords: distributed settings; fair resource allocation; network flow; indivisibility

1. Introduction

In this paper we study fair resource allocation for distributed job execution over
multiple sites, where resources are not infinitely divisible. This problem arises from cloud
computing and big data analytics, where we notice two significant features. One is that
running data analysis jobs often requires a large amount of data that is usually stored at
geo-distributed sites. Collecting all data needed from different sites and then executing jobs
at a central location would involve unacceptable time costs in data transmission. Hence,
distributed data analysis jobs that could execute close to the input data receive attention
recently [1,2]. Job execution requires system resources. If multiple jobs need to execute
at the same site but there are not enough system resources to meet their demands, fair
resource allocation becomes a critical problem. On the other hand, in cloud computing,
resources are usually allocated as a virtual machine. Although the amount of resources of a
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virtual machine is usually configurable, cloud providers often use a basic service to require
the minimum amount of resources that a virtual machine must have. Thus, when studying
fair resource allocation, we consider the constraint that resources are not infinitely divisible.

Resource allocation is a classical combinatorial optimization problem in many fields
like computer science, manufacturing, and economics. In the past decades, fair resource
allocation receives a lot of attention [3–5]. To study fair allocation, providing a reasonable
scheme to define fairness is critical. In the literature, max-min fairness is a popular scheme
to define fair allocation when meeting competing demands [6]. B. Radunovic et al. [7]
proved that in a compact and convex sets max-min fairness is always achievable. Mean-
while, the authors studied algorithms to achieve max-min fairness whenever it exists.
However, they do not consider distributed job execution which is different from our work.

Max-min fairness has been generalized aiming at fair allocation of multiple types of
resources. A. Ghodsi et al. [8] proposed Dominant Resource Fairness (DRF). By defining
dominant share for each user, they proposed an algorithm to maximize the minimum
dominant share across all users. As a different option of DRF, D. Dolev et al. [9] proposed
“no justified complaints” which focuses on the bottleneck resource type. DRF could sacrifice
the efficiency of job execution. In order to achieve a better tradeoff between fairness and
efficiency, T. Bonald et al. [10] proposed Bottleneck Max Fairness. By considering different
machines could have different configurations, W. Wang et al. [11] extended DRF to handle
heterogeneous machines. All the above studies are interested in multi-resource allocation.
Different from them, our problem arises from a distributed scenario where data cannot be
migrated and resources allocated to jobs are not infinitely divisible. Hence, none of the
schemes on fairness defined by them can be applied to handle our problem.

Y. Guan et al. [12] considered fair resource allocation in distributed job executions.
By considering fairness towards aggregate resources allocated, they defined max-min
fairness under distributed settings. This work is close to our work. The key difference is
that resources are assumed to be infinitely divisible. Nevertheless, we consider that the
assumption does not make sense in many practical scenarios. Furthermore, it is worth
noting that their fair scheme cannot be applied in our scenario, due to max-min fairness
even may not exist under our settings. Hence, aiming at the new problem addressed in this
paper, it is still necessary to study a new reasonable scheme on fairness.

To handle fair resource allocation in distributed setting with a minimum indivisible
resource unit, we set up the model in the integral field and propose a novel fair resource
allocation scheme named Distributed Lexicographical Fairness (DLF) to specify the mean-
ing of fairness. If an allocation satisfies DLF, the aggregate resource allocation across all
sites (machines or datacenters) of each job should be lexicographical optimal. To ver-
ify a new defined fair scheme is self-consistent or not, a usual way [8,9,12] is to study
whether it well satisfies critical economic properties such as Pareto efficiency, envy-freeness,
strategy-proofness, maximin share and sharing incentive, and whether there exist efficient
algorithms to achieve a fair allocation.

To conduct our study, we leverage a creative idea that transforms DLF equivalently
into a network flow model. Such transformation facilitates us to not only study economic
properties but also to design new algorithms based on efficient max flow algorithms.
More precisely, we first generalize basic properties of DLF based on network flow theories
and then use them to further prove that DLF satisfies Pareto efficiency, envy-freeness,
strategy-proofness, 1

2 -maximin share, and relaxed sharing incentive. On the other hand,
to get a DLF allocation, we proposed two algorithms based on max flow theory. One is
named Basic Algorithm, which simulates a water-filling procedure. However, the time
complexity is not strongly polynomial as it is affected by of the capacity of sites. To further
improve the efficiency, we proposed a novel iterative algorithm leveraging parametric
flow techniques [13] and the push-relabel maximal flow algorithm. The complexity of the
iterative algorithm decreases to O(|V|2|E| log (|V|2/|E|)) where |V| is the number of jobs
and sites, and |E| is the number of edges in the flow network graph.

The contribution of this paper is summarized as follows.
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1. We address a new distributed fair resource allocation problem, where resources are
composed of indivisible units. To handle the problem, we propose a new scheme
named Distributed Lexicographical Fairness (DLF).

2. We creatively transform DLF into a model based on network flow and generalize its
basic properties.

3. By proving DLF satisfies critical economic properties and proposing efficient algo-
rithms to get a DLF allocation, we confirm that DLF is self-consistent and is reasonable
to define fairness in the scenario considered.

The rest of this paper is organized as follows. Section 2 introduces the system model
and gives a formal definition of distributed lexicographical fairness. Section 3 remodels
distributed lexicographical fairness by using network flow theories. Section 4 proves
basic properties, based on which proofs in Section 5 show that distributed lexicographical
fairness satisfies five critical economic properties. Section 6 presents two algorithms and
analyzes their time complexities. Finally, Section 7 brings our concluding remarks and
discusses future work.

2. System Model & Problem Definition
2.1. System Model

We consider a set of distributed sitesM = {M1, M2, . . . , Mm}, where each site Mi
could be a cluster of servers or a data center depending on the scale of the system modeled.
Each site Mj has a computing capability Cj that is measured by the number of computing
slots. Note that we consider each computing slot is no more divisible.

Suppose there is a set of n distributed execution jobs J = {J1, J2, . . . , Jn}. A job is
composed of multiple tasks. Note that we assume each task has independent data inputs
and thus different tasks can run in parallel. We do not permit data migration between sites
due to unacceptable overheads. By considering data locality, each task can only be executed
at a designated site. For any job Ji in J , it could require resource at each site. Thus, for the
set of jobs J , we model their resource demands by a n×m matrix Dn×m, where each entry
dij is the job Ji’s resource demand at site Mj. We assume each task execution occupies one
computing slot and thus resource demand is modeled by the number of tasks. If Ji has no
task to run at a site Mj, we let dij = 0.

For the set of jobs J , we leverage a n × m matrix An×m to represent the resource
allocation. In An×m, each entry aij means the amount of resources that job Ji can receive
from site Mj. Note that resources are not considered infinitely divisible. We require that
the value of each aij can only be a non-negative integer, i.e., we use integer 1 to model the
minimum resource unit.

Each site Mj has a finite capacity. We claim a capacity constraint by Formula (1) that
requires the total amount of resources allocated at each site cannot exceed the capacity.
On the other hand, it is not reasonable to allocate more resources than what a job demands.
Thus, we claim a rational constraint by Formula (2):

∀Mj ∈ M,
n

∑
i=1

aij ≤ Cj, (1)

∀Ji ∈ J , Mj ∈ M, 0 ≤ aij ≤ dij. (2)

In this paper, whenever a resource allocation An×m is claimed feasible, each entry aij
must be a non-negative integer and the above constraints (1) and (2) are satisfied.

2.2. Problem Definition
2.2.1. Single Site

We are interested in fair allocation for the set of jobs. The key is to specify the meaning
of fairness in our model. We start the discussion from a single site. Before giving a
formal definition, let us consider an example: there are four jobs J1, J2, J3 and J4 running
on a single site M1 whose computing ability is modeled by 20 time slots. Suppose J1
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requires 8 time slots, J2 requires 4 time slots, J3 requires 10 time slots and J4 needs 40 time
slots to execute their tasks. The demands of J1, J2, J3 and J4 are formulated by a vector
〈8, 4, 10, 40〉. The site M1 cannot meet the resource requirements at the same time such that
how to allocation resource among the four jobs becomes critical. Let us consider a feasible
allocation 〈6, 2, 6, 6〉. Intuitively, it is not fair enough as we can increase J2’s allocation by
decreasing J1’s allocation to obtain 〈5, 3, 6, 6〉. Similar adjustment can also be made between
J2 and J3 which increases J2’s allocation by decreasing J3’s allocation to get 〈5, 4, 5, 6〉. Note
that we cannot continue to increase J2’s allocation by decreasing J4’s allocation as J2’s
demand is 4 such that 〈5, 5, 5, 5〉 is not rational (i.e., not feasible).

From the above example, we can see that different allocations have different fair
levels that need to be specified. Our idea is to make different fair levels be comparable.
Let us consider again the allocation vectors 〈6, 2, 6, 6〉, 〈5, 3, 6, 6〉 and 〈5, 4, 5, 6〉. If we
rearrange them into a monotone nondecreasing order, then we have 〈2, 6, 6, 6〉, 〈3, 5, 6, 6〉
and 〈4, 5, 5, 6〉. Now we shall consider that 〈4, 5, 5, 6〉 is the greatest one of the three. Such
comparison arises from lexicographical order whose definition is given below.

