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Abstract: Writer recognition based on a small amount of handwritten text is one of the most challenging
deep learning problems because of the implicit characteristics of handwriting styles. In a deep con-
volutional neural network, writer recognition based on supervised learning has shown great success.
These supervised methods typically require a lot of annotated data. However, collecting annotated
data is expensive. Although unsupervised writer recognition methods may address data annotation
issues significantly, they often fail to capture sufficient feature relationships and usually perform less
efficiently than supervised learning methods. Self-supervised learning may solve the unlabeled dataset
issue and train the unsupervised datasets in a supervised manner. This paper introduces Self-Writer,
a self-supervised writer recognition approach dealing with unlabeled data. The proposed scheme
generates clusterable embeddings from a small fixed-length image frame such as a text block. The
training strategy presumes that a small image frame of handwritten text should include the writer’s
handwriting characteristics. We construct pairwise constraints and nongenerative augmentation to
train Siamese architecture to generate embeddings depending on such an assumption. Self-Writer is
evaluated on the two most widely used datasets, IAM and CVL, on pairwise and triplet architecture. We
find Self-Writer to be convincing in achieving satisfactory performance using pairwise architectures.

Keywords: writer recognition; self-supervised learning; embeddings; dimension reduction; clustering;
twin network

MSC: 68TXX

1. Introduction

Handwriting is considered a distinctive human characteristic that can prove someone’s
authenticity through pattern recognition. Handwriting contains numerous distinctive
features that exhibit the writer’s unique handwriting characteristics, such as the slope of
letters, shape of letters, rhythmic repetition of the letters, cursive or separated writing,
spacing between letters, etc. [1]. Furthermore, handwriting techniques and features differ
enormously from one individual to another, known as inter-class variance. The unique
writing characteristics of an individual serve to make handwriting a behavioral biometric
modality that authorizes recognition and verification of writers from handwritten scripts.
The contemporary studies have indicated writing to be a remarkably reliable and helpful
behavioral biometric mechanism that is used in diverse application disciplines, including
forensic analysis [2], analysis of historical documents [3,4] and security [5].

There are two modes to implement writer identification: verification and recognition.
The writer verification system performs a one-to-one comparison and determines whether
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the same person has written two different texts or not. At the same time, the writer
recognition system performs a one-to-many search with handwriting data of known authors
in an extensive database. The system should display a list of possible authors for the
unknown text samples following the comparison. Due to the enormous variety of human
handwriting, writer recognition is more complicated than writer verification.

Furthermore, these two modes can be executed both online and offline. The online
technique uses the spatial characteristics of the writing, which are taken in real time by
using digitizing acquisition equipment (e.g., Anoto pen). These characteristics are sent for
further processing and analysis via a particular transducer device. Then, the processing
device converts dynamic writing movement characteristics such as stroke order, altitude,
velocity, trajectory, pen pressure, writing duration, etc., into a signal sequence. Offline-
based recognition, however, is a static technique that commonly uses digitized handwritten
images as input data. Because online techniques utilize a good number of features, it is
likely to perform better than the offline approach. However, online recognition methods
require additional devices that are costly and unavailable in most scenarios. This triggers
us to exploit the offline recognition approach, knowing that it poses significant research
challenges due to the availability of only digitized handwritten text images.

Deep learning (DL) frameworks have been intensively explored in supervised writer
recognition and have been shown to outperform several benchmark datasets [1,6,7]. How-
ever, supervised writer recognition methods require a significant amount of labeled data.
Additionally, obtaining manual labeling is costly compared to obtaining unlabeled data,
which is readily available in abundance. Unsupervised writer recognition may solve the
data annotation label issue. So far, unsupervised algorithms are not particularly effective at
training neural networks because of their inability to capture the visual semantics needed
to tackle real-world problems the way strongly supervised methods do. However, self-
supervised learning may convincingly address the unlabeled dataset issue by training the
unsupervised dataset in a supervised manner.

