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Abstract: The Maximum Correntropy Criterion (MCC) has recently triggered enormous research
activities in engineering and machine learning communities since it is robust when faced with
heavy-tailed noise or outliers in practice. This work is interested in distributed MCC algorithms,
based on a divide-and-conquer strategy, which can deal with big data efficiently. By establishing
minmax optimal error bounds, our results show that the averaging output function of this distributed
algorithm can achieve comparable convergence rates to the algorithm processing the total data in one
single machine.
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1. Introduction

In the big data era, the rapid expansion of data generation brings data of prohibitive
size and complexity. This brings challenges to many traditional learning algorithms requir-
ing access to the whole data set. Distributed learning algorithms, based on the divide-and-
conquer strategy, provide a simple and efficient way to address this issue and therefore
have received increasing attention. Such a strategy starts with partitioning the big data set
into multiple subsets that are distributed to local machines, then it obtains local estimators
in each subset by using a base algorithm, and it finally pools the local estimators together
by simple averaging. It can substantially cut the time and memory costs in the algorithm
implementation, and in many practical applications its learning performance has shown
to be as good as that of a big machine that can use all the data. This scheme has been
developed in various learning contexts, including spectral algorithms [1,2], kernel ridge
regression [3–5], gradient descent [6,7], a semi-supervised approach [8], minimum error
entropy [9] and bias correction [10].

Regression estimation and inference play an important role in the fields of data mining
and statistics. The traditional ordinary least squares (OLS) method provides an efficient
estimator if the regression model error is normally distributed. However, heavy-tailed
noise and outliers are common in the real world, which limits the application of OLS
in practice. Various robust losses have been proposed to deal with the problem instead
of least squares loss. The commonly used robust losses mainly include adaptive Huber
loss [11], gain function [12], minimum error entropy [13], exponential squared loss [14],
etc. Among them, the Maximum Correntropy Criterion (MCC) is widely employed as
an efficient alternative to the ordinary least squares method which is suboptimal in the
non-Gaussian and non-linear signal processing situations [15–19]. Recently, MCC has been
studied extensively in the literature and is widely adopted for many learning tasks, e.g.,
wind power forecasting [20] and pattern recognition [19]. In this paper, we are interested in
the implementation of MCC by a distributed gradient descent method in a big data setting.
Note that the MCC loss function is non-convex, so its analysis is essentially different from
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the least squares method. A rigorous analysis of distributed MCC is necessary to derive
the consistency and learning rates.

Given a hypothesis function f : X → Y and the scaling parameter σ > 0, correntropy
between f (X) and Y is defined by

Vσ( f ) := E
[

G
(
( f (X)−Y)2

2σ2

)]
where G(u) is the Gaussian function exp{−u}, u ∈ R. Given the sample set D = {(xi, yi)}N

i=1 ⊂
Z := X ×Y , the empirical form of Vσ is

V̂σ( f ) :=
1
N

N

∑
i=1

G
(
( f (xi)− yi)

2

2σ2

)
.

The purpose of MCC is to maximize the empirical correntropy V̂σ over a hypothesis
spaceH, that is

fz,H := arg max
f∈H

V̂σ( f ). (1)

In the statistical learning context, the loss induced by correntropy φσ : R → R+ is
defined as

φσ(u) := σ2
(

1− G
(

u2

2σ2

))
= σ2

(
1− exp

{
− u2

2σ2

})
,

where σ > 0 is the scaling parameter. The loss function can be viewed as a variant of the
Welsch function [21] and the estimator fz,H of (1) is also the minimizer of the empirical
minimization risk scheme overH, that is

min
f∈H

1
N

N

∑
i=1

φσ( f (xi)− yi). (2)

This paper aims at rigorous analysis of distributed gradient descent MCC within
the framework of reproducing kernel Hilbert spaces (RKHSs). Let K : X × X → R be
a Mercer kernel [22], i.e., a continuous, symmetric and positive semi-definite function. A
kernel K is said to be positive semi-definite, if the matrix

(
K(ui, uj)

)m
i,j=1 is positive semi-

definite for any finite set {u1, · · · , um} ⊂ X and m ∈ N. The RKHSHK associated with the
Mercer kernel K is defined to be the completion of the linear span of the set of functions
{Kx := K(x, ·), x ∈ X} with the inner product 〈·, ·〉K given by 〈Kx, Ku〉K = K(x, u). It has
the reproducing property

f (x) = 〈 f , Kx〉K (3)

for any f ∈ HK and x ∈ X . Denote κ := supx∈X
√

K(x, x). By the property (3), we get that

‖ f ‖∞ ≤ κ‖ f ‖K, f or any f ∈ HK. (4)

Definition 1. Given the sample set D = {(xi, yi)}N
i=1 ⊂ Z := X × Y , the kernel gradient

descent algorithm for solving (2) can be stated iteratively with f1,D = 0 as

ft+1,D = ft,D − η × 1
N

N

∑
i=1

φ′σ(( ft,D(xi)− yi))Kxi , t ≥ 2 (5)

where η is the of step size and φ′σ(( ft,D(xi)− yi)) = G
(
( ft,D(xi)−yi)

2

2σ2

)
( ft,D(xi)− yi).
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Divide-and-Conquer algorithm for the kernel gradient descent MCC (5) is easy to
describe. Rather than performing on the whole N examples, the distributed algorithm
executes the following three steps:

1. Partition the data set D evenly and uniformly into m disjoint subsets Dj, 1 ≤ j ≤ m.
2. Perform algorithm (5) on each data set Dj, and get the local estimate fT+1,Dj after

T-th iteration.
3. Take an average f̄T+1,D = 1

m ∑m
j=1 fT+1,Dj as a final output.