Definition 1. ~X and ~Y are two n dimensional vectors under monotone nondecreasing order. If ∃t
such that Xt < Yt and ∀i < t, Xi = Yi, then ~X < ~Y, otherwise ~X = ~Y.

Note that lexicographical order is a total order such that any two vectors are compa-
rable. Accordingly, for all feasible allocations, we shall take the one who has the greatest
lexicographical order as the fairest allocation. Indeed, the fairness allocation problem in
a single site becomes a lexicographical order optimization: finding the allocation who
has the greatest lexicographical order. Suppose ~A is a n dimensional vector. We adopt a
function φ(~A) to get the monotone nondecreasing order of ~A. Lexicographical fairness is
defined below.

Definition 2. Suppose X is a finite set of vectors of n-dimension. We claim ~A ∈ X is lexicograph-
ical fairness if and only if ∀~B ∈ X , there is φ(~B) ≤ φ(~A).

Lexicographical fairness always exists as X is finite. Definition 2 can be well applied
to fair allocation problem on a single site if we consider that X is the set of all feasible
allocations. Note that allocations satisfying lexicographical fair may not be unique. In the
above example, the following three allocations 〈5, 4, 5, 6〉, 〈6, 4, 5, 5〉 and 〈5, 4, 6, 5〉 all satisfy
lexicographical fair.

2.2.2. Multiple Sites

In the following, we shall extend Definition 2 to adapt the distributed settings: from
one site to multiple sites. One intuitive way is to fairly allocate the resource by Definition 2
in each site independently. However, this way could lead to an unfair allocation from a
system-wide view: the aggregate resource allocated to different jobs could be far from fair.
In distributed resource allocation, the system-wide processing rate of each job is normally
decided by its aggregate resource received. Thus, to handle the distributed setting from
a system-wide view, we consider all the sites as a united resource pool. Equation (3) is
a job-wise allocation vector ~A derived from allocation matrix An×m. ~A means the total
amount of resources allocated to each job from all the sites:

~A = 〈
m

∑
j=1

a1j,
m

∑
j=1

a2j, ...,
m

∑
j=1

anj〉, (3)

where the ith entry ~Ai of ~A is the aggregate resource allocated to the job Ji. Distributed Lexi-
cographical Fairness (DLF) requires that the job-wise vector ~A satisfy lexicographical fairness.

Let X be the set of all feasible allocations and let X = {~A|A ∈ X}, i.e., the set of all
job-wise allocations of the allocation matrices in X . We have the following definition of DLF.
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Definition 3. An allocation An×m satisfies Distributed Lexicographical Fairness, if and only if, its
job-wise allocation vector ~A satisfies lexicographical fairness over the set X.

Distributed Lexicographical Fairness is always achievable for resource allocation on
a set of sites. To verify whether the definition on DLF is reasonable and self-consistent,
we need to confirm that it not only satisfies common economic properties of fairness
including Pareto efficiency, envy-freeness, strategy-proofness, maximin share and sharing
incentive but also has efficient algorithm to out a DLF allocation. These two tasks are not
trivial. To facilitate our further study, we shall transform DLF equivalently to a network
flow problem.

3. Problem Transformation

Network flow is a well-known topic in Combinatorial Optimization. Transforming
DLF equivalently to a network flow problem gives us good opportunity to apply knowledge
in network flow, i.e., based on the existing network flow theories, we shall not only prove
that DLF has good economic properties but also propose efficient algorithms to output a
DLF allocation.

Transforming DLF means that we should build a flow network that could well model
jobs, sites, capacity constraint, rational constraint, and the integral requirements. Before
giving a formal description, we perform a concrete case study first. Consider there are two
jobs J1, J2 executed over two sites M1, M2. The demands of the two jobs are respectively
〈3, 1〉 and 〈0, 2〉, while the capacity of M1 is 4 and the capacity of M2 is 3. Figure 1 depicts
the flow network built for the case. We can see that J1, J2 and M1, M2 all appear as nodes
in the graph. We use directly edges between jobs and sites to express the demands (by
edge capacity). s and t in the graph represent respectively the source and sink node which
are essential for any flow network. We add directed edges between s and the two jobs,
where the capacity has no special constraint (expressed by +∞). We also add directed
edges from every site to t, where the capacity of edge is set to the corresponding capacity
of site. Our general idea is to use the amount of flow passing by J1 and J2 to model the
corresponding allocations. It is well-known that a feasible flow never breaks the capacity
of any edge in the flow network. With the above settings, any feasible flow satisfies the
capacity and rational constraints. If we further require that the flow is in integral field (i.e.,
for any feasible flow, the amount of flow on any edge is an integer), a feasible allocation
actually corresponds to a feasible flow and vice versa.
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Figure 1. The flow network graph built for case study.

Now let us give a formal description on problem transformation. Necessary notations
are introduced first. We consider graph G = (V, E) with a capacity function c : E → Z+,
where V = {s} ∪ J ∪M ∪ {t}. s and t represent the source node and the sink node,
respectively, in a flow network. J is the set of nodes representing jobs andM is the set of
nodes corresponding to sites. Each edge e ∈ E is denoted as a pair of ordered nodes, i.e.,
e = 〈vp, vq〉. The capacity function c is defined in the following.

c(e) =


dij if vp = Ji and vq = Mj ;
+∞ if vp = s and vq = Ji;
Cj if vp = Mj and vq = t ;
0 otherwise.

(4)
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By removing the edges that have an empty capacity, the flow network graph that we
obtained for problem transformation is given in Figure 2.
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Figure 2. The general flow network graph for DLF.

In the flow network constructed, we can also provide a formal definition on feasibility.
A flow f on G is called feasible if it satisfies two conditions that the amount of flow
over any edge e ∈ E is a positive integer f (e) ∈ Z+ and never exceeds the capacity
f (e) ≤ c(e). For ease of representation, we use | f | to express the total amount flow of f .
Clearly, | f | = ∑e∈E f (e) is an integer too. Based on f (e) ≤ c(e), we have two inequalities
given below:

∀〈Mj, t〉 ∈ E,
n

∑
i=1

f (〈Ji, Mj〉) ≤ c(〈Mj, t〉) = Cj, (5)

∀Ji ∈ V, Mj ∈ V, 0 ≤ f (〈Ji, Mj〉) ≤ dij. (6)

By considering f (〈Ji, Mj〉) as aij, it is easy to verify that the above inequalities actually
refer to the feasible and rational allocation constraints, respectively. Consequently, a feasible
flow f on G corresponds to a feasible resource allocation An×m, and vice versa. For each
job Ji, its aggregate resource allocation is the amount of flow passing by node Ji in graph G:

∀Mj ∈ V, ~Ai = f (〈s, Ji〉) = ∑
j

f (〈Ji, Mj〉) = ∑
j

aij. (7)

To avoid redundant notations, we also write f ∈ X to mean f is feasible and let
φ( f ) = φ(~A) be the corresponding nondecreasing order. A DLF allocation corresponds to
a lexicographically optimal flow whose definition is given below.

Definition 4. A flow f ∈ X is lexicographically optimal if and only if ∀ f ′ ∈ X there is
φ( f ′) ≤ φ( f ).

4. Basic Properties

In network flow theory, maximum flow is a well-known problem [14]. One of the
classic theorems is the augmenting path theorem [15,16], which plays an important role in
many related algorithms [17]. A well-known property is that maximum flow algorithm
is also suitable for the integral setting where the amount of flow can only be formulated
by an integer. N. Megiddo [18,19] studied multisource and multisink lexicographically
optimal flow, the algorithm proposed in [19] is a natural extension of Dinic maximum flow
algorithm [20]. In our paper, we also leverage maximum flow theories to carry out the key
proofs. Note that if f ∈ X is maximal then ∀ f ′ ∈ X , there is | f ′| ≤ | f |.

Lemma 1. If f is a maximal flow on G, then ∀Mj ∈ V, ∑i f (〈Ji, Mj〉) = min(Cj, ∑i dij).

By combining (5) and (6), we have ∑i f (〈Ji, Mj〉) ≤ min(Cj, ∑i dij). If the inequality
is strictly satisfied, there must exist two successive edges 〈Ji′ , Mj〉 and 〈Mj, t〉 such that
f (〈Ji′ , Mj〉) < di′ j and ∑i f (〈Ji′ , Mj〉) < Cj. Clearly, | f | can be increased, which contradicts
with f being maximal.
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In our model, if a flow f ∈ X is lexicographically optimal, it is easy to verify that
f is also a maximal flow but not vice versa, i.e., a lexicographically optimal flow is a
special maximal flow. Given a feasible flow f on G, an augmenting path is a directed
simple path from s to t (e.g., P = {s, v1, v2, ..., vi, vi+1, ..., t}) on the residual graph G f .
Similarly, an adjusting cycle C on G f is a directed simple cycle from s to s (does not pass
by t). The capacity of a given path (or a given cycle) is defined to be the capacity of the
corresponding bottleneck edge, e.g., for a path P, c(P) = mine=〈vi ,vi+1〉∈P c(e) and for a
cycle C, c(C) = mine=〈vi ,vi+1〉∈C c(e). For ease of representation, we consider augmenting
path or adjusting cycle to only contain edges with positive capacity, i.e., c(P) > 0 and
c(C) > 0.

