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Abstract: In this paper, we study two mathematical models, involving delay differential equations,
which describe the processes of erythropoiesis and leukopoiesis in the case of maintenance therapy
for acute lymphoblastic leukemia. All types of possible equilibrium points were determined, and
their stability was analyzed. For some of the equilibrium points, conditions for parameters that
imply stability were obtained. When this was not feasible, due to the complexity of the characteristic
equation, we discuss the stability through numerical simulations. An important part of the stability
study for each model is the examination of the critical case of a zero root of the characteristic equation.
The mathematical results are accompanied by biological interpretations.

Keywords: delay differential equations; critical case for stability; acute lymphoblastic leukemia;
maintenance therapy

1. Introduction
1.1. Mathematical Background

The primary goal of this paper is to present the stability analysis of two different
mathematical models for the processes of erythropoiesis and leukopoiesis in the case of
maintenance therapy in acute lymphoblastic leukemia (for more details, see [1–6]).

The models represent the original work of some of the authors and were first intro-
duced in [7]. They consist of systems of delay differential equations (often used to capture
cell dynamics). In [7], the authors presented the models and demonstrated the positivity of
solutions and the existence of equilibria. The novelty of this paper is the thorough stability
study of all of the equilibrium points.

A challenging situation was the presence of critical cases for stability analysis. For these,
we used an original theorem proven in [8] by some of the authors of this paper.

1.2. Biological Background

The models presented in this paper depict the erythropoiesis and leukopoiesis pro-
cesses. These are part of a bigger process called hematopoiesis: the process through which
all blood cells are created. Hematopoietic stem cells become red blood cells (which trans-
port oxygen), white blood cells (which fight infections), or platelets (which stop bleeding).
There is a complex network of cytokines and growth factors that regulate the production of
blood cells.

Hematopoietic stem cells generate two major progenitors cell lineages: myeloid and
lymphoid. The myeloid line contains cells such as granulocytes, monocytes, erythrocytes,
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or platelets, while the lymphoid line contains cells associated with the immune system (i.e.,
natural killer cells, T-cells, and B-cells).

Erythropoiesisis the process through which red blood cells (also called erythrocytes)
are produced. Erythropoietic stem cells mature to red blood cells when a decrease in oxygen
levels is detected by the kidneys. The kidneys secrete a hormone called erythropoietin,
which stimulates the production of erythrocytes. It is the action of this hormone (also
considered in [2,9]), together with the effects of therapy, that complicates the stability study
of equilibria. Since mortality rates are no longer constant, a new variable is introduced.
This variable is the source of a zero root of the characteristic equation.

White blood cells are generated through the process of leukopoiesis. Depending on
which progenitor line they come from, there are two groups of white blood cells: myelocytes
and lymphocytes.

For more information about hematopoiesis and its underlying processes, please
see [2,3,10,11], pp. 1–18.

Acute lymphoblastic leukemia (ALL) is a type of cancer that affects white blood
cells [4]. In the case of ALL, blood cell production is disrupted, due to the presence of a large
number of immature lymphocytes (called lymphoblasts) in the circulatory system. These
immature cells do not function properly and overcrowd the healthy cells. Lymphoblasts
eventually invade the liver, spleen, and lymph nodes. For more information, statistics,
diagnoses, and prognoses, see [12], pp. 1556–1576, 1616–1636, and [10], pp. 173–192.

Maintenance therapy is conducted after an initial treatment is administered [6]. In
patients with ALL, we consider that this therapy consists of oral administration of mer-
captopurine (6-MP). The biologically inactive substance 6-MP metabolizes into the active
6-thioguanine nucleotide (6-TGN).

Studies have shown that maintenance therapy contributes greatly to the overall evo-
lution and life expectancy of the patient ([12], p. 1566, [13]). The need to mathematically
study the effects of this treatment is very important, as it may help to fill the existing gaps
in knowledge [13].

The models studied in this paper capture the effects of this medication on the creation
of red and white blood cells.

It is worth mentioning that, although we concentrated on patients with ALL, the same
maintenance therapy is administrated for some autoimmune diseases. Thus, the models,
computations, and discussions could also be suitable for those cases.

2. The Modeling of Erythropoiesis
2.1. The Mathematical Model

The mathematical model for erythropoiesis consists of seven delay differential equa-
tions (DDEs) with two delays. We considered the dynamics of the stem-like short-term
erythroid cells (u1), the mature erythrocytes (u2), the concentration of erythropoietin (u3),
the amount of 6-MP in the gut (u5), the amount of 6-MP in plasma (u5), and the concentra-
tion of thioguanine nucleotide (6-TGN) in red blood cells (u7) (see [7,9,14,15]). The variable
u4 represents the loss suffered during the cell cycle.

