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Abstract: We compute the cooperative and the Nash equilibrium solutions for the discounted optimal
control problem in a two-player differential game of reclamation of a resource extraction site, where
each firm’s planning horizon presents the period that extraction of the resources from their site is
economically viable. Hence, the planning horizon is defined by a random duration determined
on the infinite time horizon. The comparison of the cooperative and Nash solutions and also the
comparative statics are provided numerically. We also define the concept of “normalized value of
cooperation” and explain how this concept could help us to better characterize the losses the players
will face if they continue to refrain from cooperation.
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1. Introduction

The extraction of natural resources, i.e., the withdrawal of materials (e.g., fossil fuels,
rocks, timber, fish), have great impacts on the environment. Examples of such impacts
are: soil degradation, destruction of natural habitats, water contamination, air pollution,
deforestation, and solid waste. Moreover, as expectations for higher standards of living and
the world’s population continue to grow, the demand for resources will continue to grow.
Hence, reclamation and clean-up of the resource extraction sites remain a top concern and
priority for environmental regulation bodies and have given rise to a growing interest in
reclamation and clean-up issues, especially over the past decade (see, e.g., [1–5]).

In the extant literature, the planning horizon is always assumed to be known. However,
while the lease terms are usually known to the firms, what defines an extraction site’s active
lifespan is the duration when extraction remains economically viable. In other words, firms
abandon their extraction sites when extraction becomes economically unprofitable. Firms
make economic assessments about the availability of resources in each site; however, the
exact amount of the resources and their economic profitability and hence, the economically
viable resource extraction period, remain uncertain both due to factors related to the market
(e.g., demand and extraction cost) and also technical limitations. These uncertainties could
have important implications both for the regulators and firms. In this paper, we make a
first exploratory attempt to embed uncertainty in the economic extraction period into a
site reclamation model. For that purpose, we extend the paper by Marsiglio and Masoudi
[1] by assuming that the extraction period (firm’s planning horizon) is a random variable.
Moreover, in this article, we define the concept of “normalized value of cooperation” and
explain how this concept could help us to better characterize the losses players will face if
they continue to refrain from cooperation.
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The paper proceeds as follows. Section 2 presents our model. In Section 3, we focus
on the cooperative solution of the problem, while Section 4 presents the results for the
non-cooperative scenario. A comparison of the two scenarios is provided in Section 5. The
concept of normalized value of cooperation is introduced in Section 6. Finally, Section 7
presents concluding remarks and highlights directions for future research.

2. Model Formulation

Consider a differential game with two players (indexed by z, where z = {i, j}) [6]
devoted to resource management [7,8]. The model setting follows [1], except for the fact that
in our model, firms’ planning horizon presents the period that extraction of the resources
from each site is economically viable and not the lease duration. Hence, while in [1], the
extraction period is known, in our model this is defined by a random duration determined
on the infinite time horizon, denoted T j and Ti. For the models with a random time horizon,
see [9–12].

Denote the level of environmental degradation or the pollution stock as pt, which is
the state variable of the process.

Assume that firm z, z = {i, j} extracts resources at a rate γz > 0. For simplicity, we
assume the extraction rate is given. However, the emissions due to extraction are not
constant but increasing in the pollution stock due to, e.g., the decreasing returns of the
extraction technologies. In other words, emissions, ez

t , are given by ez
t = εzγz pt, where

εz > 0 is an exogenous parameter defining the environmental inefficiency of extraction
activity of the firm z.

Firms engage in reclamation or abatement activities throughout the entire planning
horizon. Let the reclamation efforts of the firm be az

t = αzτz
t , where αz > 0 is the efficiency

of environmental reclamation. Therefore, the environmental degradation dynamics is given
by:

ṗt =
(

εiγi + εjγj − δ
)

pt − αiτi
t − αjτ

j
t , (1)

where δ > 0 is the natural pollution decay rate. We assume that the growth rate of pollution
in the absence of abatement is positive εiγi + εjγj − δ > 0, pollution will increase over
time, leading the firms to face a substantial reclamation fee on their lease termination date.

We assume that at the closure time Tz, by regulations, the firm z is responsible to pay
a reclamation cost, referred to as the abandonment reclamation fee, proportional to the

environmental costs of the unclaimed pollution stock at that time, given by: f (pTz) = φz p2
Tz
2 .