In the next section, we study the asymptotic behavior of the final estimator f̄T+1,D and
show that f̄T+1,D can obtain the minimax optimal rates over all estimators using the total
data set of N samples provided that the scaling parameter σ is chosen suitably.

2. Assumptions and Main Results

In the setting of non-parametric estimation, we denote X as the explanatory variable
that takes values in a compact domain X , Y ∈ Y ⊂ R as a real-valued response variable.
Let ρ be the underlying distribution on Z := X × Y . Moreover, let ρX be the marginal
distribution of ρ on X and ρ(·|x) be the conditional distribution on Y for given x ∈ X .

This work focuses on the application of MCC in regression problems, which is linked
to the additive noise model

Y = fρ(X) + e, E(e|X) = 0,

where e is the noise and fρ(x) is the regression function, which is the conditional mean
E(Y|X = x) for X = x ∈ X . The goal of this paper is to estimate the mean square error

between f̄T+1,D and fρ in L2
ρX -metric, which is defined by ‖ · ‖L2

ρX
:=
(∫
X | · |

2dρX
) 1

2 . For

simplicity, we will use ‖ · ‖ to denote the norm ‖ · ‖L2
ρX

when the meaning is clear from
the context.

Below, we present two important assumptions, which play a vital role in carrying out
the analysis. The first assumption is about the regularity of the target function fρ. Define
the integral operator LK : L2

ρX → L2
ρX associated with K by

LK f :=
∫
X

∫
X

f (x)KxdρX (x), ∀ f ∈ L2
ρX .

As K is a Mercer kernel on the compact domain X , the operator LK is hence compact
and positive. So, Lr

K as the r-th power of LK for r > 0 is well defined. Our error bounds are
stated in terms of the regularity of the target function fρ, given by [3,23]

fρ = Lr
K(hρ), for some r > 0 and hρ ∈ L2

ρX . (6)

The condition (6) measures the regularity of fρ and is closely related to the smoothness
of fρ whenHK is a Sobolev space. If (6) holds with r ≥ 1

2 , fρ lies in the spaceHK.
The second assumption (7) is about the capacity of HK, measured by the effective

dimension [24,25]

N (λ) = Trace((LK + λI)−1LK), for λ > 0,

where I is the identity operator onHK. In this paper, we assume that

N (λ) ≤ Cλ−s for some C > 0 and 0 < s ≤ 1. (7)

Note that it always holds with s = 1. For 0 < s < 1, it is almost equivalent to that the
eigenvalues σi of LK decay at a rate i−

1
s . The smoother the kernel function K is, the smaller

s and the smaller function spaceHK. In particular, if K is a Gaussian kernel, then s can be
arbitrarily close to 0, as K ∈ C∞.
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Throughout the paper, we assume that κ := sup
x∈X

√
K(x, x) ≤ 1 and |y| ≤ M for some

M > 0. We denote bac as the smallest integer not less than a.

Theorem 1. Assume that (6) and (7) hold for some r > 1
2 and 0 < s ≤ 1. Taking ηt = ηt−θ with

0 < η ≤ 1 and 0 ≤ θ < 1. If T = bN
1

(2r+s)(1−θ) c and the number of partition of the data set D

m ≤ N
r− 1

2
2r+s

(log N)5 , (8)

then with confidence at least 1− δ,

‖ f̄T+1,D − fρ‖ ≤ C̃
{

N−
r

2r+s + N
5
2

2r+s σ−2
}(

log
12
δ

)4
,

where C̃ is a constant depending on θ.

Remark 1. The above theorem, to be proved in Section 3, exhibits the concrete learning rates of the
distributed estimator f̄T+1,D (hence the standard estimator of (5) with m = 1). It implies that the
kernel gradient descent for MCC on the single and distributed data set both achieves the learning rate
O
(

N−
r

2r+s

)
when σ is large enough. It equals the minimax optimal rates in the regression setting

[24,26] in the case of r > 1
2 . This theorem suggests that the distributed MCC does not sacrifice

the convergence rate provided that the partition number m satisfies the constraint (8). Thus, the
distributed MCC estimator f̄T+1,D enjoys both computational efficiency and statistical optimality.

With the help of Theorem 1, we can easily deduce the following optimal learning rate
in expectation.

Corollary 1. Assume that (6) and (7) hold for some r > 1
2 and 0 < s ≤ 1, taking ηt = ηt−θ with

0 < η ≤ 1 and 0 ≤ θ < 1. If T = bN
1

(2r+s)(1−θ) c, m satisfies (8) and σ ≥ N
r/2+5/4

2r+s , then we have

E
[
‖ f̄T+1,D − fρ‖

]
= O

(
N−

r
2r+s

)
.

By the confidence-based error estimate in Theorem 1, we can obtain the following
almost sure convergence of the distributed gradient descent algorithm for MCC.

Corollary 2. Assume that (6) and (7) hold for some r > 1
2 and 0 < s ≤ 1, taking ηt = ηt−θ

with 0 < η ≤ 1 and 0 ≤ θ < 1. If T = bN
1

(2r+s)(1−θ) c, m satisfies (8) and σ ≥ N
r/2+5/4

2r+s , and for
arbitrary ε > 0, we have

lim
N→∞

N
r

2r+s−ε
[
‖ f̄T+1,D − fρ‖

]
= 0.