Each stem-like cell is considered to go through either asymmetric division (a fraction
η1e of the stem-like population), which means that one of the daughter cells re-enters the
stem-like population, while the other goes on to differentiate, symmetric differentiation (a
fraction η2e of the stem-like population)—both daughter cells proceed to differentiate—or
self-renewal (a fraction 1− η1e − η2e of the stem-like population)—both daughter cells
re-enter the stem-like pool. We used two feedback functions for the rates of self-renewal
and differentiation:

βe(u1, u3) = β0e
1

1 + um
1
· u3

1 + u3

ke(u3) = k0e
u3

1 + u3
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The time necessary for a stem-like cell to go through self-renewal or differentiation
and re-enter the stem-like population is considered to be the same and is represented by
the delay τ1.

These aspects are included in the first equation of the model, which describes the
evolution of stem-like short-term erythroid cells. As can be seen in this equation, both the
erythropoietin and the medication have an impact on cell death. The drug concentration in
the blood stream has a toxicity that increases the apoptosis rate of the stem-like cells (the
second term). The erythropoietin regulates the process of erythropoiesis, either repressing
(the first term) or stimulating (by influencing the rate of self-renewal and differentiation)
the production of stem-like cells.

The constant R̃m represents the maximum drug effect on erythrocytes, and R̃50 repre-
sents the drug saturation.

The healthy erythrocytes, illustrated by the second equation, have a constant mortality
rate (the first term) and a supply controlled by the erythropoietin (the second term). We
introduce the notation Ãe = Ae(2η1e + η2e), where Ae is an amplification factor. The time
necessary for the cells to mature is given by the delay τ2.

The third equation captures the changes in the concentration of erythropoietin. This
protein has a constant rate of clearance, and its production is influenced by the number of
existing erythrocytes in the blood stream.

The fourth equation represents the cell loss sustained during the cell cycle. For more
information regarding this equation, please consult [7].

The last three equations describe the dynamics of the drug after administration.
The model, which depicts the process of erythropoiesis under maintenance therapy, is:

u̇ = fi(u, uτj
), i = 1, 7, j = 1, 2 (1)

u̇1 = − γ0

1 + uα
3

u1 −
R̃mu7

R̃50 + u7
u1 − (η1e + η2e)ke(u3)u1 − (1− η1e − η2e)βe(u1, u3)u1

+2u4(1− η1e − η2e)βe(u1τ1 , u3τ1)u1τ1 + η1eu4ke(u3τ2)u1τ1

u̇2 = −γ2u2 + Ãeke(u3τ2)u1τ2

u̇3 = −ku3 +
a1

1 + un
2

u̇4 = u4

(
− γ0

1 + uα
3
− R̃mu7

R̃50 + u7
+

γ0

1 + uα
3τ1

+
R̃mu7τ1

R̃50 + u7τ1

)

u̇5 = −b1u5 + a2

u̇6 = b1u5 − e1u6 −
c1(1− e2)

c2 + u6
u6 −

m2e2

m1 + u6
u6

u̇7 =
b2c1(1− e2)

c2 + u6
u6 − e3u7.

2.2. The Equilibrium Points and Linearization

Using some elementary, but tedious calculations, the following types of equilibrium
points corresponding to the model of erythropoiesis in ALL under treatment were obtained
(see also [7]): E1 = (0, 0, û3, û4, û5, û6, û7), which corresponds to the “death of the patient”,
and E2 = (û1, û2, û3, û4, û5, û6, û7), which corresponds to a “chronic phase of the disease”.

In order to study the stability of these equilibrium points, we performed a linearization
of the nonlinear system (1). We denote the matrix of partial derivatives for the undelayed
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variables by A =
∂ f
∂u

= [aij] and the matrices of the partial derivatives with respect to the

delayed variables by: B =
∂ f

∂uτ1

= [bij] and C =
∂ f

∂uτ2

= [cij]. For a complete list of the

matrix elements, please consult [7].

2.3. Stability Analysis of the Equilibrium Point E1

Using the matrices defined above, the characteristic equation corresponding to E1 is:

λ(λ− a22)(λ− a33)(λ− a55)(λ− a66)(λ− a77)(λ− a11 − b11e−λτ1) = 0.

We notice that λ = 0 is a root, and so, we are in a critical case for the stability of the
nonlinear system (1).

2.3.1. The Real Solutions of the Characteristic Equation

The real solutions of the characteristic equation are given by:

λ1 = 0

λ2 = a22 = −γ2 < 0

λ3 = a33 = −k < 0

λ4 = a55 = −b1 < 0

λ5 = a66 = −e1 −
c1(1− e2)c2

(c2 + û7)2 −
m2e2m1

(m1 + û7)2 < 0

λ7 = a77 = −e3 < 0.

The existence of a zero eigenvalue implies a critical case for stability by the first
approximation.

2.3.2. Analysis of the Critical Case

The following theorem, developed and proven by some of the authors in [8], gives
stability criteria in the critical case of a zero eigenvalue.