Here, φz ≥ 0 is determined by the regulator and quantifies the extent to which the firm z
is effectively liable for the damage caused by the unclaimed pollution at its site dismissal.
For any φz > 0 (and finite) the firm needs to account for both its instantaneous losses
and abandonment reclamation fee to determine its rehabilitation efforts. For the sake of
simplicity, assume also that the reclamation cost of the firm z is quadratic: `(τz

t ) =
(τz

t )
2

2 .
Thus, the cost of the firm z is the following:

Cz =
∫ Tz

0

(τz
t )

2

2
e−ρtdt + φz p2

Tz

2
e−ρTz → min

τz
t

, (2)

where ρ is the discount rate. We assume that T j and Ti are random variables defined on
the infinite interval [0, ∞). Let T j and Ti correspond to the exponential distribution with
the cumulative distribution function [11]

F(t) = 1− e−rt, t ∈ [0, ∞).

In this paper, although the model is formulated for the general case with different
random terminal times, we assume that decision-makers have the same exponential dis-
tribution. Considering two different distributions would result in a problem with time
inconsistent preferences, which would require a different approach to the analysis.
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Thus, each firm’s payoff is the sum of the mathematical expectation of the integral
payoff and the mathematical expectation of the terminal part according to the considered
cumulative distribution function F(t), i.e., we have:

Cz = E

[∫ Tz

0

(τz
t )

2

2
e−ρtdt

]
+ E

[
φz p2

Tz

2
e−ρTz

]
. (3)

We can simplify (3) using integration by parts, provided that the probability density
function (p.d.f.) f (t) exists and well-defined (a similar approach has been used in [13,14]):

Cz = E

[∫ Tz

0

(τz
t )

2

2
e−ρtdt

]
+ E

[
φz p2

Tz

2
e−ρTz

]
=

∫ ∞

0

∫ t

0

(
τz

θ

)2

2
e−ρθdθdF(t) +

∫ ∞

0
φz p2

t
2

e−ρt f (t)dt =
∫ ∞

0

(τz
t )

2

2
e−ρt(1− F(t))dt +

∫ ∞

0
φz p2

t
2

e−ρt f (t)dt =

∫ ∞

0

[
(τz

t )
2

2
e−ρt(1− F(t)) + φz p2

t
2

e−ρt f (t)

]
dt =

∫ ∞

0

[
(τz

t )
2

2
e−(ρ+r)t + φzr

p2
t

2
e−(ρ+r)t

]
dt =

∫ ∞

0

[
(τz

t )
2

2
+ φzr

p2
t

2

]
e−(ρ+r)tdt, z = i, j. (4)

where f (t) = F′(t) is a p.d.f. for Ti and T j.

3. Cooperative Scenario

As our baseline, we first find the socially optimal levels of pollution and abatement
activities of the two firms. In other words, we first solve the game assuming that the two
firms cooperate with each other and minimize their joint reclamation cost. This solution
gives us a benchmark to compare with the non-cooperative or the business as usual results.
In the cooperative scenario, the two firms minimize their joint cost as follows:

Ci + Cj =
∫ ∞

0

[(
τi

t
)2

2
+ φir

p2
t

2

]
e−(ρ+r)tdt +

∫ ∞

0


(

τ
j
t

)2

2
+ φjr

p2
t

2

e−(ρ+r)tdt =

∫ ∞

0

(τi
t
)2

2
+

(
τ

j
t

)2

2
+ (φi + φj)r

p2
t

2

e−(ρ+r)tdt. (5)

For simplicity, denote d =
(
εiγi + εjγj − δ

)
. We then transform the problem to a

maximization problem as follows:
∫ ∞

0 (−1)

[
(τi

t)
2

2 +

(
τ

j
t

)2

2 + (φi + φj)r p2
t

2

]
e−(ρ+r)tdt→ max

τi
t ,τ j

t
,

ṗt = dpt − αiτi
t − αjτ

j
t ,

p0 is given.