Self-supervised learning is a variant of the unsupervised learning method wherein
the supervised task is performed from the unlabelled data. To learn from self-supervision,
the technique must go through two stages: initialization of the network weights using
pseudolabels [8,9], and completion of the actual task by using supervised learning [10,11].
Self-supervised learning allows us to take advantage of a range of labels provided for free
with the data. Producing a handwritten document dataset with clean labels is costly. In ad-
dition, unlabeled handwritten text is constantly generated. One strategy to take advantage
of this considerably more significant amount of unlabeled data is to appropriately define
the learning objectives so that the data itself provides supervision. Self-supervised learning
has been quite successful in the field of speech recognition for a long time, and includes
processes such as Wav2vec [12] and natural language processing (NLP), as evidenced
by Collobert–Weston 2008 model [13], Word2Vec [14], GloVE [15], and, more recently,
BERT [16], RoBERTa [17], and others.

This paper introduces Self-Writer: a clusterable embedding-based, self-supervised
writer recognition directly from unlabeled data. The term “embedding” refers to the
process of creating vectors of continuous values. Currently, triplet [18], and pairwise
loss [19] techniques can be used to generate embeddings in the context of DL. Three parallel
inputs pass across the network in a triplet loss architecture: anchor, positive, and negative.
Concerning the anchor, the positive input has an identical class, whereas the negative
input has a distinct class. A pair of information flows across the network in pairwise
architecture belonging to the same or separate classes. Furthermore, we insist on making
the training process for DL architecture self-supervised. The system, however, requires
manuscripts of handwritten text and needs to ensure that the manuscripts comprise only
one individual’s handwritten text. The manuscripts come in lines of handwritten text and
are further windowed into smaller frames, such as a word or text block, for training the DL
framework. The construction of the training approach is illustrated in Figure 1. To the best
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of our knowledge, this is the first attempt that exploits self-supervised learning strategy in
writer recognition. In this paper, we make the following contributions.

Handwritten document of writer P Handwritten document of writer Q Handwritten document of writer P

Embedder

Text Blocks

Figure 1. The figure demonstrates a set of handwritten documents with an unknown number of
writers (in the example, two writers, p and q). Handwritten documents are segmented into a form of
line, and further line-segmented images are windowed into smaller image frames, considering that
all the frames of a single document belong to a single class. A DL-based embedding method also
identifies feature similarities and relationships in handwritten documents. Clusterable embeddings
are generated as a result of the technique.

• We introduce a self-supervised strategy of writer recognition based on generating
clusterable embeddings, named Self-Writer. The training procedure learns directly
from the unlabeled data.

• To train the Siamese architecture, we use a hypothesis-based pairwise constraint and
nongenerative augmentation. The AutoEmbedder framework and nongenerative augmen-
tation concentrate on the actual feature relationship instead of the hypothetical constraints.

• Two intercluster-based strategies—triplet and pairwise architectures—evaluate the
proposed policy and conclude that a DL architecture can distinguish writers from
pseudolabels depending on feature similarity.

We write the rest of the paper as follows. The recent literature regarding writer
identification tasks is presented in Section 2. Section 3 explains the structure of the training
strategy as well as the challenges and adaptations. Empirical setup regarding the evaluation
of the proposed pipeline, datasets, and the investigation of the architectures’ performance
is outlined in Section 4. In Section 5, we sketch the pros and cons of the proposed approach.
Finally, Section 6 concludes the paper.

2. Related Work

Writer recognition utilizing deep learning strategies has gained profound attention
by researchers to address distinctive writer recognition and verification tasks. Over the
past few years, significant research has been done on offline writer recognition, and many
decent solutions are available in this domain. Among them, the techniques exploiting the
hidden Markov model (HMM), Gaussian mixture model (GMM), deep neural networks
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(DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs)
were the most prominent. The robustness of modern deep learning architectures provides
an excellent structure for the latest writer recognition systems [20].