Theorem 1 ([8], Theorem 2.1). Consider the following nonlinear system with time delays:

ẋ(t) = A0x(t) +
m
∑

j=1
Ajx(t− τj) + F[x(t), x(t− τ1), ..., x(t− τm), y(t)]

ẏ(t) = G[x(t), x(t− τ1), ..., x(t− τm), y(t)],
(2)

where Aj ∈ Mn(R), τj > 0 for all 1 ≤ j ≤ m, G(0, 0, ..., 0, y) = F(0, 0, ..., 0, y) = 0, ∀y ∈ R,
F takes values in Rn, and G is scalar. F and G contain only powers of the variables with the
sum greater than or equal to two. Then, for every δ > 0, there exist M1(δ) and M2(δ) with
lim
δ→0

M1(δ) = lim
δ→0

M2(δ) = 0 so that, whenever ||x(t)|| ≤ δ, ||x(t− τj)|| ≤ δ, 1 ≤ j ≤ m, |y| ≤ δ,

‖F(x(t), x(t− τ1), . . . , x(t− τm), y(t))‖ ≤
≤ M1(δ)(‖x(t)‖+ ‖x(t− τ1)‖+ · · ·+ ||x(t− τm)||)

|G((x(t), x(t− τ1), . . . , x(t− τm), y(t))| ≤
≤ M2(δ)(||x(t)||+ ||x(t− τ1)||+ · · ·+ ||x(t− τm)||).

(3)

Now, consider the following system with time delays. Suppose that the linear system:

ẋ(t) = A0x(t) +
m

∑
j=1

Ajx(t− τj) (4)
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is asymptotically stable, that is, if λ is a root of the characteristic equation, then Re(λ) < 0. Then,
the zero solution of (2) is simple stable, and if ϕ is the initial data of (2) in C

(
[−τ, 0];Rn+1) with

τ = max τj
1≤j≤m

, there exist δ > 0 so that, if sup{||ϕ(t)||2/t ∈ [−τ, 0]} < δ, then:

lim
t−→∞

xi(t) = 0, i = 1, ..., n and ∃ lim
t−→∞

y(t) = ỹ.

In what follows, we transform our system so that Theorem 1 can be applied. We first
perform a translation to zero: yi = ui − ûi, for i = 3, 7.

The new system becomes:

ẏ = fi(y, yτj
), i = 1, 7, j = 1, 2 (5)

ẏ1 = − γ0

1 + (y3 + û3)α
y1 −

R̃mu7

R̃50 + y7 + û7
y1 − (η1e + η2e)ke(y3 + û3)y1

−(1− η1e − η2e)βe(y1, y3 + û3)y1

+2(y4 + û4)(1− η1e − η2e)βe(y1τl , y3τl + û3τl )y1τl

+η1e(y4 + û4)ke(y3τ1 + û3)y1τ1

ẏ2 = −γ2y2 + Ãeke(y3τ2 + û3τ2)y1τ2

ẏ3 = −k(y3 + û3) +
a1

1 + yr
2

ẏ4 = (y4 + û4)

(
− γ0

1 + (y3 + û3)α
− R̃m(y7 + û7)

R̃50 + y7 + û7
+

γ0

1 + (y3τ1 + û3)α

+
R̃m(y7τ1 + û7)

R̃50 + y7τ1 + û7

)
ẏ5 = −b1(y5 + û5) + a2

ẏ6 = b1(y5 + û5)− e1(y6 + û6)−
c1(1− e2)

c2 + y6 + û6
(y6 + û6)−

m2e2

m1 + y6 + û6
(y6 + û6)

ẏ7 =
b2c1(1− e2)

c2 + y6 + û6
(y6 + û6)− e3(y7 + û7),

where we consider ẏ4 = g(y3, y4, y7, y3τ1 , y7τ1), with g(0) = 0.

The matrices of partial derivatives into zero are, as before, Ã =
∂ f
∂y

= [ãij],

B̃ =
∂ f

∂yτ1

= [b̃ij], C̃ =
∂ f

∂yτ2

= [c̃ij].

The characteristic equation for the zero solution of the new system (5) has exactly the
same form as the one for E1. The terms that are different are:

∂g
∂y3

(0) =
û4γ0αûα−1

3
(1 + ûα

3)
2

∂g
∂y7

(0) = − R̃mR̃50

(R̃50 + û7)2

∂g
∂y3τ1

(0) = −
û4γ0αûα−1

3
(1 + ûα

3)
2

∂g
∂y7τ1

(0) =
R̃mR̃50

(R̃S0 + û7)2 .
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Notice that Theorem 1 is not directly applicable since the linear part is not equal to
zero. In order to apply Theorem 1, we need to rewrite the system (5).