(6)
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To solve the problem, we proceed by using a modification of Pontryagin’s Maximum
Principle [15] for an infinite interval [16]. The Hamiltonian function corresponding to our
problem is defined as

H = ψt

[
dpt − αiτi

t − αjτ
j
t

]
−

(τi
t
)2

2
+

(
τ

j
t

)2

2
+ (φi + φj)r

p2
t

2

. (7)

Hence,
∂H
∂τz

t
= −αzψt − τz

t = 0, z = i, j. (8)

The optimal control of the player z is given by:

τz∗
t = −αzψt, z = i, j. (9)

The adjoint variable equation (according to maximum principle modification on
infinite interval) is:

ψ̇t = (ρ + r)ψt − dψt + r(φi + φj)pt. (10)

At the same time, using (9) we have:

ṗt = dpt + ((αi)2 + (αj)2)ψt. (11)

Hence, we obtain the following system of differential equations:{
ψ̇t = (ρ + r− d)ψt + r(φi + φj)pt,
ṗt = dpt + ((αi)2 + (αj)2)ψt.

(12)

In the matrix form, we have:[
ṗt
ψ̇t

]
=

[
d (αi)2 + (αj)2

r(φi + φj) ρ + r− d

][
pt
ψt

]
= AC

[
pt
ψt

]
. (13)

Note that for the optimal control problem defined on an infinite horizon, the optimal
solution is a trajectory that converges to the equilibrium point (assuming there is only one
equilibrium point; otherwise, more analysis is needed). If the canonical system is linear,
this problem can be solved relatively easily, as a linear system has only one equilibrium
point. To find a stable trajectory to this point, we need to identify all negative eigenvalues
of the matrix AC.

AC has two eigenvalues:

Λ(AC) =
{

σC
1 , σC

2

}
=
{

r
2 + ρ

2 −
√

DC

2 , r
2 + ρ

2 +
√

DC

2

}
,

where DC = (ρ + r− 2d)2 + 4r(φi + φj)((αi)2 + (αj)2) > 0.

Since the second eigenvalue σC
2 = r

2 + ρ
2 +

√
DC

2 is positive, it can not produce a stable

solution. However, the first eigenvalue σC
1 = r

2 + ρ
2 −

√
DC

2 is negative if DC − (r + ρ)2 =
4r(φi + φj)(α

2
i + α2

2) + 4d(d− r− ρ) > 0. Then its corresponding eigenvector is

vC =

[
1

2(φi+φj)r

2d−r−ρ−
√

DC

]
.

Note that any trajectory that starts from p0 + span(v) will converge to the equilibrium
point. There is only one stable equilibrium, so the initial value p0 is uniquely determined.
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To save in notation, let us denote σC
1 = σC. Given the initial condition p0, we can write

the solution as follows:
pC

t = p0eσCt, (14)

ψt = −
2(φi + φj)r

r− 2d + ρ +
√

DC
p0eσCt. (15)

and consequently, the optimal controls are:

(τz
t )

C = αz 2(φi + φj)r

r− 2d + ρ +
√

DC
p0eσCt. (16)

Proposition 1 summarizes this result.

Proposition 1. The cooperative rule for the reclamation effort for firm z = {i, j}, (τz
t )

C, and the
cooperative time path of pollution, p∗Ct , are respectively given by:

(τz
t )

C = αz 2(φi + φj)r

r− 2d + ρ +
√

DC
p0eσt, (17)

pC
t = p0eσt, (18)

where σC = r
2 + ρ

2 −
√

DC

2 < 0, and DC = (ρ + r− 2d)2 + 4r(φi + φj)((αi)2 + (αj)2) > 0.

From Proposition 1 we can see that, since under the cooperative scenario firms take
into account their joint abandonment reclamation fees, the only factor that differentiates
their optimal reclamation efforts is their reclamation efficiency, αz, z = {i, j}, so much
so that the firm with higher reclamation efficiency is asked to implement higher efforts
and when αi = αj, regardless of any other heterogeneity among the two firms, they will
implement the same levels of reclamation efforts over time. Moreover, as expected, higher
initial pollution stock and abandonment reclamation fees leads to higher reclamation efforts
for the two firms.

4. Nash Equilibrium

Now, we turn to solve the problem under the business as usual scenario, that is, when
firms do not cooperate on their reclamation efforts and tend to focus on minimizing their
own individual costs. This leads us to seek for the open-loop Nash Equilibrium, where we
are facing the following optimal control problem:

Ci = (−1) 1
2

∫ ∞
0 e−(ρ+r)t

[(
τi

t
)2

+ φirp2
t

]
dt→ maxτi

t
,

Cj = (−1) 1
2

∫ ∞
0 e−(ρ+r)t

[(
τ

j
t

)2
+ φjrp2

t

]
dt→ max

τ
j
t
,

ṗt = dpt − αiτi
t − αjτ

j
t ,

p0 is given.