3. Discussion and Conclusions

In this work, we have studied the theoretical properties and convergence behaviors
of a distributed kernel gradient descent MCC algorithm. As shown in Theorem 1, we
derived minimax optimal error bounds for the distributed learning algorithm under the
regularity condition on the regression function and capacity condition on RKHS. In the
standard kernel gradient descent MCC algorithm (m = 1), the aggregate time complexity
is O

(
tN2) after t iterations. However, in the distributed case (m > 1), the aggregate time

complexity reduces to O
(
tN2/m

)
after t iterations. In conclusion, the kernel gradient

descent MCC algorithm (5) with the distributed method can achieve fast convergence rates
while successfully reducing algorithmic costs.
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When the optimization problem arises from non-convex losses, the iteration sequence
generated by the gradient descent algorithm is likely to only converge to a stationary
point or a local minimizer. Note that the loss induced by correntropy φσ is not convex.
Then, the convergence of the gradient descent method (5) to the global minimizer is not
unconditionally guaranteed, which brings difficulties to the mathematical analysis of
convergence. Our work on Theorem 1 addresses this issue, which shows that the iterative
algorithm ensures the global optimality of its iterations in the theoretical analysis.

For regression problems, the distributed method has been introduced to the itera-
tion algorithm in various learning paradigms and the minimax optimal rate has been
obtained under different constraints on the partition number m. For distributed spectral
algorithms [1], the lower bound of m that ensures the optimal rates is

m ≤ Nmin{ 2
2r+s , 2r−1

2r+s }. (9)

We see from (9) that the restriction on m suffers from a saturation phenomenon in
the sense that when r ≥ 3/2 in the sense that the maximal m to guarantee the optimal
learning rate does not improve as r is beyond 3/2. Our restriction in (8) is worse than (9)
when r < 5/2 but better when r > 5/2 as the upper bound in (8) increases with respect
to r that overcomes the saturation effect in (9). For distributed kernel gradient descent
algorithms with least squares method [6] and minimum error entropy (MEE) principle [9],
the restrictions of m are improved as

m ≤ N
r− 1

2
2r+s

(log N)4 + 1
(10)

and

m ≤ N
r− 1

2
2r+s

(log N)5 , (11)

respectively. Our bound (8) for MCC differs with (10) for least squares only up to a
logarithmic term, which has little impact on the upper bound of m ensuring optimal rates,
but numerical experiments show that the distributed kernel gradient descent algorithm for
least squares method is inferior to that for MCC in non-Gaussian noise models [15,27,28].
Our bound (8) is the same as (11) that is applied to the MEE principle. As we know, MEE
also performs well in dealing with non-Gaussian noise or heavy-tail distribution [13,29].
However, MEE belongs to pairwise learning problems that work with pairs of samples
rather than single sample in MCC. Hence, the distributed kernel gradient descent algorithm
for MCC has an advantage over MEE in algorithmic complexity.

Several related questions are worthwhile for future research. First, our distributed
result provides the optimal rates by requiring a large robust parameter σ. In practice, a
moderate σ may be enough to ensure a good learning performance in robust estimation
as shown by [17]. It is therefore of interest to investigate the convergence properties of
distributed version of algorithm (5) when σ is chosen as a constant or σ(N) → 0 as N
approaches ∞.

Secondly, our algorithm is carried out in the framework of supervised learning; how-
ever, in numerous real-world applications, few labeled data are available, but a large
amount of unlabeled data are given since the cost of labeling data is high such as time,
money. Thus, we shall investigate how to enhance the learning performance of the MCC al-
gorithm by the distributed method and the additional information given by unlabeled data.

Thirdly, as stated in Theorem 1, the choice of the last iteration T and the partition
number m depends on the parameters r, s, which are usually unknown in advance. In
practice, cross-validation is usually used to tune T and m adaptively. It would be interesting
to know whether the kernel gradient descent MCC (5) with the distributed method can
achieve the optimal convergence rate with adaptive T and m.
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Last but not least, we should note that here that all the data D = {(xi, yi)}N
i=1 are drawn

independently according to the same distribution. In the distributed method, we partition
D evenly and uniformly into m disjoint subsets. This means that |D1| = · · · = |Dm| = N

m
and each sample (xi, yi) is assigned to the subset Dj (1 ≤ j ≤ m) with the same probability.
In the context of uniform random sampling, such randomness splitting strategy should
be reasonable and practical. So, our theoretical analysis is based on the uniform random
splitting mechanism. However, for the theoretical analysis of other randomness or non-
randomness splitting mechanisms, it is necessary to develop new mathematical tools
for optimal performance. It is beyond the scope of this paper and will be left for our
future work.

4. Proofs of Main Results

This section is devoted to proving main results in Section 2. Here and in the following,
let the sample size of each subset D1, · · · , Dm be n; that is, D = D1

⋃ · · ·Dm and N = mn.
Define the empirical operator LK,D onHK as

LK,D( f ) =
1
N

N

∑
i=1
〈 f , Kxi 〉KKxi , ∀ f ∈ HK,

where x1 · · · , xN ∈ {x : (x, y) ∈ D with some y ∈ Y}. Similarly, we can define the operator
LK,Dj onHK for each subset Dj, 1 ≤ j ≤ m,

LK,Dj( f ) =
1
n

n

∑
i=1
〈 f , Kxi 〉KKxi , ∀ f ∈ HK,

where x1 · · · , xn ∈
{

x : (x, y) ∈ Dj with some y ∈ Y
}

.

4.1. Preliminaries

We first introduce some necessary lemmas in the proofs, which can be found in [3,6,9].