Take η = α1y1 + · · ·+ α7y7 where ẏ = Ãy. This means that:

ẏ1
ẏ2
ẏ3
ẏ4
ẏ5
ẏ6
ẏ7


=



ã11 0 0 0 0 0 0 0
0 ã22 0 0 0 0 0 0
0 0 ã33 0 0 0 0 0
0 0 ã43 0 0 0 0 ã47
0 0 0 0 0 ã55 0 0
0 0 0 0 0 ã65 ã66 0
0 0 0 0 0 0 ã76 ã77





y1
y2
y3
y4
y5
y6
y7


so, 

ẏ1
ẏ2
ẏ3
ẏ4
ẏ5
ẏ6
ẏ7


=



ã11y1
ã22y2
ã33y3

ã43y3 + ã47y7
ã55y5

ã65y5 + ã66y6
ã76y6 + ã77y7


We have η̇ = α1ẏ1 + · · ·+ α7ẏ7.
Then,

η̇ = α1 ã11y1 + α2 ã22y2 + α3 ã33y3 + α4(ã43y3 + ã47y7) +

α5 ã55y5 + α6(ã65y5 + ã66y6) + α7(ã76y6 + ã77y7).

Next, by forcing η̇ = 0, it follows that:

0 = α1 ã11y1 + α2 ã22y2 + (α3 ã33 + α4 ã43)y3 + (α5 ã55 + α6 ã65)y5

+(α6 ã66 + α7 ã76)y6 + (α4 ã47 + α7 ã77)y7,

from which we obtain:
α1 = 0, α2 = 0

α3 ã33 + α4 ã43 = 0

α5 ã55 + α6 ã65 = 0

α6 ã66 + α7 ã76 = 0

α4 ã47 + α7 ã77 = 0.

Thus, we have α4 = 1, α3 = − ã43

ã33
, α7 = − ã47

ã77
, α6 =

ã76 ã47

ã66 ã77
and α5 = − ã65 ã76 ã47

ã55 ã66 ã77
.

We remark that:
ẏ3τ1 = ã33y3τ1 + R3τ1

ẏ7τ1 = ã77y7τ1 + R7τ1 ,

with R3τ1 and R7τ1 containing terms of order higher than or equal to two.
We introduce:

η1 = α3y3 + y4 + α5y5 + α6y6 + α7y7 −
b̃43

ã33
y3τ1 −

b̃47

ã77
y7τ1 .

Then, we have:

η̇1 = b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
ẏ3τ1 −

b̃47

ã77
ẏ7τ1 + R1

4

= b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
(ã33y3τ1 + R3τ1)−

b̃47

ã77
(ã77y7τ1 + R7τ1)

= R(2)
4 (y, yτ1).



Mathematics 2022, 10, 313 7 of 19

We replace the fourth equation in (5) with the equation of η̇1 from above, so that the
equation has a zero linear part.

Next, we consider:

y4 = η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1

and we substitute y4 in the equations of (5). The new system becomes:

ẏ1 = − γ0

1 + (y3 + û3)α
y1 −

R̃m(y7 + û7)

R̃50 + y7 + û7
y1 − (η1l + η2l)ke(y3 + û3)y1

−(1− η1e − η2e)βe(y1, y3 + û3)y1+

+2(η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1)

· (1− η1e − η2e)βe(y1τ1 , y3τ1 + û3)y1τ1

+η1e(η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1)

· ke(y3τ1 + û3y1τ1)

ẏ2 = −γ2y2 + Ãeke(y3τ2 + û3)y1τ2

ẏ3 = −k(y3 + û3) +
ã1

1 + yr
2

η̇1 = b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
ẏ3τ1 −

b̃47

ã77
ẏ7τ1 + R1

4

= b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
(ã33y3τ1 + R3τ1)−

b̃47

ã77
(ã77y7τ1 + R7τ1)

= R(2)
4 (y, yτ1)

ẏ5 = −b̃1(y5 + û5) + ã2

ẏ6 = b̃1(y5 + û5)− e1(y6 + û6)−
c1(1− e2)

c2 + y6 + û6
(y6 + û6)−

− m2e2

m1 + y6 + û6
(y6 + û6)

ẏ7 =
b̃2c1(1− e2)

c2 + y6 + û6
(y6 + û6)− e3(y7 + û7).

Consider:
f1(y1, y3, y4, η1, y6, y7, y1τ1 , y3τ1 , y4τ1 , y7τ1) =

− γ0

1 + (y3 + û3)α
y1 −

R̃m(y7 + û7)

R̃50 + y7 + û7
y1−

−(η1e + η2e)ke(y3 + û3)y1 − (1− η1e − η2e)βe(y1, y3 + û3)y1+

+
[
2(1− η1e − η2e)βe(y1τ1 , y3τ1 + û3)y1τ1 + η1eke(y3τ1 + û3)y1τ1

]
η1 + B1(yτ1)

and remark that the linear part of f1 does not contain η1.
Since the other equations, except that of η1, do not contain η1 at all, we conclude

that Theorem 1 can be applied. Therefore, the stability of E1 depends on the study of the
transcendental terms in its characteristic equation.

2.3.3. The Transcendental Part of the Characteristic Equation

Consider the equation:
λ− a11 − b11e−λτ1 = 0. (6)

The stability analysis of Equation (6) is classical (see, for example, [16]).



Mathematics 2022, 10, 313 8 of 19

Proposition 1. Let p1 =
γ0

1 + ûα
3
+

R̃mû7

R̃50 + û7
. Assume that the following condition is true:

(η1eû4 − η1e − η2e)ke(û3) < p1 + (1− 2û4)(1− η1e − η2e)βe(0, û3). (7)

Then, Equation (6) is stable for τ1 = 0 and remains stable for τ1 > 0.