(19)

To find the Nash equilibrium, we define two (current state) Hamiltonian functions:

Hz(p, ψz
t , τi

t , τ
j
t ) = −

φz r p2

2
− τz

t
2

2
+ ψz

t

(
dpt − αiτi

t − αjτ
j
t

)
. (20)
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Note that the calculations are similar to the ones under the cooperative scenario.
Hence, the optimal controls will be τ∗i = −αiψi

t. The respective canonical system written

for (p, ψi
t, ψ

j
t) is:  ṗ

ψ̇i

ψ̇j

 =

 d αi2 αj2

φi r r− d + ρ 0
φj r 0 r− d + ρ


 p

ψi

ψj

 = AN

 p
ψ1
ψ2

. (21)

The matrix AN has three eigenvalues:

Λ(AN) =
{

σN
1 , σN

2 , σN
3

}
=
{

r− d + ρ, r
2 + ρ

2 −
√

DN

2 , r
2 + ρ

2 +
√

DN

2

}
,

where DN = 4φi(αi)2r + 4φj(αj)2r + 4d2 − 4dr− 4dρ + r2 + 2rρ + ρ2 > 0.
The optimal solution corresponds to a stable solution to (21). To determine the stable

solution, we need to analyze the eigenvalues. Note that σN
3 > 0 is positive, so it can not

produce a stable solution. However, the second one σN
2 = 1

2 (r + ρ−
√

D) is negative if

DN − (r + ρ)2 = 4φi(αi)2r + 4φj(αj)2r + 4d(d− r− ρ) > 0.

and then its corresponding eigenvector is:

vN
2 =

 2d−r−ρ−
√

D
2r
φ1
φ2

.

Note that any trajectory of (21) that initiates from a point along this vector, will be

described by ṗ = σ2 p, and ψi = pt
2rφi

2d−r−ρ−
√

DN . It is important to note that 2d− r− ρ−
√

DN < 0, so the optimal values of the adjoint variables that correspond to pt > 0 are
strictly negative and hence, the respective optimal controls τi∗

t = −αiψ
i∗
t are positive.

One special case occurs when d > r + ρ, i.e., the growth rate of pollution stock exceeds
the depreciation rate r + ρ (which is very realistic). In this case, the system (21) has 2 stable
eigenvalues. Note that d > r + ρ immediately implies σN

2 < 0.
The eigenvector corresponding to σN

1 = r + ρ− d is:

vN
1 =

 0
−(αj)2

(αi)
2

.

However, since the components corresponding to ψi
t and ψ

j
t are of different signs, in a

neighborhood of the equilibrium point one of the adjoint variables will turn positive, which
does not make sense. Thus, we dismiss this eigenvector and the respective eigenvector.

Finally, we obtain the optimal adjoint variables in the following form:

ψi∗
t = − 2p0φireσN

2 t

r− 2d + ρ +
√

DN
.

Now, to save in notation, let us denote σN
2 = σN . Proposition 2 summarizes the results

for the Nash Equilibrium.
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Proposition 2. The Nash rule for the reclamation effort for firm z = {i, j}, (τz
t )

C, and the
cooperative time path of pollution, p∗Ct , are respectively given by:

(τz
t )

N = αz 2p0φireσN t

r− 2d + ρ +
√

DN
, (22)

pN
t = p0eσN t, (23)

where σN = r
2 + ρ

2 −
√

DN

2 < 0, and DN = 4φi(αi)2r + 4φj(αj)2r + 4d2 − 4dr − 4dρ + r2 +
2rρ + ρ2 > 0.

Proposition 2 suggests that, like the cooperative case, under the non-cooperative
scenario, the firm with higher reclamation effort efficiency will implement higher efforts,
ceteris paribus. However, unlike the cooperative scenario, in this case, since firms are
taking only their private costs into account, another factor causes asymmetry in the firms’
reclamation effort trajectory: their individual abandonment reclamation fees. Indeed,
ceteris paribus, the firm with higher abandonment liability engages in more reclamation
activities. Note that other sources of heterogeneity will not cause asymmetries in the two
firms choices.