Lemma 1. Let g(z) be a measurable function defined on Z with ‖g‖∞ ≤ M′ almost definitely for
some M′ > 0. Let 0 < δ < 1; then, each of the following estimates holds with confidence at least
1− δ, ∥∥∥(LK + λI)−

1
2 (LK − LK,D)

∥∥∥ ≤ 2AD,λ log
2
δ

,

∥∥∥(LK,D + λI)−1(LK + λI)
∥∥∥ ≤ 2

(2 AD,λ log 2
δ√

λ

)2
+ 2.

and ∥∥∥∥∥ 1
N

N

∑
i=1

(LK + λI)−
1
2

[
g(zi)Kxi − LKg

]∥∥∥∥∥ ≤ 2M′AD,λ log
2
δ

where AD,λ := 1
N
√

λ
+
√
N (λ)

N .

Let πt
i denote the polynomial defined by πt

i (s) = ∏t
j=i(1 − ηjx) if i ≤ t and, for

notation simplicity, let πt
t+1(s) = 1 be the identity function. In our proof, we need to deal

with the polynomial operators πt
i (LK) and πt

i (LK,D). For this purpose we introduce the
conventional notation ∑T

j=T+1 := 1 and the following preliminary lemmas.
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Lemma 2. If 0 ≤ α < 1, 0 ≤ θ < 1,then for T ≥ 3,

T

∑
i=1

i−(θ+α)

(
T

∑
j=i+1

j−θ

)−1

≤ Cθ,αT−min{α,1−θ} log T, (12)

where Cθ,α is a constant depending only on θ and α, whose value is given in the proof. In particular,
if α = 0, we have

T

∑
i=1

i−θ

(
T

∑
j=i+1

j−θ

)−1

≤ 15 log T. (13)

Lemma 3. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then for 1 ≤ i ≤ T − 1,∥∥πt
i (LK,D)

∥∥ ≤ 1 (14)∥∥πt
i (LK)

∥∥ ≤ 1 (15)∥∥∥LK,DπT
i+1(LK,D)

∥∥∥ ≤ (eη
T

∑
j=i+1

j−θ

)−1

, (16)

∥∥∥LKπT
i+1(LK)

∥∥∥ ≤ (eη
T

∑
j=i+1

j−θ

)−1

, (17)

∥∥∥ T

∑
i=1

ηi
[
(LK,D + λI)πT

i+1(LK,D)
]∥∥∥ ≤ 1 +

ηλ

1− θ
T1−θ , (18)

∥∥∥ T

∑
i=1

ηi
[
(LK + λI)πT

i+1(LK)
]∥∥∥ ≤ 1 +

ηλ

1− θ
T1−θ . (19)

Define a data-free gradient descent sequence for the least square method in HK by
f1 = 0 and

ft+1 = ft − ηt

∫
X

(
ft(x)− fρ(x)

)
KxdρX = (I − ηtLK) ft + ηtLK fρ. (20)

It has been well evidence in the literature [30] that under the assumption (6) with
r > 1

2 , there are

‖ ft − fρ‖ ≤ hρt−r(1−θ) (21)

and

‖ ft − fρ‖K ≤ hρt−(r−
1
2 )(1−θ), (22)

where hρ = max
{
‖g‖(2r/e)r, ‖g‖[(2r− 1)/e]r−

1
2
}

.

Lemma 4. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then there is a constant Cρ,θ,r such that

T

∑
i=1

ηi‖LK,DπT
i+1(LK,D)‖‖ fi − fρ‖K ≤ Cρ,θ,r (23)

and
T

∑
i=1

ηi‖LKπT
i+1(LK)‖‖ fi − fρ‖K ≤ Cρ,θ,r. (24)
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Lemma 5. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then there is a constant Dρ,θ,r such that

T

∑
i=1

ηi‖ fi − fρ‖K ≤ Dρ,θ,rT1−θ . (25)

Recall that the isomorphism betweenHK and L2
ρX , which yields in

‖ f ‖ = ‖L
1
2
K f ‖K ≤ ‖(LK + λI)

1
2 f ‖K, for all f ∈ HK. (26)

4.2. Bound for the Learning Sequence

We will need the following bound for the learning sequence in the proof.

Theorem 2. If the step size sequence ηt = ηt−θ with 0 < η ≤ 1 and 0 ≤ θ < 1, then we have the
following bound for the learning sequence { ft,D} by (5):

‖ ft,D‖K ≤ Mt
1−θ

2 . (27)

Proof. We prove the statement by induction. First note the conclusion holds trivially for

t = 1. Next, suppose that ‖ ft,D‖K ≤ M
√

∑t−1
i=1 ηi holds. By the updating rule (5) and the

reproducing property, we have

‖ ft+1,D‖2
K =‖ ft,D‖2

K −
2ηt

N

N

∑
i=1

φ′σ( ft,D(xi)− yi) ft,D(xi)

+
η2

t
N2

∥∥∥∥∥ N

∑
i=1

φ′σ( ft,D(xi)− yi)Kxi

∥∥∥∥∥
2

K

≤‖ ft,D‖2
K −

2ηt

N

N

∑
i=1

φ′σ( ft,D(xi)− yi) ft,D(xi)

+
η2

t
N

N

∑
i=1

∣∣∣∣G( ( ft,D(xi)− yi)
2

2σ2

)∣∣∣∣2( ft,D(xi)− yi)
2

=‖ ft,D‖2
K +

ηt

N

N

∑
i=1

Qi, (28)

where

Qi =

[
ηt

∣∣∣∣G( ( ft,D(xi)− yi)
2

2σ2

)∣∣∣∣2 − 2G
(
( ft,D(xi)− yi)