In our context, performing an augmentation means increasing the original flow f
by δ (δ ∈ Z+ and 1 ≤ δ ≤ c(P)) along an augmenting path P in G f and performing an
adjustment means adjusting the original flow f by δ (δ ∈ Z+ and 1 ≤ δ ≤ c(C)) along an
adjusting cycle C in G f . By performing an augmentation or an adjustment on a flow f , we
can get a new feasible flow. The difference is that only the augmentation increases | f |.

Claim 1. For a given feasible flow f on G, if there does not exist any augmenting path passing by
Jk in G f , then for any feasible f ′ augmented from f , there is also no augmenting path passing by Jk
in G f ′ .

Proof. We prove by contradiction: assume there exists a feasible flow f ′ augmented from f
and in the residual graph G f ′ , however, there is an augmenting path passing by Jk (denoted
by P∗ in the following). In our model, c(〈s, Jk〉) = +∞, which implies 〈s, Jk〉 is an edge
existing in any residual graph. Therefore, we only need to consider P∗ where the first two
nodes are s and Jk.

As f ′ is augmented from f , we can perform successive augmentations on f to get
f ′. Note that each augmentation is performed along an augmenting path. Hence, as-
sume the successive augmentations are performed on a sequence of augmenting paths
P = {P1,P2, ...,Pr}which are respectively in the intermediate residual graphs {G1, G2, ..., Gr}
obtained by augmentations. Here G1 is exactly G f , G2 is obtained by perform an augmenta-
tion along P1 on G1, et al. Next, we perform a recursive analysis to gradually reduce P and
finally prove that in G f there also exists an augmenting path passing by Jk, which leads to
a contradiction.

Finding P` the last path in P which has common nodes (except s, Jk and t) with
P∗: P` ∩ P∗/{s, Jk, t} 6= ∅. A special case is that we cannot find such P`. It means that
starting from G f by performing augmentations along all the augmenting paths in P , there
is no influence on the existence of P∗, i.e., P∗ is already an augmenting path in G f .

If such P` exists, it implies that after the augmentation is performed along P` in G`,
the follow-up augmentations along P`+1, P`+2, ..., Pr do not affect the existence of P∗ any
more, i.e., P∗ exists in G`+1, G`+2, ..., Gr. Now let us focus on finding an augmentation
path passing by Jk which appears in G` (before the augmentation along P` is performed).
Assume vx is the first node not only passing by P` but also appearing in P∗. We know that
the augmentation along P` does not affect the existence of the first part of P∗: {s, Jk, ..., vx}.
The remaining part of P∗ may not exist in G`. However, we can replace it with the part
{vx, ..., t} that appears in P`. By concatenating the above two parts together, we actually
find another augmentation path in G` passing by Jk. If P` is exactly P1 of P , we already
find an augmentation path passing by Jk in G f . Otherwise, let us denote the new found
augmentation path by P∗ too, reduce P to {P1,P2, ...,P`} and restart the whole process.
As P is not infinite, the process will be stopped after finite times, which implies G f must
include an augmentation path passing by Jk.

In our model, if a maximal flow is also lexicographically optimal, it must satisfy a
special condition. In a residual graph G f , we name a simple path is a Jp → Jq path if it starts
at Jp, ends at Jq, and does not pass by s and t. Note that any Jp → Jq path only contains
edges with positive capacity.
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Theorem 2. A maximal flow f on G is lexicographically optimal if and only if for all Jp and Jq, if
~Ap ≤ ~Aq − 2, then there is no Jp → Jq path on the residual graph G f .

Proof. First, proving the “only if” side. Assume there exist Jp and Jq, where ~Ap ≤ ~Aq − 2
and a Jp → Jq path exists in G f . As the existence of 〈s, Jp〉 and 〈Jq, s〉, we can perform an
adjustment by 1-unit from s to Jp, then along the Jp → Jq path and along the edge 〈Jq, s〉
to reach s again. Note that by the above adjustment, we obtain a new maximal flow f ′

where ~A′p = ~Ap + 1 ≤ ~Aq − 1 = ~A′q. Therefore, f ′ is lexicographically larger than f , i.e.,
φ( f ′) > φ( f ), which contradicts with f is lexicographically optimal.

Second, proving the “if” side by contradiction. Suppose that flow f is maximal
on G and satisfies the condition. However, it is not lexicographically optimal. As-
sume fopt is a lexicographically optimal flow such that φ( fopt) > φ( f ) and | f | = | fopt|.
By comparing f with fopt, the set of jobs J can be naturally divided into three parts
J < = {Ji ∈ J | f (〈s, Ji〉) < fopt(〈s, Ji〉)}, J = = {Ji ∈ J | f (〈s, Ji〉) = fopt(〈s, Ji〉)} and
J > = {Ji ∈ J | f (s, Ji) > fopt(〈s, Ji〉)}. Next, we construct a special graph Gdi f f [21]
to differentiate fopt and f .

Let us denote Gdi f f = (Vdi f f , Edi f f ), where Vdi f f = J ∪M. We also define a capacity
function cdi f f for the edges of Edi f f :

1. if f (〈Ji, Mj〉) ≤ fopt(〈Ji, Mj〉), then cdi f f (〈Ji, Mj〉) = fopt(〈Ji, Mj〉)− f (〈Ji, Mj〉) and
cdi f f (〈Mj, Ji〉) = 0;

2. otherwise, cdi f f (〈Mj, Ji〉) = f (〈Ji, Mj〉)− fopt(〈Ji, Mj〉) and cdi f f (〈Ji, Mj〉) = 0.

According to Lemma 1, we know for any site Mj there is fopt(〈Mj, t〉) = f (〈Mj, t〉).
Therefore, in the graph Gdi f f , for each Mj, we have ∑i cdi f f (〈Mj, Ji〉) = ∑i cdi f f (〈Ji, Mj〉).

In Gdi f f , there could exist “positive cycles” (denoted by C): for each edge e of C, there
is cdi f f (e) > 0. For a positive cycle C, we let cap be the minimum capacity of all the edges
contained in C. We shall eliminate all these cycles by capacity reductions. For each edge
e of C, we perform cdi f f (e) = cdi f f (e)− cap. Clearly, after the reduction, C is no more a
positive cycle. Note that once we eliminate a positive cycle C on Gdi f f , it is equivalent to
perform an adjustment by cap on G f . For example, assume Ji is a node included in the cycle
C. The adjustment is starting from s, along the edge 〈s, Ji〉, then along the cycle C back to
Ji, and finally along the edge 〈Ji, s〉 back to s. We can eliminate all the positive cycles to get
a new G′di f f by performing a sequence of capacity reduction operations. Compared with
Gdi f f , G′di f f corresponds to another maximal flow f ′, where ∀Ji, there is f (s, Ji) = f ′(s, Ji).
Hence, f ′ is not lexicographically optimal either. Moreover, J <, J = and J > are always
kept during the capacity reductions. In the following, we turn to focus on G′di f f .

In G′di f f , there must exist positive paths (for each edge in the path, the capacity is
a positive integer), otherwise the flow f ′ is exactly fopt, which implies both f and f ′ are
also lexicographically optimal. As there are no positive cycles in G′di f f , we can extend
any positive paths to be a maximal positive path, where there are no edges with positive
capacity entering the starting point and no edges with positive capacity leaving the ending
point. The minimum capacity of edges in a maximal positive path is also denoted by
cap ≥ 1. Next, we shall demonstrate that for any maximal positive path in G′di f f , the
starting point Jp must belong to J < and the ending point Jq must belong to J >. Clearly,
Jp cannot belong to J > due to every node in J > having positive entering edges. On the
other hand, Jp cannot belong to J = norM, since for each node in J = or inM, the total
capacity of the positive entering edges is equal to the total capacity of the positive leaving
edges. Consequently, Jp can only belong to J <. Similarly, we can infer that the ending
point Jq can only belong to J >. Now we show that the maximal positive path in G′di f f
corresponds to a Jp → Jq path in G f . First, note that from Gdi f f to G′di f f , we only decrease
the capacity of some edges, such that if a maximal positive path appears in G′di f f , it is also
a path in Gdi f f (not necessarily maximal).
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Suppose 〈Ji, Mj〉 is a directed edge in the maximal positive path. 〈Ji, Mj〉 is also an
edge having positive capacity in Gdi f f . Then, c f (〈Ji, Mj〉) the capacity of the edge 〈Ji, Mj〉
inside G f satisfies:

c f (〈Ji, Mj〉) = c(〈Ji, Mj〉)− f (〈Ji, Mj〉) ≥ max ( fopt(〈Ji, Mj〉)− f (〈Ji, Mj〉), 0) = cdi f f (〈Ji, Mj〉)

Similarly, assume 〈Mj, Ji〉 is a directed edge in the maximal positive path. 〈Mj, Ji〉 is
also an edge with positive capacity in Gdi f f . c f (〈Mj, Ji〉) the capacity of the edge 〈Mj, Ji〉
inside G f satisfies:

c f (〈Mj, Ji〉) = f (〈Ji, Mj〉) ≥ max ( f (〈Ji, Mj〉)− fopt(〈Ji, Mj〉), 0) = cdi f f (〈Mj, Ji〉)

The above two formulas together indicate that for each edge of a maximal positive
path in Gdi f f , the capacity of the corresponding edge in G f is also positive. Without loss
of generality, assume a maximal positive path that starts at Jp and ends at Jq. Then we get
the corresponding Jp → Jq path in G f . According to the assumption on f , we can easily
infer that ~Ap ≥ ~Aq − 1 as the existence of the Jp → Jq path. Next, we show that f must be
lexicographically optimal.