5. Comparison Analysis

In this section, we compare the results under cooperative and non-cooperative scenar-
ios. However, due to the nature of our model, analytical comparison is not feasible and
hence, we need to resort to numerical illustrations. The base parameter values we use for
our numerical analysis are as follows: p0 = 1, r = 0.0001, ρ = 0.0001, d = 0.01, φ1 = 5,
φ2 = 7, α1 = 20, α2 = 30. We used these values in order to make sure we have an interior
solution, but we report the results for other values in our analysis.

Figure 1 compares the trajectory of the reclamation efforts of player i under cooperative
and non-cooperative scenarios. As expected, at the beginning, the reclamation efforts
are considerably higher under the cooperative scenario than the non-cooperative case.
However, as the gap between pollution stock under these two scenarios increases (see
Figure 2), interestingly, this behavior reverses and the cooperative reclamation efforts
become less than non-cooperative. Note that both reclamation efforts and pollution stock
converge to zero under both scenarios, even though the rate of convergence is faster under
cooperation.

Figure 1. The optimal controls of player i under cooperation VS Nash equilibrium.
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Figure 2. The optimal trajectory of pollution stock under cooperation VS Nash equilibrium.

5.1. Nash Equilibrium Analysis

Now, we turn to analyzing the impact of our key model parameters on the behavior of
the players under a non-cooperative scenario. To clearly see the impact of the variables,
we plot the optimal controls from two different perspectives: we show the figures for
two heterogeneous players, and also we present the results for a representative player
considering different values for the parameter, ceteris-paribus.

First, let us focus on the impact of the environmental reclamation efficiency, α. The
analytical presentation of this impact is presented by Equation (24), which is too compli-
cated to allow analytical comparisons. Hence, we use numerical analysis by plotting the
reclamation effort trajectories under different values for α.

∂(τz
t )

N

∂αz =
2p0φzreσN t

(r− 2d + ρ +
√

DN)2

[
(1− 2(αz)2φzr

1√
DN

)(r− 2d + ρ +
√

DN)− 4(αz)2φzr
1√
DN

]
. (24)

From Figure 3, we can see that, as expected, the player with higher α implements
higher reclamation efforts throughout the entire non-cooperative game. However, from
Figure 4, that presents the representative player i’s optimal controls assuming different
values of α for this player, we see a rather interesting result. That is, the impact of α on
the trajectory of the optimal control of the representative player is not monotonic. In fact,
while the higher α encourages the player to implement higher efforts, as the pollution stock
drops quickly, the player reduces its efforts faster in compare to a situation with lower α, so
much so, after some point of time, the case with lower α performs higher reclamation.

Figure 3. The optimal controls of two players under Nash equilibrium and different α.
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Figure 4. The optimal controls of player i under Nash equilibrium and different α.

Equation (25) presents the impact of the abandonment reclamation fee parameter φ on
the players’ choices. In Figures 5 and 6, we demonstrate this numerically.

∂(τz
t )

N

∂φz =
2p0αzreσN t

(r− 2d + ρ +
√

DN)2

[
(1− (αz)2φzr

1√
DN

)(r− 2d + ρ +
√

DN)− 2(αz)2φzr
1√
DN

]
. (25)

From Figure 5, we can see that, again as expected, the player with higher abandonment
fees puts more efforts into cleaning-up the site throughout the entire planning horizon.
However, the effect of the abandonment fees remains strong and monotonically increasing,
i.e., as seen in Figure 6, the higher the player’s abandonment environmental obligations is,
the higher is their reclamation efforts at any point of time.

Figure 5. The optimal controls of two players under Nash equilibrium and different φ.
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Figure 6. The optimal controls of player i under Nash equilibrium and different φ.

5.2. Cooperative Scenario Analysis

In this subsection, we focus on the impact of our key variables under the cooperative
scenario. First, let us discuss the impact of reclamation effort efficiency parameter α, as
presented in Equation (26).

∂(τz
t )

C

∂αz =
2p0(φ

i + φj)reσCt

(r− 2d + ρ +
√

DC)2

[
(1− 2(αz)2(φi + φj)r

1√
DC

)(r− 2d + ρ +
√

DC) −4(αz)2(φi + φj)r
1√
DC

]
. (26)

From Figures 7 and 8, it is clear that the impact of environmental efficiency parameter
on players’ reclamation effort is similar to what we observed under the non-cooperative
scenario. That is, higher efficiency calls for higher reclamation efforts. However, as this
leads to faster fall in pollution stock (see Figure 9), this relationship reverses over time.