2

2σ2

)]
( ft,D(xi))

2

− 2

(
G
(
( ft,D(xi)− yi)

2

2σ2

)
+ ηt

∣∣∣∣G( ( ft,D(xi)− yi)
2

2σ2

)∣∣∣∣2
)

yi ft,D(xi)

+ ηt

∣∣∣∣G( ( ft,D(xi)− yi)
2

2σ2

)∣∣∣∣2y2
i .
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The restriction ηt ≤ 1 implies ηt

∣∣∣G( ( ft,D(xi)−yi)
2

2σ2

)∣∣∣2 − 2G
(
( ft,D(xi)−yi)

2

2σ2

)
< 0. By the

property of quadratic function, we have

Qi ≤ ηt

∣∣∣∣G( ( ft,D(xi)− yi)
2

2σ2

)∣∣∣∣2y2
i −

(
− G

(
( ft,D(xi)−yi)

2

2σ2

)
+ ηt

∣∣∣G( ( ft,D(xi)−yi)
2

2σ2

)∣∣∣2)y2
i

ηt

∣∣∣G( ( ft,D(xi)−yi)2

2σ2

)∣∣∣2 − 2G
(
( ft,D(xi)−yi)2

2σ2

)
=

G
(
( ft,D(xi)−yi)

2

2σ2

)
y2

i

2− ηtG
(
( ft,D(xi)−yi)2

2σ2

) ≤ M2.

Plugging it into (28), we obtain

‖ ft+1,D‖2
K ≤ ‖ ft,D‖2

K + M2ηt ≤ M2
t

∑
i=1

ηi = M2η
t

∑
i=1

i−θ ≤ M2t1−θ .

This completes the proof.

4.3. Error Decomposition and Estimation of Error Bounds

Now we are in a position of bounding the error of the distributed kernel gradient
descent MCC. For this purpose, we decompose the error ‖ f̄T+1,D − fρ‖ into two parts as

‖ f̄T+1,D − fρ‖ ≤ ‖ fT+1 − fρ‖+ ‖ f̄T+1,D − fT+1‖. (29)

As we have mentioned in the previous subsection, the first term can be bounded by
(21) under the assumption (6) with r > 1

2 . Our key analysis is the second term, which can
be bounded with the help of the following proposition.

Proposition 1. Assume that (6) holds for some r > 1
2 . Let ηt = ηt−θ with 0 < η ≤ 1 and

0 ≤ θ < 1. For λ > 0, there holds

‖ fT+1,D − fT+1‖ ≤ C′r,θ

[
BD,λ(CD,λ + GD,λ)(1 + λT1−θ) + T

5(1−θ)
2 σ−2

]
, (30)

and

‖ fT+1,D − fT+1‖K ≤ C′r,θ

[
BD,λ(CD,λ + GD,λ)(1 + λT1−θ)/

√
λ + T

5(1−θ)
2 σ−2

]
, (31)

where

BD,λ =‖(LK,D + λI)−1(LK + λI)‖,

CD,λ =‖(LK + λI)−
1
2 (LK − LK,D)‖,

GD,λ =‖(LK + λI)−
1
2 (LK fρ − f̂ρ,D)‖K, (32)

f̂ρ,D =
1
N

N

∑
i=1

yiKxi =
1
N ∑

(x,y)∈D
yKx,

and C′r,θ is given in the proof, depending on r, θ.

Proof. By the definition of ft,D in (5) and the definition of ft in (20), we have

ft+1,D − ft+1 = [I − ηtLK,D]( ft,D − ft) + ηt[LK − LK,D] ft + ηt[ f̂ρ,D − LK( fρ)] + ηtEt,D, (33)

where f̂ρ,D is defined in (32) and
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Et,D =
1
N

N

∑
i=1

(
1− G

(
( ft,D(xi)− yi)

2

2σ2

))(
ft,D(xi)− yi

)
Kxi ,

Applying (33) iteratively from t = 1 to T, we obtain

fT+1,D − fT+1 = I1 + I2 + I3 + I4 (34)

where

I1 =
T

∑
i=1

ηiπ
T
i+1(LK,D)[LK − LK,D]( fi − fρ),

I2 =
T

∑
i=1

ηiπ
T
i+1(LK,D)[LK − LK,D]( fρ),

I3 =
T

∑
i=1

ηiπ
T
i+1(LK,D)[ f̂ρ,D − LK( fρ)],

I4 =
T

∑
i=1

ηiπ
T
i+1(LK,D)Ei,D.

For I1, by (26), Lemmas 4 and 5,

‖I1‖ =
∥∥∥∥∥ T

∑
i=1

ηi(LK + λI)
1
2 πT

i+1(LK,D)[LK − LK,D]( fi − fρ)

∥∥∥∥∥
K

≤
T

∑
i=1

{
ηi

∥∥∥(LK + λI)
1
2 (LK,D + λI)−

1
2

∥∥∥∥∥∥(LK,D + λI)πT
i+1(LK,D)

∥∥∥
×
∥∥∥(LK,D + λI)−

1
2 (LK + λI)

1
2

∥∥∥∥∥∥(LK + λI)−
1
2 [LK − LK,D]

∥∥∥‖ fi − fρ‖K

}
(35)

≤ BD,λCD,λ

(
T

∑
i=1

ηi‖LK,DπT
i+1(LK,D)‖‖ fi − fρ‖K + λ

T

∑
i=1

ηi‖ fi − fρ‖K

)
≤ BD,λCD,λ

(
Cρ,θ,r + Dρ,θ,rλT1−θ

)
.