First, let us assume ~Ap ≥ ~Aq. Together with the existence of the maximal positive path
from Jp to Jq, we can infer that ~Aopt

p > ~Ap ≥ ~Aq > ~Aopt
q . By considering that the problem

is defined in integral field, we can obtain ~Aopt
p ≥ ~Ap + 1 ≥ ~Aq + 1 ≥ ~Aopt

q + 2. Note that
as the maximal path exists, there is a Jq → Jp path (a reversed path from Jq to Jp) in the
residual graph Gopt. As the sufficiency of this theorem is already proven, we can get that
~Aopt

q ≥ ~Aopt
p − 1. Above all, we can obtain ~Aopt

p ≥ ~Aopt
q + 2 ≥ ~Aopt

p + 1. A contradiction is
identified, which means only ~Ap = ~Aq − 1 can happen.

Consider ~Ap = ~Aq − 1. Note that in this case we still have the Jp → Jq path in G f

and such that ~Aopt
q ≥ ~Aopt

p − 1. Next, we focus on the maximal positive path from Jp
to Jq in G′di f f and do capacity reductions by cap along such maximal path. Remember
that the capacity reductions correspond to do an adjustment in G f ′ , which results in a
new maximal flow f ′′ that satisfies | f ′′| = | f ′| = | f |, ~A′′p = ~A′p + cap = ~Ap + cap and
~A′′q = ~A′q − cap = ~Aq − cap. Together with ~Ap = ~Aq − 1, we have ~A′′p = ~A′′q + 2cap− 1.
The new difference graph G′′di f f is obtained by capacity reductions. Hence, in G′′di f f , for
node Jp there are no positive edges entering in and for node Jq there are no positive edges
leaving out. Therefore, we have ~Aopt

p ≥ ~A′′p and ~Aopt
q ≤ ~A′′q . Above all, we have

~Aopt
p ≥ ~A′′p = ~A′′q + 2cap− 1 ≥ ~Aopt

q + 2cap− 1 ≥ ~Aopt
p + 2cap− 2.

Let us assume cap ≥ 2. According to the above inequality, we have ~Aopt
p ≥ ~Aopt

p + 2,
which also results in a contraction.

Now we can conclude that for any maximal path existing in G′di f f (w.l.o.g, Jp and Jq

represents respectively the starting point and the ending point), we must have ~Ap = ~Aq − 1
and cap = 1. We perform capacity reductions by cap = 1 along such maximal positive
path. The adjustment corresponding to such capacity reductions is to increase ~Ap by 1
and meanwhile to decrease ~Aq by 1. Note that for the flow f ′′ got after the adjustment,
there is φ( f ′′) = φ( f ′) = φ( f ). It means that the adjustment cannot make f be better in
terms of lexicographical order. Finally, we continue to perform capacity reductions along
maximal positive paths one by one until no positive edges remains in the difference graph
(i.e., fopt is obtained). As no adjustment can make f be better, f is already lexicographically
optimal.

Corollary 1. If both f and f ′ are lexicographically optimal, they are interchangeable.
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The above corollary is straightforward by the proof of Theorem 2. One can construct
the different graph between f and f ′. Then, capacity reductions can be performed to
eliminate all positive cycles and maximal positive paths, which is indeed a process of
transformation between the two optimal flows.

Lexicographically optimal flow is not unique. Let LOF be the set including all lexico-
graphically optimal flows. Next, we study the variation of aggregate resource obtained by
a job among different optimal flows.

Definition 5. For any Ji ∈ J , the value interval Ii is defined as the value range of the aggregate
resource ~Ai in all f ∈ LOF.

Remember that our problem is discussed in Z+ such that each value interval we
defined only includes integers. The following theorem shows that the length of any value
interval is at most 1.

Theorem 3. ∀ f , f ′ ∈ LOF, ∀Ji ∈ J , there is |~Ai − ~A′i| ≤ 1.

Proof. We prove by contradiction. Assume there exists a pair of flows f , f ′ ∈ LOF and
there exists a job Jp ∈ J which satisfies ~A′p − ~Ap ≥ 2. Based on the proof of Theorem 2, we
construct the difference graph Gdi f f between f and f ′ and target to transform f to f ′. As
~Ap needs to be increased, we have Jp ∈ J <. Moreover, during the transformation, there
must exist a time that Jp becomes a starting point of a maximal positive path. Suppose the
ending point of such path is Jq. We have Jq ∈ J > (such that ~Aq > ~A′q) and ~Ap = ~Aq − 1.
On the other hand, the reverse of such maximal path is a Jq → Jp path on the residual
graph G f ′ . According to Theorem 2, there is ~A′q ≥ ~A′p − 1. Above all, we can show
that ~A′p ≥ ~Ap + 2 = ~Aq + 1 > ~A′q + 1 ≥ ~A′p, which is a contradiction as ~A′p > ~A′p is
obtained.

Based on the Theorem 3, we provide a more specified definition of value interval.

Definition 6. A job Ji’s value interval Ii is [L, L] if and only if ~Ai = L for all f ∈ LOF. A job Ji’s
value interval Ii is [L, L + 1] if and only if there exist a pair of flows f , f ′ ∈ LOF such that ~Ai = L
and ~A′i = L + 1.

Theorem 4. For a job Jp ∈ J , suppose ~Ap = L of a given flow f ∈ LOF. Jp’s value interval is
[L, L + 1] if and only if there exists a Jp → Jq path in the residual graph G f where ~Ap = ~Aq − 1.

Proof. For the “if” side, since one could obtain a new flow f ′ ∈ LOF by performing an
adjustment along the edge 〈s, Jp〉, then along the Jp → Jq path and along the edge 〈Jq, s〉
back to s. In the new flow f ′, there is ~A′p = L + 1, which implies Ip = [L, L + 1].

For the “only if” side, there exists a flow f ′ ∈ LOF with ~A′p = L + 1. Based on the proof
of Theorem 2, we transform f to f ′. We first eliminate all positive cycles and then eliminate
maximal positive path one by one. During the transformation process, we can find a maximal
positive path which starts at Jp and ends at another node Jq satisfying ~Ap = ~Aq − 1. By such
maximal path, we can identify the corresponding Jp → Jq path on G f .

By Theorem 4, we directly have the following two corollaries.

Corollary 2. For a job Jp ∈ J , suppose ~Ap = L under a given flow f ∈ LOF. Jp’s value interval
is [L− 1, L] if and only if there exists a Jq → Jp path in the residual graph G f where ~Aq = ~Ap − 1.

Corollary 3. For a job Jp ∈ J , suppose ~Ap = L under a given flow f ∈ LOF. Jp’s value
interval is [L, L] if and only if in the residual graph G f there neither exists a Jp → Jq path where
~Ap = ~Aq − 1 nor exists a Jq → Jp path where ~Aq = ~Ap − 1.
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We define binary relations on value intervals in order to make the comparison. Let
Ip = [Lp, Rp] and Iq = [Lq, Rq] be the two value intervals of Jp and Jq respectively. Ip < Iq
if and only if Lp < Lq or Rp < Rq. Symmetrically, Ip > Iq if and only if Lp > Lq or Rp > Rq.
Finally, Ip = Iq if and only if Lp = Lq and Rp = Rq.

Theorem 5. Suppose f ∈ LOF and in the residual graph G f there exists a Jp → Jq path where
~Ap = ~Aq − 1 = L. Let P denote the set of jobs passed by the Jp → Jq path, then ∀Jk ∈ P, there is
Ik = [L, L + 1].

Proof. The value intervals of Jp and Jq can be obtained directly by Theorem 4 and Corollary 2,
respectively. Both of them are equal to [L, L + 1]. Suppose Jk ∈ P and Jk is not Jp nor Jq.
Clearly, we have a Jp → Jk path and a Jk → Jq path in the residual graph G f . Assume
Jk’s value interval Ik ≤ [L − 1, L], i.e., ~Ak ≤ L − 1 under the current flow f . Then we
can perform an adjustment by 1 along the edge 〈s, Jk〉, then along the Jk → Jq path and
along the edge 〈Jk, s〉 back to s. After the adjustment, we obtain a new flow f ′, where
~Ak
′
= L and ~Aq

′
= L. However, it implies that f ′ satisfies φ( f ′) > φ( f ) which contradicts

with f is lexicographically optimal. Symmetrically, we can prove that Ik ≥ [L, L + 1] is
not true too due to the existence of the Jp → Jk path in G f . Above all, we can conclude
Ik = [L, L + 1].

Definition 7. A feasible flow f on G is lexicographically feasible if and only if ∀Jp, Jq ∈ J , if
~Ap ≤ ~Aq − 2, then no Jp → Jq path exists in the residual graph G f .

Definition 8. A lexicographically feasible flow f on G is called v-strict if and only if ∀Ji ∈ J ,
there is ~Ai ≤ v and if ~Ai ≤ v− 1, then in G f there is no augmenting path passing by Ji.

For any given lexicographically optimal flow, we can get one unique value:

vmax = max{~A1, ~A2, ..., ~An}.

From Definitions 7 and 8, we can easily see that a lexicographically optimal flow is
vmax-strict. Additionally, we consider the empty flow (| f | = 0) as 0-strict. Starting from
the empty flow, a lexicographically optimal flow could be obtained after a sequence of
water-filling stages are carried out.