Proof. For the equilibrium point E1, we have:

a11 = −p1 − (η1e + η2e)ke(û3)− (1− η1e − η2e)βe(0, û3)

b11 = 2û4(1− η1e − η2e)βe(0, û3) + η1eû3ke(z4).

If τ1 = 0, Equation (6) becomes:

λ + p1 + (1− 2û4)(1− η1e − η2e)βe(0, û3)− (η1eû4 − η1e − η2e)ke(û3) = 0

Equation (6) is stable for τ1 = 0 if:

(η1eû4 − η1e − η2e)ke(û3) < p1 + (1− 2û4)(1− η1e − η2e)βe(0, û3).

Since b11 > 0, the following conditions from [16,17] must hold for stability when
τ1 > 0 :

1. a11 <
1
τ1

;

2. a11 + b11 < 0.

Since a11 = −p1 − (η1e + η2e)ke(û3) − (1 − η1e − η2e)βe(0, û3) < 0 <
1
τ1

, the first

condition holds true.
For the second condition we must have:

−p1 + (2û4 − 1)(1− η1e − η2e)βe(0, û3) + (η1eû4 − η1e − η2e)ke(û3) < 0 (8)

We remark that, if Condition (7) holds, Condition (8) will also hold.

Remark 1. The equilibrium point E1 is stable if Condition (7) holds.

2.4. Stability Analysis of the Equilibrium Point E2

The characteristic equation corresponding to E2 becomes:

det(λI − A− Be−λτ1 − Ce−λτ2) = d1(λ)d2(λ),

where:
d1(λ) = (λ− a77)(λ− a66)(λ− a55)

and:

d2(λ) = λ4 − λ3(a11 + a22 + a33 + b11e−λτ1)−
−λ2[−a11a22 − a11a33 − a22a33 − (a22b11 + b11a33)e−λτ1 + a32c23e−λτ2 ]−
−λ[a11a22a33 + a22b11a33e−λτ1 − (a11a32c23 − a13a32c21)e−λτ2−
−(b11a32c23 − a32b13c21)e−λτ1 e−λτ2 ]
−a14a32a43c21e−λτ2 − a14a32c21b43e−λτ1 e−λτ2 .

Remark 2. Since the characteristic equation corresponding to E2 is complicated, the stability of E2
is investigated using numerical procedures.
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2.5. Numerical Simulations

For the numerical simulations, we considered the time scale as days and consulted the
available literature in order to set the values of the parameters. Table 1 shows the numerical
values of the parameters presented in the erythropoiesis model (1).

Table 1. Parameter values for the erythropoiesis model.

Maximal value of the function βe [9,14] β0e 1.5

Maximal value of the function ke [9] k0e 0.1

Parameter for the death rate [14] α 0.8

Loss of stem cells due to mortality [9] γ0 0.1

Rate of asymmetric/symmetric division [18] η1e, η2e 0.3

Parameter in the Hill function [18] m 2

Standard half-saturation (estimated) a1 3

Instant mortality of mature leukocytes [9] γ2 0.025

Amplification factor [9] Ã 2400

Maximum effect of drug on erythrocytes [15] R̃m 0.0022

Saturation constant for drug on erythrocytes [15] R̃50 82.2

The supply rate of the 6-MP in the gut[15] a2 3.9× 108

6-MP absorption rate from the gut[15] b1 4.8

6-MP elimination rate from plasma [15] e1 5

6-MP to 6-TCN conversion rate [15] c1 29.8

Activity of TPMT enzyme [15] e2 0.5

MM constant for 6-TGN [15] c2 4.04× 105

MeMP elimination rate from erythrocytes [15] m2 0.06

MM constant for MeMP [15] m1 3.28× 105

Stoichiometric coefficient for 6-TGN conversion [15] vpt 1

6-TGN elimination rate from erythrocytes [15] e3 0.0714

Self-renewal duration of erythrocytes [14] τ1 2.8

Differentiation duration of erythrocytes [14] τ2 6

Figure 1 depicts the equilibrium point E1 in blue and a small perturbation from this
equilibrium point in red. We obtained parameter conditions for the stability of this equilib-
rium point, but it would be preferable that it be unstable; remember that E1 corresponds to
the death of the patient.

We proved that the equilibrium point E1 is stable if Condition (7) holds. For the
parameter values in the table above, it is easy to verify that (7) does not hold. This can also
be seen in Figure 1, where the evolution seems to be a favorable one for the patient.
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Figure 1. Stability of equilibrium point E1.

Figure 2 depicts the equilibrium point E2 in blue and a small perturbation from this
equilibrium point in red. Although we could not obtain any parameter conditions for
stability, it is easy to notice that the equilibrium point is unstable for the considered set of
parameters. As E2 corresponds to the chronic phase of the disease, the evolution obtained
in Figure 2 is a desired one. The healthy cells grow in number, and the leukemic cells die
out; this basically means that the patient recovers.