For I2, by (26), Lemma 3, and the fact ‖ fρ‖∞ ≤ M, we have

‖I2‖ =
∥∥∥∥∥ T

∑
i=1

ηiπ
T
i+1(LK,D)[LK − LK,D]( fρ)

∥∥∥∥∥
≤
∥∥∥∥∥ T

∑
i=1

ηi(LK + λI)
1
2 πT

i+1(LK,D)[LK − LK,D]( fρ)

∥∥∥∥∥
K

≤
∥∥∥(LK + λI)

1
2 (LK,D + λI)−

1
2

∥∥∥∥∥∥∥∥ T

∑
i=1

ηi(LK,D + λI)πT
i+1(LK,D)

∥∥∥∥∥ (36)

×
∥∥∥(LK,D + λI)−

1
2 (LK + λI)

1
2

∥∥∥∥∥∥(LK + λI)−
1
2 [LK − LK,D]

∥∥∥∥∥ fρ

∥∥
K

≤ M
(

1 +
λT1−θ

1− θ

)
BD,λCD,λ.

Similarly, we can bound I3 as

I3 ≤
(

1 +
λT1−θ

1− θ

)
BD,λGD,λ. (37)
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For I4, first note that by the bound (27) of { ft,D}, we see∥∥∥∥(G
(
( ft,D(xi)− yi)

2

2σ2

)
− 1
)
( ft,D(xi)− yi)Kxi

∥∥∥∥
K

≤ (M + ‖ ft,D‖K)
3

2σ2 ≤ 22

σ2 ‖ ft,D‖3
K

≤ 22M3t
3(1−θ)

2 σ−2

This implies that

‖Et,D‖K ≤ 22M3t
(1−θ)(3)

2 σ−2. (38)

Thistogether with the estimate ‖πt
i+1(LK,D)‖ ≤ 1 gives

‖I4‖ ≤
T

∑
i=1

ηi‖Ei,D‖K ≤ 22M3η
T

∑
i=1

i
3(1−θ)

2 −θσ−2

≤ 22M3

(1− θ)( 5
2 )

T
5(1−θ)

2 σ−2. (39)

Combining the estimates in (36), (37), (39) and (35), we obtain (30) holds with

C′r,θ = Cρ,θ,r + Dρ,θ,r +
2M

1− θ
+

23M3

5(1− θ)
.

Following a similar process we can obtain the bound in (31).

The following theorem provides a bound for the second term in (29).

Theorem 3. Take λ = T−(1−θ). There is a constant C′′r,θ such that

‖ f̄T+1,D − fT+1‖ ≤ C′′r,θ

[
GD,λ + CD,λ + λ−

1
2 log T sup

1≤l≤m
CDl ,λBDl ,λ(CDl ,λ + GDl ,λ)

+ σ−2T
5(1−θ)

2

(
1 + log T sup

1≤l≤m
CDl ,λ

)]
. (40)

Proof. For each subset Dl and each 1 ≤ t ≤ T, we have

fT+1,Dl − fT+1 = [I − ηtLK]( fT,Dl − ft) + ηT [LK − LK,D] fT,Dl + ηT [ f̂ρ,Dl − LK( fρ)] + ηTET,Dl .

This implies that

fT+1,Dl − fT+1 =
T

∑
i=1

ηiπ
T
i+1(LK)[LK − LK,Dl ] fi,Dl

+
T

∑
i=1

ηiπ
T
i+1(LK)[ f̂ρ,Dl − LK( fρ)] +

T

∑
i=1

ηiπ
T
i+1(LK)Ei,Dl ,
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and therefore

‖ f̄T+1,D − fT+1‖ =
∥∥∥∥∥ 1

m

m

∑
l=1

(
fT+1,Dl − fT+1

)∥∥∥∥∥
≤
∥∥∥∥∥ T

∑
i=1

ηiπ
T
i+1(LK)

1
m

m

∑
l=1

[LK − LK,Dl ] fi,Dl

∥∥∥∥∥
+

∥∥∥∥∥ T

∑
i=1

ηiπ
T
i+1(LK)

1
m

m

∑
l=1

[ f̂ρ,Dl − LK( fρ)]

∥∥∥∥∥
+

∥∥∥∥∥ 1
m

m

∑
l=1

T

∑
i=1

ηiπ
T
i+1(LK)Ei,Dl

∥∥∥∥∥
:= J1 + J2 + J3.

We first estimate J2. By (26), Lemma 3, and the choice λ = T−(1−θ), we obtain

J2 ≤
∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)−
1
2 [ f̂ρ,Dl − LK( fρ)]

∥∥∥∥∥
K

≤
(

1 +
λT1−θ

1− θ

)∥∥∥(LK + λ)−
1
2 [ f̂ρ,D − LK( fρ)]

∥∥∥
K

≤ 2M
1− θ

(
1 + λT1−θ

)
GD,λ

:=
4M

1− θ
GD,λ. (41)

For J3, by (39) we have

J3 ≤ sup
1≤l≤m

∥∥∥∥∥ T

∑
i=1

ηiπ
T
i+1(LK)Ei,Dl

∥∥∥∥∥ ≤ 23M3η

5(1− θ)
T5(1−θ)/2σ−2. (42)

The estimation of J1 is much more complicated. We decompose it into three parts,

J1 ≤
∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,Dl ] fi,Dl

∥∥∥∥∥
K

≤
∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)

1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,Dl ]( fi,Dl − fi)

∥∥∥∥∥
K

+

∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)(LK + λ)−

1
2 [LK − LK,D]( fi − fρ)

∥∥∥∥∥
K

+

∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)(LK + λ)−

1
2 [LK − LK,D]( fρ)

∥∥∥∥∥
K

:= J11 + J12 + J13.