Definition 9. A water-filling stage is performed on any v-strict (0 ≤ v < vmax) flow: performing
augmentation by 1 for each job node in the set J v = {Ji ∈ J |~Ai = v}.

Note that by a water-filling stage, it is not necessarily that ∀Ji ∈ J v, ~Ai is increased
by 1, as there may already be no augmentation path passing by Ji in G f . According to
Claim 1, we know that if ~Ai fails to be increased, then it will no more be increased during the
following water-filling stages. That is also the reason that for a v-strict flow a water-filling
stage only needs to focus on nodes in J v.

Lemma 6. A lexicographically optimal flow is obtained after vmax water-filling stages.

Proof. This lemma is true if during all water-filling stages there is no flow obtained breaks
lexicographic feasibility (Definition 7).

Without loss of generality, let us focus on one water-filling stage which will be per-
formed on a v-strict flow, where 0 ≤ v < vmax. In such stage, we know there are a sequence
of augmentations that will be performed for each node in the set J v. Clearly, before any
augmentations are performed, the v-strict flow is lexicographically feasible. We need to
prove that after any augmentation is successfully performed, the new flow obtained is still
lexicographically feasible.
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Suppose after a sequence augmentations the flow f obtained is still lexicographically
feasible. In the current state, we can divide jobs into three parts: S1 = {Ji ∈ J |~Ai ≤ L− 1},
S2 = {Ji ∈ J |~Ai = L} and S3 = {Ji ∈ J |~Ai = L+ 1}. Consider that the next augmentation
will be executed along an augmenting path (denoted by P) that passes by node Jk and
assume that after the augmentation the new flow f ′ is not lexicographically feasible, i.e.,
in G′f , there exists a Jp → Jq path where ~Ap ≤ ~Aq − 2. Since L + 1 = max{~A1, ~A2, ..., ~An},
we have Jp ∈ S1 which implies ~Ap will not be increased during the current water-filling
stage. There are two cases. First, in G′f , P and the Jp → Jq path have no intersections (share
common nodes in the path). In this case, we can infer that the Jp → Jq path also exists in G f ,
as the augmentation does not affect the existence of the Jp → Jq path. On the other hand,
we can infer that under the flow f there is also ~Ap ≤ ~Aq − 2. The reason is that from f to f ′

both ~Ap and ~Aq are kept. However, it violates the assumption that f is lexicographically
feasible. Second, in G′f , P and the Jp → Jq path have intersections. Along the two paths, let
us assume node x is the first common node where the two paths intersect. Note that the
sub-path (from Jp to x) of Jp → Jq is not affected by the augmentation such that it also exists
in G f . On the other hand, P has a sub-path from x to t in G f . Therefore, we can find an
augmenting path from s to Jp, then from Jp to x and finally from x to t. However, it violates
f is v-strict. Above all, we get the proof.

Theorem 7. Suppose Jp’s value interval is Ip = [L− 1, L]. Under any L-strict flow f , if
~Ap = L− 1, then there exists a Jp → Jq path on G f where ~Aq = L. Symmetrically, if ~Ap = L,
then there exists a Jq → Jp path on G f where ~Aq = L− 1.

Proof. Since f is L-strict, we can perform a sequence of water-filling stages on f to get a
lexicographically optimal flow f ′. Clearly, ~Ap is no more increased during the following
water-filling stages such that ~A′p = ~Ap. First, consider currently ~Ap = L− 1. According
to Corollary 2, we know in G f ′ there exists a Jp → Jq path where ~Aq = ~Ap + 1 = L. Next,
we prove that the Jp → Jq path existing in G f ′ also appears in G f . From f to f ′, successive
water-filling stages on f are performed. Every water-filling stage is composed of a sequence
of augmentations each of which corresponds to an augmenting path. Thus, we could use an
ordered set S = {P1,P2, . . . ,Pr} to include all augmenting paths (of all water-filling stages)
used for augmenting f to f ′. Suppose Pi ∈ S is the last element in S which shares common
nodes with the Jp → Jq path and suppose the first common node of the two paths is Jk.
Let f i−1 denote the flow before the augmentation along Pi is processed. Note that f i−1 is
lexicographically feasible according to the proof of Lemma 6. We can infer that the Jp → Jk
path (sub-path of Jp → Jq) already appears in G f i−1 . On the other hand, there is a path
from Jk to t in G f i−1 , which is the sub-path of Pi. Together with the edge 〈s, Jp〉, we find an
augmenting path passing by Jp in G f i−1 . Remember that f is L-strict such that in G f there
is no augmenting path passing by Jp. By Claim 1, we know that in G f i−1 there should also
be no augmenting path passing by Jp, i.e., a contradiction is identified. Therefore, for any
path Pi ∈ S , it shares no common nodes with the Jp → Jq path, which implies the Jp → Jq

path also exists in G f . The proof for the second case ~Ap = L is symmetric where we can
find an augmenting path passing by Jq (with ~Aq = L− 1) in an intermediately obtained
residual graph, which also concludes a contradiction.

Corollary 4. For any L-strict flow f on G, if there exists a Jp → Jq path in G f where
~Ap = ~Aq − 1 = L − 1, then the same path also exists in any lexicographically optimal flow
f ′ that could be augmented from f .

Corollary 4 is actually the inverse proposition of Theorem 7. The proof can be obtained
by applying the proof of Theorem 7 in a reversed direction.
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5. Economic Properties

In this section, we investigate whether or not a DLF allocation (or, equivalently, a
lexicographically optimal flow) satisfies economic properties which is critical to verifying
whether DLF is reasonable to define fairness in our scenario.

5.1. Pareto Efficiency and Envy-Freeness

Pareto efficiency: Increasing the allocation of a job must decrease the allocation of
another job.

If Pareto efficiency is satisfied, all the available resources must be allocated or the total
resource requirements are already fully met, i.e., resource utilization is maximized. Note
that fairness is only necessary when resources cannot meet all the demands. Therefore, any
reasonable scheme on fairness should be Pareto efficiency.

Theorem 8. Distributed lexicographical fairness satisfies Pareto efficiency.

Proof. The proof is straightforward. Suppose DLF does not satisfy Pareto efficiency. We
know that a DLF allocation corresponds to a lexicographically optimal flow. DLF does not
satisfy Pareto efficiency which directly implies that lexicographically optimal flow is not
maximal. This is a contradiction.

Envy-freeness: no job would expect to get the allocation of any other job.
Envy-freeness is also a usual requirement of any fair scheme. Under a fair allocation,

we can easily imagine that no job prefers the allocation of another job. In our setting,
envy-freeness could be represented by the following inequality.

∀Jq ∈ J , ∑
j

min (aqj, dpj) ≤∑
j

apj. (8)

At first glance, DLF allocation does not always satisfy envy-freeness. For example,
there are two jobs, J1 and J2, each of which has one task to be executed on the same site M1
whose time slots is 1. No matter which job gets the time slot, the other one would envy its
allocation. This happens due to our discussion area being in Z+. Indeed in our setting, Jp

never envies Jq’s allocation if ~Ap ≤ ~Aq − 2.

Theorem 9. ∀Jp, Jq ∈ J , if ~Ap ≤ ~Aq − 2, then Jp does not envy Jq’s allocation.

Proof. Proof by contradiction. Suppose f is lexicographically optimal. However, there
exists a pair of jobs—Jp and Jq, where ~Ap ≤ ~Aq − 2 and ∑j min (aqj, dpj) > ∑j apj. We can
infer that ∃Mj ∈ M such that min (aqj, dpj) > apj. Note that in G f the two edges 〈Jp, Mj〉
and 〈Mj, Jq〉 together form a Jp → Jq path. Combining with ~Ap ≤ ~Aq − 2, we find that a
contradiction with f is lexicographically optimal.

5.2. Strategy-Proofness

Strategy-proofness: No job can get more allocation by lying about its demands.
Strategy-proofness ensures incentive compatibility. This property is important for a

fairness scheme. With strategy-proofness, no participant can break the fairness scheme
with its own information. In our setting, strategy-proofness is used to ensure that a job
should not get profits by misreporting its demands. Suppose J` lies about its demands.
The demand matrix is denoted by D′n×m. Note that under D′n×m we could still compute
lexicographically optimal allocation and model the problem under another flow graph
denoted by G′.

Since only J` lies, ∀Mj ∈ M, if Jk ∈ J \{J`}, then d′kj = dkj. For J`, we consider d′`j
could be any non-negative integer, i.e., we do not assume d′`j ≥ d`j. Under the setting with
misreporting, the allocation matrix is denoted by A′. When A′ is distributed lexicograph-



Mathematics 2022, 10, 324 14 of 23

ically fairly, the corresponding lexicographically optimal flow is denoted by f ′ ∈ DLF′,
where DLF′ is the set of lexicographically optimal flows obtained under D′n×m.

With mis-reporting, it is easy to verify that for each job Ji the value interval I′i is still
in the form [L, L] or [L, L + 1] where L is a non-negative integer. For each job Ji, we also
define its useful allocation to be ∑j min{dij, a′ij}, where the minimum is taken to ensure
that the actual executed tasks of Ji on any site would not exceed the true demands. Note
that if Ji is honest, then ∑j min{dij, a′ij} = ∑j a′ij. For simplifying the representation, we let
~U be the vector of useful aggregate allocation under mis-reporting.