Before the proliferation of neural network approaches, Gabor filters and XGabor fil-
ters, and scale-invarient feature transform (SIFT) were mostly used to extract feature data.
The majority of the research efforts applied wavelets [21], graph relations [22], statistical
analysis [23,24], and HMM-based [25] models after feature extraction. By exploiting the
weighted histogram of GMM scores and a similarity and dissimilarity Gaussian mixture
model technique, Khan et al. [1] introduced an offline writer recognition system. Because
the weighting process penalizes irrelevant descriptors, this technique achieves substantially
better performance than the traditional averaging of negative loglikelihood values. In [26],
a novel approach for writer identification is presented, based on the LDA model with
n-grams of author texts and cosine similarity. For language-independent writer recognition,
Sulaiman et al. [7] presented a mixture of handcrafted and in-depth features, extracting
both LBP and convolutional neural network (CNN) features from overlapped frames and
encoding the local information by using the VLAD technique. However, these methods
showed a decent performance but were less accurate than modern neural network archi-
tectures because of their weak feature-extraction capability. Due to deep learning, various
complex computer vision tasks such as visual reasoning are developed [27,28].

With the improvement of neural network architectures, more accurate approaches
have been proposed in the writer recognition domain. Christlein et al. [29] presented a
three-step pipeline for writer recognition: feature extraction with CNN, aggregating local
features into one global descriptor and normalizing the descriptor. The authors aimed to
investigate complicated and deep CNN architectures and some new findings such as the
advantage of Lp-pooling over max pooling, and the normalization of activation following
convolutional layers of the network. Zhang et al. [30] suggested a writer recognition
framework by using the recurrent neural network (RNN) model for directly dealing with
online handwriting raw data. Their framework outperforms the handcrafted feature-based
and CNN-based techniques due to its robustness. In [31], Semma et al. employ FAST key
points and the Harris corner detector to identify points of interest in the handwriting and
extract key points from handwriting and feeding small patches around these key points to
a CNN for feature learning and classification. Xing et al. [6] proposed DeepWriter, a text-
independent writer recognition based on a deep, multistream CNN. The main drawback
of the paper is that when the number of writers is increased, the model’s accuracy is
significantly reduced. Fiel et al. [32] presented the feature vector generation for each writer
by using a CNN to identify writers by analyzing their handwritten texts. The feature vector
approach uses preprocessing techniques such as binarization, text line segmentation, and
sliding windows, and extracts images from the ICDAR 2011, 2013 dataset. However, this
study shows poor results on the other datasets. Sheng He et al. [33] proposed multitask
learning to provide a deep adaptive learning method for writer recognition based on single
word pictures. This method improved the existing features of CNN by recognizing the content
to analyze a writer’s recognition, and exploited deep features. In the evaluation, they used
the CVL and IAM datasets that contain segmented word pictures with labels for both word
and writer. Furthermore, the authors proposed FragNet [34], a two-pathway network defined
by a feature pyramid, which is used to extract feature maps, and fragment pathway, which is
trained to predict the writer identity based on fragments extracted from the input image and
the feature maps on the feature pyramid. The main drawback of the FragNet model is that
it requires word image or region segmentation, which is challenging on highly cursive script
documents. Nevertheless, writer recognition based on single-word images has not yet shown
satisfactory performance. Deep learning achieves few-shot learning through meta-learning by
using previous experience. In [35], the authors proposed a deep learning method that uses
meta-learning to learn and generalize from a small sample size in image classification.

The attention mechanism has been widely used in recent years and has overcome
few-shot learning. This technique was typically used with CNN or RNN to improve deep
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feature extractions in writer identification. Zhang et al. [36] introduce a new residual Swin
transformer classifier (RSTC) that integrates both local and global handwriting styles and
produces robust feature representations with single-word pictures. The transformer block
models local information with interacting strokes while holistically encoding with the identity
branch and global block features’ global information. Chen et al. [37] proposed the letters
and styles adapters (LSA) to encode different letters, which were inserted between CNN and
LSTM. To aggregate features, they also introduced hierarchical attention pooling (HAP).