Figure 2. Stability of equilibrium point E2.
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3. The Leukopoiesis Model
3.1. The Mathematical Model

In this model, s1 represents the concentration of short-term stem-like white blood cells’
precursors and s2 the adult leukocytes. The treatment is presented through the function l1
(see [15]):

l1(x6) =
x6

L1S0+x6

The equations that describe these variables mirror those in the erythropoiesis model,
as the evolution of the leukocytes has many points in common. The difference between the
two is the influence erythropoietin has on the production of the cells.

A non-constant rate of the elimination of stem cells due to treatment is encountered,
and this leads to the consideration of a new, auxiliary variable s3.

Again, the last three equations depict the progress of the drug after administration.
The following model describes a compartment of leukopoiesis coupled with the

dynamics of 6-MP used in the maintenance therapy:

ṡ = f̃i(s, sτj
), i = 1, 6, j = 3, 4 (9)

ṡ1 = −γ1ls1 − T1l1(s6)s1 − η1lkl(s2)s1 − η2lkl(s2)s1 − (1− η1l − η2l)βl(s1)s1

+2e−γ1lτ1 s3(1− η1l − η2l)βl(s1τ1)s1τ1 + η1le−γ1l τ1 s3kl(s2τ1)s1τ1

ṡ2 = −γ2ls2 + Ãlkl(s2τ2)s1τ2

ṡ3 = s3T1[l1(s6τ1)− l1(s6)]

ṡ4 = −b1s4 + a2

ṡ5 = b1s4 − e1s5 −
c1(1− e2)

c2 + s5
s5 −

m2e2

m1 + s5
s5

ṡ6 =
b2c1(1− e2)

c2 + s5
s5 − c3s6.

3.2. The Equilibrium Points and Linearization

Following [7], we concluded that there are two types of equilibrium points correspond-
ing to the model of leukopoiesis:

Ẽ1 = (0, 0, ŝ3, ŝ4, ŝ5, ŝ6)

Ẽ2 = (ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6).

When linearizing System (9), the matrix of partial derivatives with respect to unde-

layed variables is denoted as Ã =
∂ f
∂s

= [ãij] and the matrices of the partial derivatives

with respect to the delayed variables are denoted as B̃ =
∂ f

∂sτ3

= [b̃ij] and C̃ =
∂ f

∂sτ4

= [c̃ij].

For a complete list of the coefficients, please consult [7].

3.3. Stability Analysis for Equilibrium Point Ẽ1

The characteristic equation corresponding to Ẽ1 = (0, 0, ŝ3, ŝ4, ŝ5, ŝ6) is:

λ(λ− a22)(λ− a44)(λ− a55)(λ− a66)
(

λ− a11 − b11e−λτ1
)
= 0.
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The real solutions of the characteristic equation corresponding to Ẽ1 are given by:

λ1 = 0

λ2 = a22 = −γ2l < 0

λ3 = a44 = −b1 < 0

λ4 = a55 = −e1 −
c1(1− e2)c2

(c2 + ŝ5)
2 −

m2e2m1

(m1 + ŝ5)
2 < 0

λ5 = a66 = −c3 < 0.

The analysis of the critical case follows the same steps as in the previous case. As
before, we can rewrite the system in a way that Theorem 1 can be applied. In order to avoid
redundancy, we skip the computations. We concluded that the stability of Ẽ1 relies on the
zeros of the transcendental equation:

λ− a11 − b11e−λτ1 = 0. (10)

Proposition 2. Assume that the following condition is true:

(2ŝ3 − 1)(1− η1l − η2l)βl(0) + (ŝ3η1l − η1l − η2l)kl(0) < γ1l + T1l1(ŝ6). (11)

Then, Equation (10) is stable for τ1 = 0, and it remains stable for all τ1 > 0.

The proof of Proposition 2 is similar to that of Proposition 1.

Remark 3. The equilibrium point Ẽ1 is stable if Condition (11) holds.

3.4. Stability Analysis of the Equilibrium Point Ẽ2

The characteristic equation corresponding to Ẽ2 is:

λ(λ− a44)(λ− a66)(λ− a55)
·
[
(λ− a11 − b11e−λτ1)(λ− a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ1)

]
= 0.

3.4.1. The Real Solutions of the Characteristic Equation

The nonzero real solutions of the characteristic equation corresponding to Ẽ2 are given by:

λ = a44 < 0

λ = a66 < 0

and
λ = a55 < 0

3.4.2. The Transcendental Part of the Characteristic Equation

The stability of the characteristic equation corresponding to Ẽ2 depends on the stability
of the following equation:

(λ− a11 − b11e−λτ1)(λ− a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ1) = 0 (12)

The stability analysis of Equation (12) follows the approach in [19], Theorem (1).
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Proposition 3. Assume the following conditions hold:

a11 + b11 + a22 + c22 < 0
a11a22 + a22b11 + a11c22 + b11c22 − a12c21 − b12c21 > 0

(13)

then Equation (12) is stable for τ1 = τ2 = 0.