~U = 〈∑
j

min{d1j, a′1j}, ∑
j

min{d2j, a′2j}, . . . , ∑
j

min{dnj, a′nj}〉

We define a similar notion called useful value interval (Iu), where Iu
k represents the

useful value interval covered by the values of ~Uk corresponding to lexicographically optimal
flows in DLF′. It can be verified that Iu

` ≤ I′` and for all honest jobs Jk ∈ J \{J`} there is
Iu
k = I′k.

Lemma 10. For the lying job J`, the length of useful value interval Iu
` could be larger than 1, i.e.,

Iu
` = [L`, R`] s.t. R` could be larger than L` + 1.

Proof. This lemma can be easily verified by a concrete instance. Consider that there are
two jobs J1, J2 and two sites M1, M2. Suppose J1 is the job whose will misreport the demand.
The genuine and lying demand matrix are given as follows:

Dn×m =

(
3 0
3 3

)
D′n×m =

(
3 3
3 3

)
Suppose each site has three time slots to allocate. It is straightforward that each job

should obtain three slots in any f ′ ∈ DLF′. All possible allocations are in the following:

A′n×m =

(
0 3
3 0

)
A′n×m =

(
1 2
2 1

)
A′n×m =

(
2 1
1 2

)
A′n×m =

(
3 0
0 3

)
Clearly, in the above example, there is Iu

1 = [0, 3] showing that R` could be larger than
L` + 1.

From the above example, we can also see that Iu
1 is continuous, i.e., ~U1 could be any

integer in the set {0, 1, 2, 3}. Actually, the useful value interval of the lying job is always
continuous.

Lemma 11. The useful value interval Iu
` of the lying job J` is continuous.

Proof. Select arbitrarily two flows f ′1, f ′2 ∈ DLF′ and suppose the useful allocation of the
lying job J` is ~U1

k and ~U2
k , respectively. Without loss of generality, consider ~U1

` ≤ ~U2
` − 2.

As f ′1 and f ′2 are lexicographically optimal, we know they are interchangeable (Corollary 1).
Note that during the process of transforming f ′1 to f ′2 (which also increases ~U1

` to ~U2
` ), if we

can control the amount variation of ~U1
k upper bounded by “1 unit”, then all middle points

(integers) between ~U1
` and ~U2

` must be obtained (corresponding to a flow obtained during
the transformation).

Similar to the proof of Theorem 2, let us construct the graph Gdi f f to depict the
difference between f ′1 and f ′2, and then eliminate all positive cycles and maximal positive
paths. Different from the proof of Theorem 2, here we control the amount of the variation
by “1 unit”. For example, if C is a positive cycle, then only “1 unit” reduction is performed
each time: for each edge e of C, do cdi f f (e) = cdi f f (e)− 1. Similarly, each time the amount
of reduction during any maximal positive path is also controlled by 1. Now let us consider
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the variation of ~U1
` after a reduction is performed. There are two cases. First, J` is included

by a positive cycle or located in the middle of a maximal positive path. In this case, J` must
be adjacent with two site nodes. Without loss of generality, suppose Mi is the in-neighbor
and Mj is the out-neighbor. The “1 unit” reduction corresponds to lose one unit resource
from Mi and obtain one more unit resource from Mj. Second, J` is the starting point or the
ending point of a maximal positive path. In this case, the allocation of J` could be increased
by 1 (corresponding to J` is the starting point) or be decreased by 1 (corresponding to J`
is the ending point). It is not difficult to verify that in both cases the variation of the total
useful allocation is upper bounded by 1.

Now we give the definition of strategy-proofness in our setting.

Definition 10. For distributed lexicographic fairness, strategy-proofness means that no job cannot
obtain a larger useful value interval by lying about its demand: if J` lies, then there is Iu

` ≤ I`.

Theorem 12. Distributed lexicographic fairness satisfies strategy-proofness.

Proof. For convenience, when there is no misreporting, for each job Ji ∈ J , we denote the
value interval as Ii = [Li, Ri] and when Jl lies, for each job Ji ∈ J , we denote the value
interval as I′i = [L′i, R′i] and denote the useful value interval as Iu

i = [Lu
i , Ru

i ]. Suppose J`
is the job which lies. To prove strategy proofness, we need to show that Iu

` ≤ I` is always
true.

In order to prove Iu
` ≤ I`, let us first show that Ru

` ≤ R`. For any lexicographically
optimal flow f ′ under misreporting, we could construct a vector called restricted useful
allocation as follows:

~T = 〈min{~U1, ~U`}, min{~U2, ~U`}, . . . , min{~Un, ~U`}〉

Note that ~T can always be obtained for a given f ′ as f ′ can be obtained by a sequence
of water-filling stages which is a reversible procedure. In other words, we can push back
flows and remove all Jx’s useless resources to get ~T. The flow corresponds to ~T is called a
restricted flow f T . Clearly, f T is a ~U`-strict flow on G′, where G′ is the flow graph modeled
under mis-reporting.

Next, we shall prove that f T is a (~U` − 1)-strict flow on G, where G is the flow graph
modeled without any mis-reporting. Let us consider the two residual graphs G′f T and G f T .
The differences between them are the capacities of edges 〈J`, Mj〉 for each Mj ∈ M, where
the former is d`j −min{d`j, a′`j} and the latter is d′`j −min{d`j, a′`j}. To prove that f T is a

(~U` − 1)-strict flow on G, we need to show that in G f T there is no augmenting path passing

by any honest job node Ji if ~Ti ≤ ~U` − 2 and meanwhile in G f T there is no Jp → Jq path if
~Tp ≤ ~Tq − 2.

We prove by contradiction. First, suppose there exists an augmenting path P passing
an honest job node Ji where ~Ti ≤ ~U`− 2. We can infer that P must also pass by J`. Otherwise,
P is also an augmenting path on G′f T , as in G′f T and G f T the only different edges are 〈J`, Mj〉
(∀Mj ∈ M). Note that P cannot be an augmenting path on G′f T due to f T on G′ being
~U`-strict. However, P passing by J` implies there is a Ji → J` path in G′f T where ~Ti ≤ ~T` − 2,

which also contradicts with f T on G′ is ~U`-strict. Second, suppose in G f T there is a Jp → Jq

path where ~Tp ≤ ~Tq − 2. Similarly, we can obtain that the Jp → Jq path must pass by J`,
which implies a Jp → J` path exists in G′f T . However, it also breaks f T on G′ is ~U`-strict

since ~Tp ≤ ~Tq − 2 ≤ ~U` − 2. Remember that f ′ is arbitrarily selected. Above all, there must
have Ru

` ≤ R`.
Suppose R` = L. According to the conclusion Ru

` ≤ R` obtained above, there is
Ru
` ≤ L. To prove Ru

` ≤ R`, we still need to show that the following case cannot happen:



Mathematics 2022, 10, 324 16 of 23

Iu
` = [L, L] while I` = [L − 1, L]. We prove by contradiction: assume the above case

happens such that ~U` = L, f T defined above is a L-strict flow on G′ and (L− 1)-strict flow
on G. The (L− 1)-strict flow on G let us know that jobs which are possible to perform
the next water-filling stage belong to the set {Ji ∈ J |~Ti = ~U` − 1 = L − 1}. Assume
Jp ∈ {Ji ∈ J |~Ti = L − 1}. Note that in the residual graph G f T the augmentation path
passing by Jp must also pass by J`, otherwise, the path also exists in G′f T which violates

that f Tis a L-strict flow on G′. Such augmentation path also passing by J` means that in
G′f T there exists a Jp → J` path. Considering the flow f T on G′, we continue to perform

water-filling stages until the lexicographically optimal flow f ′ is obtained. Note that as
Jp ∈ {Ji ∈ J |~Ti = L− 1}, its allocation is more increased during the water-filling stages.
Therefore, we have:

~A′p = ~Up = L− 1 < L = ~U` ≤ ~A′`.

Note that according to Corollary 4 the Jp → J` path still exists in G′f ′ . There are

two cases. First, ~U` < ~A′`, which implies ~A′p ≤ ~A′` − 2. It contradict with that f ′ is
lexicographically optimal. Second, consider ~U` = ~A′`. The existing Jp → J` path in G′f ′
implies Iu

` = [L− 1, L] contradicting with the assumption Iu
` = [L, L].

Finally, if no job in the set {Ji ∈ J |~Ti = L− 1} is successful to perform augmentation,
f T is also a L-strict flow on G. Since I` = [L− 1, L], by Theorem 7, we know there is a
Jp → J` path on G f T where ~Ap = L− 1 under the flow f T on G. Similarly, we can infer that
the Jp → J` path also appears in G′f T . Again, by Corollary 4, the Jp → J` path exists in G′f ′
that Iu

` cannot be [L, L].

5.3. Maximin Share

Maximin share [22]: Each job is required to divide a set of m indivisible resources into
n bundles and it will receive the minimum valuable bundle.

Maximin share (MMS) is a well-defined notion in fair indivisible resources allocation.
If a fair scheme satisfies MMS, the allocation for any participant is at least to be the average
case. In our setting, the maximin share defined for each job Ji is given in the following.

MMSi =

⌊
1
n

m

∑
j=1

min (Cj, n · dij)

⌋
(9)

Theorem 13. Distributed lexicographically fairness satisfies 1
2 -maximin share.