Figure 7. The optimal controls of two players under cooperative equilibrium and different φ.
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Figure 8. The optimal controls of player i under cooperative scenario and different α.

Figure 9. The optimal trajectory of pollution stock under cooperative scenario and different α.

As for the impact of abandonment fee φ, similar to the cooperative case, the player
with higher environmental liability φ is asked to put more effort during the entire time
horizon (see Figure 10). The same is true at the beginning of the game if we look at a
representative player with different values for φ. However, in contrast with what we saw
in the non-cooperative case (see Figure 11), here, higher φ does not result in a monotonic
increase in reclamation effort rates at all points of time. The reason for this sharp difference
between the impact of φ in these scenarios is that under cooperation, to minimize their joint
optimal costs, both players will implement higher reclamation efforts when either player’s
environmental liabilities φ increases. However, under the non-cooperative scenario, if
player i faces higher φ, player j may strategically lower their efforts with the knowledge
that i will raise their efforts to avoid high abandonment fees. Hence, under cooperation
pollution stock drops faster; consequently, the rate of cooperative reclamation efforts slow
down, eventually.

∂(τz
t )

C

∂φz =
2p0αzreσCt

(r− 2d + ρ +
√

DC)2

[
(1− ((αi)2 + (αj)2)(φi + φj)r

1√
DC

)(r− 2d + ρ +
√

DC)−

2((αi)2 + (αj)2)(φi + φj)r
1√
DC

]
. (27)
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Figure 10. The optimal controls of player i under cooperative scenario and different φ.

Figure 11. The optimal controls of two players under Nash equilibrium and different φ.

6. Normalized Value of Cooperation

In this section, we present a novel method to compare the non-cooperative and
cooperative solutions based on their total costs by introducing the concept of normalized
value of cooperation (NVC). A similar approach was discussed in [17]; however, in [17] the
value of cooperation was computed for individual players for the entire period of the game
and hence, it did not depend on a current time instant. In this paper, NVCt is computed
by taking the difference between the total cost of the two players in the Nash equilibrium
and the cooperative case then dividing this value by the total cost of all players under the
Nash equilibrium in the subgame of the game beginning at the time t. Note, that in this
case, we consider only the subgames that start from the optimal trajectory. Hence, NVCt
takes values between 0 and 1, where 0 means that both costs coincide, i.e., there will be
no difference between playing the game cooperatively or non-cooperatively from time t
on, cost-wise. A value close to 1 means that the total sum of the costs corresponding to
the Nash are much larger than the costs for the cooperative case. Intuitively, NVC value
reveals how big the gap between cooperation and non-cooperation costs will be if players
continue to play the game non-cooperatively.

NVCt =
∑z=i,j(Cz

t )
N −∑z=i,j(Cz

t )
C

∑z=i,j(Cz
t )

N . (28)

Below, we illustrate the computation of the normalized value of cooperation. Consider
a subgame starting at some point θ, then the life-time cost of a player z is:
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Cθ
z = E

[∫ ∞

θ

(τz
t )

2

2
e−ρtdt

]
+ E

[
φz p2

Tz

2
e−ρTz

]
=

1
1− F(θ)

∫ ∞

θ

(τz
t )

2

2
e−ρt(1− F(t))dt +

1
1− F(θ)

∫ ∞

θ
φz p2

t
2

e−ρt f (t)dt =

1
1− F(θ)

∫ ∞

θ

[
(τz

t )
2

2
e−ρt(1− F(t)) + φz p2

t
2

e−ρt f (t)

]
dt = erθ

∫ ∞

θ

[
(τz

t )
2

2
e−(ρ+r)t + φzr

p2
t

2
e−(ρ+r)t

]
dt =

erθ
∫ ∞

θ

[
(τz

t )
2

2
+ φzr

p2
t

2

]
e−(ρ+r)tdt, z = i, j. (29)

Thus, in cooperative case, the joint cost of the two players is:

Ci
θ + Cj

θ = erθ
∫ ∞

θ
(−1)