Proof. For τ1 = τ2 = 0, Equation (12) becomes:

λ2 + λ(−a11 − a22 − b11 − c22) + a11a22 + a22b11
+a11c22 + b11c22 − a12c21 − b12c21 = 0

(14)

Suppose that λ1 and λ2 are two roots for Equation (14), then in order to have Re(λ1),Re(λ2) < 0,
the following conditions must hold:

a11 + b11 + a22 + c22 < 0
a11a22 + a22b11 + a11c22 + b11c22 − a12c21 − b12c21 > 0

Now, let:

u1 = a11 + b11 + a22
v1 = a11a22 + a22b11 = a22(a11 + b11)
u2 = −c22
v2 = a11c22 + b11c22 − a12c21 − b12c21 = c22(a11 + b11)− c21(a12 + b12)

Proposition 4. Consider the following conditions:(
u2

1 − 2v1 − v2
2

)2
− 4
(

v2
1 − u2

2

)
> 0 (15)

u2
1 − 2v1 − v2

2 < 0. (16)

If either Condition (15) or Condition (16) does not hold and if Equation (12) is stable for
τ1 = τ2 = 0, it will remain stable for τ1 = 0 and τ2 > 0.

Proof. Suppose τ1 = 0 and τ2 > 0. Equation (12) becomes:

λ2 − u1λ + v1 + e−λτ2(u2λ + v2) = 0 (17)

The study of this equation follows the approach of Theorem 1 in [19]. Define:

P(λ) = λ2 − u1λ + v1
Q(λ) = u2λ + v2

Note that Conditions (i), (iv), and (v) of Theorem 1 in [19] are most likely to hold and
Conditions (ii) and (iii) of Theorem 1 in [19] hold.

Then, the stability of Equation (17) depends on the zeros of the equation:

|P(iy)|2 − |Q(iy)|2 = 0 (18)

If Equation (18) has no positive roots (y > 0) and if (17) is stable with τ2 = 0, it will
be stable for all τ2 > 0. If Equation (18) has a least one y > 0 as a root and all the roots
are simple, as τ2 increases, there might be stability switches. Therefore, if Equation (17) is
stable at τ2 = 0, it might become unstable when τ2 = τ∗2 .

Now, consider P(iy) = PR(y) + iPI(y) and Q(iy) = QR(y) + iQI(y) where PR, PI , QR,
and QI are real-valued functions.
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Equation (18) can be written as:

|P(iy)|2 − |Q(iy)|2 = 0

|P(iy)|2 = |Q(iy)|2

P2
R(y) + P2

I (y) = Q2
R(y) + Q2

I (y).

We obtain the following polynomial:

y4 + y2(u2
1 − 2v1 − v2

2) + v2
1 − u2

2 = 0, (19)

By setting α = y2, we have:

α2 + α(u2
1 − 2v1 − v2

2) + v2
1 − u2

2 = 0. (20)

In order that Equation (20) has at least one simple root y > 0, the following conditions
must hold: (

u2
1 − 2v1 − v2

2

)2
− 4
(

v2
1 − u2

2

)
> 0 (21)

u2
1 − 2v1 − v2

2 < 0 (22)

Therefore, Equation (12) is stable if at least one of the conditions (21) or (22) is not met.

Now, we consider τ1 = τ∗1 (fixed) and τ2 > 0.
Equation (12) becomes:

(λ− a11 − b11e−λτ∗1 )(λ− a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ∗1 ) = 0 (23)

Equation (23) can be written as:

P(λ) + Q(λ)e−λτ2 = 0,

with

P(λ) = λ2 − (a11 + a22)λ + a11a22 − (b11λ + a22b11)e−λτ∗1

Q(λ) = −c22λ + a11c22 − a12c21 + (b11c22 − b12c21)e−λτ∗1 .

Remark 4. Suppose that the equation:

|P(iy)|2 − |Q(iy)|2 = 0

has no positive real roots. Then, if Equation (23) is stable for τ1 = τ2 = 0, it will remain stable for
τ1 = τ∗1 and all τ2 > 0.

Since P(λ) and Q(λ) are analytic functions, we can apply the result of Theorem 1
in [19]. Set λ = iy. We are interested in the roots of the equation:

F(y) = |P(iy)|2 − |Q(iy)|2.

We have:

F(y) = y4 + 2b11y3 sin
(
yτ∗1
)
+ r1y2 + 2a11b11y2 cos

(
yτ∗1
)

+r2y sin
(
yτ∗1
)
+ r3 cos

(
yτ∗1
)
+ k4

(24)
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r1 = a2
11 + a2

22 + b2
11 − c2

22
r2 = 2a2

22b11 − 2b11c2
22 + 2b12c21c22

r3 = 2a11b12c21c22 + 2a11a2
22b11 − 2a11b11c2

22 − 2a12b12c2
21 + 2a12b11c21c22

r4 = a2
11a2

22 + a2
22b2

11 − a2
11c2

22 − a2
12c2

21 − b2
11c2

22 − b2
12c2

21 + 2a11a12c21c22+
+2b11b12c21c22

If the function (24) has no y > 0 as a root and if Equation (12) is stable with τ1 = τ2 = 0,
it will remain stable for all τ2 > 0 and τ1 = τ∗1 .