Proof. Select a job Jk ∈ J arbitrarily. We know that Jk’s value interval Ik is [L− 1, L] or
Ik = [L, L]. We consider a L-strict flow f on a new flow graph GL = (V, E), where the node
set V and the edge set E are the same with the flow graph G and the difference is that for
any edge 〈s, Ji〉 (Ji ∈ J ), we define c(〈s, Ji〉) = L. Clearly, any L-strict flow on such a graph
GL is a maximal flow.

It is well known that maximal flow corresponds to minimum cut. Suppose (VL, V̄L)
is a minimum cut in GL, where VL, V̄L ⊆ V, V = VL ∪ V̄L and ∅ = VL ∩ V̄L. Minimum
cut of GL is not necessarily unique. In the following, we consider the minimum cut where
Jk ∈ VL is satisfied. Note that such minimum cut must exist, otherwise it contradicts with
that Jk’s value interval is [L− 1, L] or [L, L].

Denote VL = {s} ∪ J1 ∪M1 and V̄L = J2 ∪M2 ∪ {t} where J = J1 ∪ J2 and
M =M1 ∪M2. By considering f on GL, we have:

∑
Ji∈J1

~Ai = ∑
Mj∈M1

Cj + ∑
Ji∈J1

∑
Mj∈M2

dij (10)
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Equation (10) is computed by the minimum cut: edges from VL to V̄L should be fully
filled, while edges from V̄L to VL should not contain any flow (otherwise contradicting
with that f on GL is maximal). Let r = |J1| ≤ n, we have:

∑
Mj∈M1

min (Cj, ndkj) ≤ ∑
Mj∈M1

Cj ≤ ∑
Ji∈J1

~Ai ≤ rL (11)

The second inequality is from Equation (10) and dij ≥ 0, and the last inequality is by f
is L-strict. Note that if ~Ak = L− 1 the last inequality is strict. Furthermore, we have: 1

n ∑
Mj∈M1

min (Cj, ndkj)

 ≤
1

r ∑
Mj∈M1

min (Cj, ndkj)

 ≤ ⌊1
r ∑

Ji∈J1

~Ai

⌋
≤ ~Ak (12)

The second inequality is from (11). The last inequality is due to the round-down
average allocation of jobs in J1 being unable to reach L if there exists one job in J1 whose
allocation is less than L and, on the other hand, if for each job in J1 the allocation is equal
to L, the inequality is still true as ~Ak = L.

For the setM2 we have:

1
n ∑

Mj∈M2

min (Cj, ndkj) ≤
1
n ∑

Mj∈M2

ndkj = ∑
Mj∈M2

dkj ≤ ~Ak (13)

The last inequality in (13) is based on the property of the minimum cut (VL, V̄L).
Combining (12) and (13) together, we have: 1

n ∑
Mj∈M

min (Cj, ndkj)

 =

 1
n ∑

Mj∈M1

min (Cj, ndkj) +
1
n ∑

Mj∈M2

min (Cj, ndkj)


≤

 1
n ∑

Mj∈M1

min (Cj, ndkj) + ∑
Mj∈M2

dkj


=

 1
n ∑

Mj∈M1

min (Cj, ndkj)

+ ∑
Mj∈M2

dkj (14)

≤ 2~Ak

In other words, ~Ak ≥ 1
2 MMSk. Thus, the bound 1

2 is obtained.

We now provide a simple instance to show that the above bound 1
2 is tight. Consid-

ering an instance composed of two jobs and two sites, each site has two slots to allocate.
The demand matrix is given on the left and a possible distributed lexicographically fair
allocation is given on the right.

D2×2 =

(
1 1
2 0

)
A2×2 =

(
0 1
2 0

)
(15)

We have ~A1 = 1 and the value interval is I1 = [1, 2]. The maximin share of J1 is
MMS1 = 2, thus ~A1 = 1

2 MMS1.

5.4. Sharing Incentive

Sharing incentive: Each job should be better off sharing the total resources than
exclusively using its own partition of the total resources.

In our scenario, sharing incentive means that each job Ji should be allocated with at
least a 1

n fraction of resources. It is similar to Maximin share and can often be used when
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resources are infinitely divisible. Although we are interested in a different scenario, we
shall show that DLF satisfies a relaxed sharing incentive. Specifically, when considering the
whole system as a single resource pool, the following formula is true.

∀Mj ∈ M, ∑
j

aij ≥
⌊

1
n ∑

j
min (Cj, dij)

⌋
(16)

Theorem 14. Distributed lexicographical fairness satisfies relaxed sharing incentive.

Proof. Suppose there is job Jk ∈ J whose value interval Ik is [L − 1, L] or [L, L]. We
consider a L-strict flow f on a new flow graph GL = (V, E), where the node set V and
the edge set E are the same with the flow graph G and the difference is that for any edge
〈s, Ji〉 (Ji ∈ J ), we define c(〈s, Ji〉) = L. Clearly, any L-strict flow on such a graph GL is a
maximal flow.

It is well known that maximal flow corresponds to minimum cut. Suppose (VL, V̄L) is
a minimum cut in GL, where VL, V̄L ⊆ V, V = VL ∪ V̄L and ∅ = VL ∩ V̄L. Minimum cut of
GL is not necessarily unique. In the following, we consider the minimum cut where Jk ∈ VL

is satisfied. Note that such minimum cut must exist, otherwise it contradicts with Jk’s value
interval being [L− 1, L] or [L, L]. Denote VL = {s} ∪ J1 ∪M1 and V̄L = {t} ∪ J1 ∪M2
such that J = J1 ∪ J2 andM =M1 ∪M2. Then we have:

∑
Ji∈J1

~Ai = ∑
Mj∈M1

Cj + ∑
Ji∈J1

∑
Mj∈M2

dij (17)

Equation (17) is computed by the minimum cut, edges from VL to V̄L should be fully
filled while the reversed arcs should be zero (otherwise contradicting with f is maximal on
GL). Let r = |J1|. Since r ≤ n, we have:

n
r ∑

Ji∈J1

~Ai ≥ ∑
Ji∈J1

~Ai ≥ ∑
Mj∈M1

min (Cj, dkj) + ∑
Mj∈M2

dkj ≥ ∑
Mj∈M

min (Cj, dkj) (18)

Equation (18) can be rewritten as:

1
r ∑

Ji∈J1

~Ai ≥
1
n ∑

Mj∈M
min (Cj, dkj) (19)

If Ik = [L− 1, L] and ~Ak = L− 1 then the average value is smaller than L. Otherwise,
the average value is not larger than L. Combining them together, we have:

~Ak ≥
⌊

1
r ∑

Ji∈J1

~Ai

⌋
≥

 1
n ∑

Mj∈M
min (Cj, dkj)

 (20)

6. Algorithms

In this section, we shall propose two network flow-based algorithms to achieve a
distributed lexicographically fair allocation (or equivalently get a lexicographically optimal
flow). We use the techniques of parametric flow which is a flow network where the edge
capacities could be functions of a real-valued parameter. A special case of parametric
flow was studied by G. Gallo et al. [13], who extended their push-relabel maximum flow
algorithm [23] to the parametric setting. In this paper, the techniques used are based on the
work of [13,23].
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Generally, the capacity of each edge in a parametric flow network is a function of
parameter λ where λ belongs to the real value set R. The capacity function is represented
by cλ and the following three conditions hold:

1. cλ(〈s, v〉) is a non-decreasing function of λ for all v 6= t;
2. cλ(〈v, t〉) is a non-increasing function of λ for all v 6= s;
3. cλ(〈v, w〉) is constant for all v 6= s and w 6= t.

The parametric flow graph in our problem can be formulated by setting the capacity
of each edge 〈s, Ji〉 (Ji ∈ J ) in Formula (4) to cλ(s, Ji) = λ. Figure 3 depicts an example
of parametric flow graph in our problem. Compared with the example drawn in Figure 2,
we can see that each edge taking s as one endpoint has a parametric capacity λ rather
than infinity. A flow graph G with capacity function cλ is called parametric flow graph Gλ.
Clearly, with the above settings, the three conditions are all satisfied, since cλ(〈s, Ji〉) = λ is
an increasing function of λ and cλ(〈Mj, t〉) = Cj is a constant. Furthermore, we restrict λ to
be non-negative integers which is used to adapt the integral solution area.
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Figure 3. An example of parametric flow network graph.

It is well known that maximum flow algorithm is also applicable in discrete setting,
the following lemma is directly from Lemma 2.4 in [13].

Lemma 15. For a given online sequence of discrete parameter values λ1 < λ2 < · · · < λ` and
corresponding parametric graphs Gλ1 , Gλ2 . . . , Gλ` , any maximum flow algorithm can correctly
get the maximum flows f1, f2, . . . , fl and the corresponding minimum cuts (V1, V̄1), (V2, V̄2), . . . ,
(V`, V̄`), where V1 ⊆ V2 ⊆ · · · ⊆ V`.