(τi
t
)2

2
+

(
τ

j
t

)2

2
+ (φi + φj)r

p2
t

2

e−(ρ+r)tdt =

(−1)
1
2

erθ
∫ ∞

θ

[
4((αi)2 + (αj)2)(φi + φj)2r2

(r− 2d + ρ +
√

DC)2
p2

0e2σCt + (φi + φj)rp2
0e2σCt

]
e−(ρ+r)tdt =

(−1)erθ (φ
i + φj)rp2

0
2

∫ ∞

θ

[
4((αi)2 + (αj)2)(φi + φj)r

(r− 2d + ρ +
√

DC)2
+ 1

]
e−
√

DCtdt =

(−1)erθ (φ
i + φj)rp2

0

(−2)
√

DC

[
4((αi)2 + (αj)2)(φi + φj)r

(r− 2d + ρ +
√

DC)2
+ 1

]
(0− e−

√
DCθ) =

(−1)
(φi + φj)rp2

0

2
√

DC

[
4((αi)2 + (αj)2)(φi + φj)r

(r− 2d + ρ +
√

DC)2
+ 1

]
er−
√

DCθ . (30)

Finally, the total cost of the two players for a subgame beginning from time t under
cooperation is:

∑
z=i,j

(Cz
t )

C = (−1)
(φi + φj)rp2

0

2
√

DC

[
4((αi)2 + (αj)2)(φi + φj)r

(r− 2d + ρ +
√

DC)2
+ 1

]
er−
√

DCt. (31)

Now, we turn to calculating the sum of the total cost of the two players for the subgame
in case of Nash Equilibrium:

Ci
θ + Cj

θ = erθ
∫ ∞

θ
(−1)

(τi
t
)2

2
+

(
τ

j
t

)2

2
+ (φi + φj)r

p2
t

2

e−(ρ+r)tdt =

(−1)
1
2

erθ
∫ ∞

θ

[
4((αiφi)2 + (αjφj)2)r2

(r− 2d + ρ +
√

DN)2
p2

0e2σN t + (φi + φj)rp2
0e2σN t

]
e−(ρ+r)tdt =

(−1)erθ rp2
0

2

∫ ∞

θ

[
4((αiφi)2 + (αjφj)2)r

(r− 2d + ρ +
√

DN)2
+ (φi + φj)

]
e−
√

DN tdt =

(−1)erθ rp2
0

(−2)
√

DN

[
4((αiφi)2 + (αjφj)2)r

(r− 2d + ρ +
√

DN)2
+ (φi + φj)

]
(0− e−

√
DN θ) =

(−1)
rp2

0

2
√

DN

[
4((αiφi)2 + (αjφj)2)r

(r− 2d + ρ +
√

DN)2
+ (φi + φj)

]
er−
√

DN θ . (32)
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Finally, the sum of the total cost of the players for a subgame commencing at the time
t when they play Nash is:

∑
z=i,j

(Cz
t )

N = −1)
rp2

0

2
√

DN

[
4((αiφi)2 + (αjφj)2)r

(r− 2d + ρ +
√

DN)2
+ (φi + φj)

]
er−
√

DN t. (33)

In Figure 12, the normalized value of cooperation is demonstrated for our baseline
parameter values. The notion of NVC can be used in many insightful ways. For example,
suppose players would only continue to play non-cooperatively up to a point where the
losses of continuing in that manner become too high in comparison to the cooperation.
That is, when they reach such a threshold, they may find it too costly to continue to not
cooperate and choose to switch to cooperation. Figure 12 presents a threshold level of 40%.
So, we can find the time instant when the losses associated with Nash exceed the losses
associated with cooperative case by 40%.

Figure 12. Normalized Value of Cooperation.

7. Conclusions

In this paper, we consider a two-player differential game of reclamation of an extraction
site, where each firm’s planning horizon presents the period that their extraction of the
resources from each site is economically viable. Hence, in our model, the planning horizon
is defined by a random duration determined on the infinite time horizon. We compute the
cooperative and the Nash equilibrium solutions for the discounted optimal control problem
defined on an infinite interval. The corresponding optimal solutions and the respective
payoff functions are computed explicitly.

We use numerical analysis to provide insights into how the cooperative and the Nash
solutions compare, and also how our key parameters affect the players’ choices and the
pollution stock under different scenarios. We also define the concept of “normalized value
of cooperation” and explain how this concept could help us to better characterize the losses
the players will face if they continue to refrain from cooperation.
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