Remark 5. The equilibrium point Ẽ2 is stable if Equations (17) and (23) are stable.

3.5. Numerical Simulations

Again, we considered the time scale as days and consulted the available literature
in order to set the values of the parameters. Table 2 shows the numerical values of the
parameters presented in the leukopoiesis model (9).

Table 2. Parameter values for the leukopoiesis model.

Maximal value of the function βl [9,14] β0l 1.5

Maximal value of the function kl [9] k0l 0.1

Loss of stem cells due to mortality [9] γ1l 0.1

Rate of asymmetric/ symmetric division [18] η1l , η2l 0.3

Parameter in the Hill function [18] ml 2

Standard half-saturation (estimated) a1 3

Instant mortality of mature leukocytes [9] γ2 0.025

Amplification factor [9] Ã 2400

Maximum effect of drug on leukocytes [15] T1 0.0782

The supply rate of the 6-MP in the gut[15] a2 3.9× 108

6-MP absorption rate from the gut[15] b1 4.8

6-MP elimination rate from plasma [15] e1 5

6-MP to 6-TCN conversion rate [15] c1 29.8

Activity of TPMT enzyme [15] e2 0.5

MM constant for 6-TGN [15] c2 4.04× 105

MeMP elimination rate from leukocytes [15] m2 0.06

MM constant for MeMP [15] m1 3.28× 105

Stoichiometric coefficient for 6-TGN Conversion [15] vpt 1

6-TGN elimination rate from leukocytes [15] e3 0.1207

Self-renewal duration of leukocytes [14] τ1 1.4

Differentiation duration of leukocytes [14] τ2 3.5

Due to the fact that the drug dynamics after administration is similar to the one
obtained in the erythropoiesis model, we only focus on the representation of the white
blood cells’ precursors, s1, and the adult leukocytes, s2.

We would prefer that the equilibrium point Ẽ1 be unstable and perhaps attracted to a
healthy state. Figure 3 depicts the equilibrium point Ẽ1 in blue and a small perturbation
from this equilibrium point in red. The evolution of both the white blood cells’ precursors
and adult leukocytes is a favorable one for the patient.

In Figure 3, the equilibrium point Ẽ1 is clearly unstable. By checking Condition (11), we
obtain the same result: the condition does not hold, and the equilibrium point is unstable.
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(a)

(b)

Figure 3. Stability of equilibrium point Ẽ1: (a) Evolution of the white blood cells’ precursors;
(b) Evolution of the adult leukocytes

The equilibrium point Ẽ2 corresponds to a healthy state of the patient. Figure 4 shows
the equilibrium point Ẽ2 in blue and a small perturbation from this equilibrium point in red.
The equilibrium point is clearly unstable, but the evolution of the patient is still promising.
The white blood cells’ precursors and adult leukocytes both show an increase in number.

Oscillatory trajectories are common in blood cell evolution, as there is a natural inner
oscillatory dynamics.
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(a)

(b)

Figure 4. Stability of equilibrium point Ẽ2: (a) Evolution of the white blood cells’ precursors;
(b) Evolution of the adult leukocytes

4. Conclusions

The objective of this article was to present the stability study of two mathematical
models that describe the processes of erythropoiesis and leukopoiesis (which are responsi-
ble for the production of red and white blood cells) in the case of maintenance therapy for
acute lymphoblastic leukemia. The models were developed by some of the authors and
introduced in [7].

The stability of all the equilibrium points was thoroughly investigated. When possible,
parameter conditions for stability were determined. Some provocative and interesting
conclusions resulted from the study of critical cases. For this purpose, a theorem designed
by some of the authors and introduced in [8] was used. Numerical simulations were also
used to validate and extend the study in some cases where the characteristic equation was
too complicated.
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From a biological and medical point of view, these models were validated first by the
fact that the equilibrium points make sense biologically, as they correspond to existing
states in which a patient may be found. Secondly, the numerical simulations, which were
obtained using parameter values from the relevant literature (thus as close to reality as we
could manage), depicted genuine developments of a potential patient’s health.

In the case of the erythropoiesis model, the steady-states correspond to either the
death of the patient or a chronic phase of the disease. As neither is the desired state of a
patient, it would be preferable that these equilibrium points be unstable. The numerical
analysis yielded this favorable result.

In the leukopoiesis model, the equilibrium points depicted either the death of the
patient or a healthy state of the patient. For the considered configuration of the param-
eters, both these steady-states were unstable, but presented a positive evolution of the
patient’s condition.

Mathematical models that capture complicated situations in some diseases can aid
in designing an adequate treatment. After a comprehensive mathematical study, these
models can help to determine the correct dose of drug that needs to be administered for
each individual patient.
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