The key insight of parametric flow is to represent the capacity of minimum cut (or
the amount of maximal flow) as a piece-wise linear function of λ, denoted by F(λ). For a
given λk and the corresponding flow graph Gλk , we let fk and (Vk, V̄k) be respectively the
maximum flow and minimum cut, where Vk = {s} ∪ J s ∪Ms and V̄k = J t ∪Mt ∪ {t}.
Here J s(Ms) denotes the set of job nodes (site nodes) in Vk, J t(Mt) denotes the set of job
nodes (site nodes) in V̄k such that J = J s ∪ J t,M =Ms ∪Mt. The cut function F(λ)
for the minimum cut (Vk, V̄k) is given in the following:

F(λ) = |J t|(λ− λk) + | fk| (21)

|J t| is the slope of F(λ). Clearly, the slope is decided by the minimum cut. The mini-
mum cut is often not unique for Gλk , however, it is always possible to find the maximal
(minimal) minimum cut such that |Vk| is maximized (minimized). Let (Vk, V̄k) and (V′k , V̄′k)
be the minimal and maximal minimum cut of Gλk such that we have Vk ⊆ V′k . For each job
Ji ∈ V′k\Vk, we have fk(〈s, Ji〉) = λk. Moreover, ∀k′ > k, Ji always belongs to Vk′ , the part
including s such that there is fk′(〈s, Ji〉) = λk. We can also infer that the maximum slope of
cut function corresponding to Gλk+1 is not larger than the minimum slope of cut function
corresponding to Gλk , i.e., the slope of the piece-wise function F(λ) is non-increasing when
λ increases. In the following, for a given Gλ, we shall use slmax(λ) and slmin(λ) to denote
respectively the maximum and the minimum slope of the function F(λ).
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6.1. Basic Algorithm

Based on the water-filling stages introduced in Section 4, we first propose a basic
algorithm which implements a sequence of water-filling stage until a lexicographically
optimal flow is obtained.

Theorem 16. A L-strict flow f on graph G is also a maximum flow on the parametric graph GL,
where λ = L.

The feasibility of f on GL is straightforward. As L-strict ensures that there is no
augmenting path on GL

f , f is maximal on GL.
The basic algorithm aims to solve a sequence of parametric flows where λ = 0, 1, . . . , vmax.

Although vmax cannot be foreknown, the process will be stopped until no job can get more
aggregate allocation by continuing to increase λ. The complexity of the basic algorithm
depends on the concrete maximum flow algorithm selected. If augmentation used in
Ford–Fulkerson is directly taken, the complexity of implementing each water-filling is
O(|V|3). Overall, the complexity is O(vmax · |V|3) as there are vmax water-filling stages. If
the push-relabel algorithm (implemented with queue [13]) is take for implementing each
water-filling stage, then the overall complexity decreases to O(|V|3 + vmax · |V|2) as only
the first water-filling stage costs |V|3 operations. However, no matter which way is selected
for implementing water-filling stage, the overall complexity is not strongly polynomial of
|V|, since vmax is related to the input capacities which are upper-bounded by O(∑m

j=1 Cj).

6.2. Iterative Algorithm

The basic algorithm is time-costly due to the algorithm being performed each time
the parameter λ is increased. However, increasing λ by one does not necessarily mean
the slope of F(λ) decreases immediately. Indeed, the slope of the piece-wise function F(λ)
only decreases at a few special points (called breakpoints in the following). To understand
breakpoints, let us consider the first example where J1 and J2 execute over two sites M1
and M2. The flow network is built in Figure 1. Let us explain the breakpoints by calculating
a DLF allocation for this example. The capacity of 〈s, J1〉 and 〈s, J2〉 is now expressed by a
variable λ. Figure 4 depicts what happens when λ increases, and the dash line denotes the
minimum cut. When 0 ≤ λ ≤ 2 (Figure 4a), the slope of F(λ) is equal to 2, i.e., for both
〈s, J1〉 and 〈s, J2〉, their capacity expansion contributes to the increasing of F(λ). Note that
λ = 2 is the first breakpoint. When 2 < λ ≤ 4 (Figure 4b), only the capacity expansion of
〈s, J1〉 contributes to the increasing of F(λ) such that the slope of F(λ) decreases to 1. λ = 4
is the second breakpoint. When λ > 4 (Figure 4c), the increasing of λ will no more increase
F(λ) such that the slope decreases to 0. In Figure 4d, we depict the two breakpoints and
show the curve of F(λ).

Generally once the slope decreases, it means there exist some jobs whose aggregate
allocation stops increasing. Consequently, we only need to focus on every breakpoint:
we first set the parameter λ, then perform push-relabel maximum flow algorithm to get
a λ-strict flow and finally compute a new slope for F(λ). When the computation of all
breakpoints is finished, we obtain a lexicographically optimal flow which corresponds to a
DLF allocation.
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Figure 4. Example of piece-wise function F(λ) and breakpoints.

Based on the above idea, we propose a more efficient iterative algorithm. The pseudo-
code is presented in Algorithm 1. The general idea is to maintain a parametric flow
with λ in an increasing order and identify each breakpoint sequentially. For a given λk,
if slmax(λk) > slmin(λk) (which means there at least exists one job Ji whose aggregate
allocation ~Ai = λk cannot be further increased), (λk, F(λk)) is a breakpoint. Remember that
our problem is considered in Z+. When a breakpoint identified is not an integer, we need
to perform necessary rounding operations.

Algorithm 1: Iterative Algorithm

1 begin
2 λ1 ← 1;
3 Compute f1 on Gλ1 ;
4 while slmin(λ1) > 0 do
5 λ2 ← ∑m

j=1 Cj + 1; % set to the maximum value;
6 Compute f2 on the reversed graph Gλ2 ;
7 while True do
8 fλ1(λ) = slmin(λ1)(λ− λ1) + | f1|;
9 fλ2(λ) = slmax(λ2)(λ− λ2) + | f2|;

10 if slmin(λ1) = slmax(λ2) then
11 if λ2 is not an integer then
12 λ2 ← bλ2c;
13 Update f1 to a maximum flow on Gλ2 ;
14 λ2 ← λ2 + 1;
15 Update f1 to a maximum flow on Gλ2 ;

16 else
17 Update f1 to a maximum flow on Gλ2 ;

18 λ1 ← λ2;
19 break;

20 λ2 ← | f2|−| f1|−λ2slmax(λ2)+λ1slmin(λ1)
slmin(λ1)−slmax(λ2)

;

21 Update f2 to a maximum flow on the reversed graph Gλ2 ;

22 return f1;

In the first two lines of Algorithm 1, we set the parameter λ = 1 and run a push-label
algorithm to get a 1-strict flow. Lines (4–11) contain the main iterative procedure where
the key idea is using the Newton method to identify every breakpoint. More specifically,
we first set a big enough value for λ2 ensuring that the slope of F(λ) at λ2 is 0. At line 8
and line 9 we have two line functions which are all part of F(λ) but have difference slopes.
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Lines 10–20 are the Newton method, by which we decrease λ2 to find the breakpoint (when
the condition at line 10 is satisfied). Note that if the breakpoint identified is not an integer,
we first round down λ2 and update f1 by the push-relabel maximum flow algorithm. The
result of line 13 is a λ2-strict flow. Then at line 14 we continue to update f1 to be (λ2 + 1)-
strict. If λ2 is an integer, we directly update f1 to be λ2-strict (line 17). Finally, we set λ1
to be λ2 and start to find the next breakpoint. Note that in the above process the slope
of fλ2(λ) is decreasing such that the push-relabel maximum flow algorithm is performed
on a reversed graph (reverse the direction of each edge) such that the three conditions of
parametric flow still hold.

The correctness of algorithm mainly comes from Lemma 6 and Theorem 16, and
also from the non-increasing slope of F(λ), which leads to a correct application of the
Newton method. The time complexity of the algorithm comes from two parts: one is
update f1 and the other is finding breakpoints though decreasing λ2. The time complexity
of computing f1 depends on the maximum flow algorithm and the number of breakpoints.
The simplest way is to perform maximum flow algorithm at each breakpoint to update
f1. If so, the time complexity is O(|V|3 · |V|) where |V|3 is the cost of maximum flow
algorithm and |V| is the upper bound of the number of breakpoints. If we implement the
push-relabel algorithm together with dynamic tree [13], the time complexity can decrease
to O(|V||E| log (|V|2/|E|)) as at each time when we update f1, it is not necessarily to
redo a complete push-relabel maximum flow algorithm. On the other hand, finding each
breakpoint, we need to decrease λ2 iteratively by the Newton method. The iterative
times is bounded by the number of breakpoints. Note that once λ2 decreases, we also
perform the push-relabel maximum flow algorithm (line 21) to get a new function fλ2(λ).
The complexity of the push-relabel algorithm is O(|V|3). Combining with dynamic tree,
the time complexity for finding one breakpoint is O(|V||E| log (|V|2/|E|)). Clearly, to
identify all breakpoints, the time complexity is O(|V|2|E| log (|V|2/|E|)). By adding the
time costs of the two parts together, the overall time complexity is O(|V|2|E| log (|V|2/|E|)).

7. Conclusions and Future Work

In this paper, we proposed distributed lexicographically fair (DLF) resource allocation
for jobs executed over geographically distributed sites. We consider that resources waiting
to be allocated are not infinitely divisible such that we model DLF by using network
flow within the integer field. We prove that DLF satisfies Pareto efficiency, envy-freeness,
strategy-proofness, 1

2 -maximin share and relaxed sharing incentive. Finally, we proposed
two algorithm to compute DLF allocation, where the iterative algorithm is polynomial of
the input number of jobs and sites.

In the future, we would like to extend strategy-proofness to group strategy-proofness
where a set of job could misreport their demands, however, they as a whole cannot obtain
more useful resources. Meanwhile, we also would like to generalize our problem and
model to adopt multiple kinds of resources.
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