By Lemmas 4 and 5 and the fact λT1−θ = 1, we obtain

J12 ≤ CD,λ

(
T

∑
i=1

∥∥∥ηiLKπT
i+1(LK)

∥∥∥‖ fi − fρ‖K + λ
T

∑
i=1

ηi‖ fi − fρ‖K

)
≤ CD,λ

(
Cρ,θ,r + Dρ,θ,r

)
.
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For J13, by (19) we have

J13 ≤
∥∥∥∥∥ T

∑
i=1

ηi(LK + λ)πT
i+1(LK)

∥∥∥∥∥∥∥∥(LK + λ)−
1
2 [LK − LK,D]

∥∥∥∥∥ fρ

∥∥
K

≤ M
(

1 +
λT1−θ

1− θ

)
CD,λ =

2M
1− θ

CD,λ.

Now we turn to J11. We have

J11 ≤
T

∑
i=1

∥∥∥ηi(LK + λ)πT
i+1(LK)

∥∥∥∥∥∥∥∥ 1
m

m

∑
l=1

(LK + λ)−
1
2 [LK − LK,Dl ]( fi,Dl − fi)

∥∥∥∥∥
K

≤
T

∑
i=1

∥∥∥ηi(LK + λ)πT
i+1(LK)

∥∥∥ sup
1≤l≤m

∥∥∥(LK + λ)−
1
2 [LK − LK,Dl ]( fi,Dl − fi)

∥∥∥
K

(43)

≤
T

∑
i=1

ηi

[( T

∑
j=i+1

ηj

)−1
+ λ

]
sup

1≤l≤m
CDl ,λ

∥∥ fi,Dl − fi
∥∥

K.

By Theorem 1 and the choice λ = T−(1−θ), for 1 ≤ i ≤ T, there holds that λi(1−θ) ≤ 1
and ∥∥ fi,Dl − fi

∥∥
K ≤ C′r,θ

[
BDl ,λ(CDl ,λ + GDl ,λ)(1 + λi1−θ)/

√
λ + i

5(1−θ
2 )σ−2

]
≤ C′r,θ

[
2BDl ,λ(CDl ,λ + GDl ,λ)/

√
λ + T( 5(1−θ)

2 )σ−2
]
.

Plugging it into (43), we obtain

J11 ≤ C′r,θ sup
1≤l≤m

CDl ,λ

[
2BDl ,λ(CDl ,λ + GDl ,λ)/

√
λ + T( 5(1−θ)

2 )σ−2
] T

∑
i=1

ηi

[( T

∑
j=i+1

ηj

)−1
+ λ

]
.

From Lemma 2, we see that

T

∑
i=1

ηi

[( T

∑
j=i+1

ηj

)−1
+ λ

]
≤ 15 log T +

ηλT1−θ

1− θ
= 15 log T +

1
1− θ

≤
(

15 +
1

1− θ

)
log T.

So, we have

J11 ≤ C′r,θ

(
15 +

1
1− θ

)
log T sup

1≤l≤m
CDl ,λ

[
2BDl ,λ(CDl ,λ + GDl ,λ)/

√
λ + T( 5(1−θ)

2 )σ−2
]
.

Combining the estimations for J11, J12 and J13, we obtain

J1 ≤
( 2M

1− θ
+ Cρ,θ,r + Dρ,θ,r

)
CD,λ

+ 2C′r,θ

(
15 +

1
1− θ

)
λ−

1
2 log T sup

1≤l≤m
CDl ,λBDl ,λ(CDl ,λ + GDl ,λ)

+ C′r,θ

(
15 +

1
1− θ

)
σ−2T( 5(1−θ)

2 ) log T sup
1≤l≤m

CDl ,λ. (44)

Now the desired bound for ‖ f̄T+1,D − fT+1‖ in (40) follows by combining the estima-
tions for J1, J2, and J3 and the constant is given by

C′′r,θ :=
( 2Mθ

1− θ
+ Cρ,θ,r + Dρ,θ,r

)
+ 3C′r,θ

(
15 +

1
1− θ

)
+

23M3η

5(1− θ)
.
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This proves the theorem.

4.4. Proofs

Now we can prove Theorem 1.

Proof. Firstly, note that with the choice T = bN
1

(2r+s)(1−θ) c and λ = T−(1−θ), and under the
restriction (8) on m, we have

AD,λ ≤ N−1+ 1
4r+2s +

√
CN−

1
2+

s
4r+2s ≤ (

√
C + 1)N−

r
2r+s .

Therefore,

ADl ,λ ≤ mN−1N
1

4r+2s +
√

Cm
1
2 N−

1
2 N

s
4r+2s

≤ (1 +
√

C)m
1
2 N−

r
2r+s

and

ADl ,λ√
λ
≤ (1 +

√
C)m

1
2 N−

r
2r+s N

1
4r+2s ≤ (1 +

√
C).

By applying Lemma 1, for any 1 ≤ l ≤ m, we have with confidence at least 1− δ
6m ,

BDl ,λ ≤ 2
(2ADl ,λ log 12m

δ√
λ

)2
+ 2, CDl ,λ ≤ 2ADl ,λ log

12m
δ

, GDl ,λ ≤ 4ADl ,λ M log
12m

δ
.

Consequently, these bounds hold simultaneously with confidence at least 1− δ
2 . This

implies that with confidence at least 1− δ
2 , there holds

λ−
1
2 log T sup

1≤l≤m
CDl ,λBDl ,λ(CDl ,λ + GDl ,λ)

≤ 26(M + 1) log T
[(ADl ,λ√

λ

)2
+ 1
]A2

Dl ,λ√
λ

(
log

12m
δ

)4

≤ 26(M + 1)
[(

1 +
√

C
)2

+ 1
]2

mN−
2r− 1

2
2r+s log T

(
log

12m
δ

)4

≤ 210(M + 1)
[(

1 +
√

C
)2

+ 1
]2

mN−
2r− 1

2
2r+s log T(log m)4

(
log

12
δ

)4
(45)

≤
210(M + 1)

[(
1 +
√

C
)2

+ 1
]2

(2r + s)(1− θ)
mN−

2r− 1
2

2r+s (log N)5
(

log
12
δ

)4

≤
210(M + 1)

[(
1 +
√

C
)2

+ 1
]2

(2r + s)(1− θ)
N−

r
2r+s

(
log

12
δ

)4

and
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σ−2T
5(1−θ)

2

(
1 + (log T) sup

1≤l≤m
CDl ,λ

)

≤ σ−2T
5(1−θ)

2

(
1 + (log T)ADl ,λ log

12m
δ

)
≤ 2σ−2N

5
2

2r+s

(
1 +

2 + 2
√

C
(2r + s)(1− θ)

(log N)m
1
2 N−

r
2r+s log m log

12
δ

)
(46)

≤ 2σ−2N
5
2

2r+s

(
1 +

2 + 2
√

C
(2r + s)(1− θ)

m
1
2 N−

r
2r+s (log N)2 log

12
δ

)

≤ 2σ−2N
5
2

2r+s

(
1 +

2 + 2
√

C
(2r + s)(1− θ)

)
log

12
δ

.

By Lemma 1, we have with confidence at least 1− δ
4 ,

CD,λ ≤ 2AD,λ log
8
δ
≤ 2(
√

C + 1)N−
r

2r+s log
12
δ

(47)

and
GD,λ ≤ 2MAD,λ log

8
δ
≤ 2M(

√
C + 1)N−

r
2r+s log

12
δ

. (48)

Plugging the estimates (45)–(48) into (40), we obtain with confidence at least 1− δ,

‖ f̂T+1,D − fT+1‖ ≤ C

(
N−

r
2r+s + σ−2N

5
2

2r+s

)(
log

12
δ

)4

where

C = C′′r,θ,p

[
2M(

√
C1 + 1) + 2(

√
C + 1)

+
210(M + 1)

[(
1 +
√

C
)2

+ 1
]2

(2r + s)(1− θ)
+ 2

(
1 +

2 + 2
√

C
(2r + s)(1− θ)

)]
.

This, together with the bound

‖ fT+1 − fρ‖ ≤ hρT−r(1−θ) ≤ hρN−
r

2r+s ,

leads to the desired conclusion with C̃ = C + hρ.

Proof of Corollary 1. When σ ≥ N
r/2+5/4

2r+s , by Theorem 1, we have that with confidence at

least 1− δ, ‖ f̄T+1,D − fρ‖ ≤ 2C̃N−
r

2r+s

(
log 12

δ

)4
. Replacing 2C̃N−

r
2r+s

(
log 12

δ

)4
by t, then

Prob
{

D : ‖ f̄T+1,D − fρ‖ ≥ t
}
≤ 12 exp

{
−(2C̃)−

1
4 N

r
4(2r+p) t

1
4

}
.

Using the probability to expectation formula

E[ξ] =
∫ ∞

0
Pr{ξ ≥ t}dt

with ξ = ‖ f̄T+1,D − fρ‖, we have
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E
[
‖ f̄T+1,D − fρ‖

]
=
∫ ∞

0
Prob

{
D : ‖ f̄T+1,D − fρ‖ ≥ t

}
dt ≤ 12

∫ ∞

0
exp

{
−(2C̃)−

1
4 N

r
4(2r+p) t

1
4

}
dt

= 324C̃N−
r

2r+s

∫ ∞

0
u3e−udu = 324C̃Γ(4)N−

r
2r+s ,

where Γ(d) is the Gamma function defined for u > 0 by Γ(d) =
∫ ∞

0 ud−1e−udu.
The proof is complete.

To prove Corollary 2, we need the following Borel-Cantelli Lemma which is provided
in [31].

Lemma 6. Let {aN} be a sequence of events in some probability space and {ξN} be a sequence of
positive numbers satisfying limN→∞ ξN = 0. If

∞

∑
N=1

Prob{|aN − a| > ξN} < ∞,

then aN will almost certainly converge to a.

Proof of Corollary 2. Let δ = N−2 in Theorem 1; then we have

Prob
{

N
r

2r+s ‖ f̄T+1,D − fρ‖ρ ≥ 25C̃(log 12N)
}
< N−2.

Thus, for any ε > 0,

Prob
{

N
r

2r+s−ε‖ f̄T+1,D − fρ‖ ≥ 25C̃(log 12N)N−ε
}
< N−2.

Applying Lemma 6 with aN = N
r

2r+s−ε‖ f̄T+1,D− fρ‖, a = 0 and ξN = 25C̃(log 12N)N−ε,
we can obtain the conclusion of Corollary 2 by noting limN→∞ ξN = 0 and ∑∞

N=1 N−2 < ∞.
The proof is finished.
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