Apart from the aforementioned methodologies, unsupervised writer recognition is
still an underresearched domain. Very few researchers have worked on this and achieved
significant results. Christlein et al. [38] trained a residual network by using deep surro-
gate classes, and the learned activation features without supervision outperformed the
descriptors of cutting-edge methods for writer recognition. To study the impact of inter-
linear spacing, the authors wanted to evaluate single handwritten lines rather than whole
paragraphs. In addition, a few semisupervised learning methods have been introduced
as well for writer recognition. With the aim of improving writer recognition performance,
Chen et al. [39] suggested a semisupervised feature learning. Their method trains both
unlabeled and labeled data at the same time. The authors also proposed a data augmenta-
tion method called weighted label smoothing regularization (WLSR). The proposed WLSR
method depends on the similarity of the sample space between the original labeled samples
and additional unlabeled samples and can regularize the baseline of a CNN to enable the
learning of more discriminated features.

Due to the difficulties of extensive data labeling for supervised deep neural networks
as well as the ineffectiveness of unsupervised learning, self-supervised learning has become
a promising research area for deep neural networks. Deep neural networks are usually
trained through backpropagation by utilizing some objective function. However, it is
challenging to estimate what objective function extracts suitable feature relations that could
guide good neural networks without labels. Self-supervised learning addresses this issue
by presenting different self-supervision tasks for networks to solve. Using self-supervision
makes it easier to measure the performance captured by using an objective function similar
to those used in supervised learning without requiring any labels. Many such tasks have
been proposed in the last few years. For example, in the case of NLP, one can hide a
word from a sentence and ask the network to predict the missing word. In addition, many
computer vision-based self-supervised learning tools have been proposed in the last few
years [10,40]. In [41,42], the authors use time as a source of supervision in videos, simply
predicting the frames in a video. Self-supervision can also operate with a single image. One
can hide a portion of the image given the task to the network to generate pixels of the hidden
part [43,44] or recover color after grayscale conversion [40,45]. Another approach is to create
a synthetic categorization task where one can create a surrogate class by altering a single
image multiple times through translations, color shifts, and rotations [46]. Furthermore,
in [47], in order to detect 3D symmetry from single-view RGB-D images, the author uses
weak supervision to detect objects.

In recent years, self-supervised learning has shown great success in NLP such as
BERT [16], RoBERTa [17], and Glove [15]; in the field of speech recognition, Wav2Vec [12]
has had success, and in the field of computer vision [10,48] has worked well. However, none
of the research was conducted on writer recognition in a self-supervised manner. Moreover,
the generation of abundant, unlabeled, handwritten text from different individuals drives
us to solve the writer recognition problem in a self-supervised manner based on the inter-
feature relationships of data, all without relying on the labels.

3. Methodology

This section presents the proposed self-supervised writer recognition pipeline in more
detail. The generation of clusterable embeddings, in this paper, is established on self-
supervised learning. First, a self-supervision task is created depending on the following
assumption: in most cases, whenever a writer starts writing, he/she writes on a blank
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manuscript. As a result, most manuscripts include one individual’s handwriting. However,
some individuals might contain multiple manuscripts, or some may be impure, i.e., a
manuscript might contain the writings of numerous individuals. Nevertheless, the impu-
rity ratio would be sufficiently low in the most general handwritten manuscripts. As a
result, one of the most prevalent neural network pipelines, the Siamese network [43], is
used to investigate such a strategy. To extract embeddings, we use the AutoEmbedder
framework [19] as a DL architecture. These generated embedding points work to extract
features of the writer’s handwriting characteristics, which helps to recognize the writer.
The basic workflow of Self-Writer is illustrated in Figure 2.
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Figure 2. Overall procedure of Self-Writer. First, each manuscript is segmented into lines and assigned
a pseudo label for each script. Additionally, an OpenCV-based Python script is used to preprocess
the line images. Furthermore, a cluster network is constructed from the manuscript’s line segments,
using a nonoverlapping sliding window approach to generate smaller text blocks. Finally, depending
on the requirements of the Siamese network, the cluster network is used to construct training data
batches. The pairwise architecture receives two input data; either a can-link pair or a cannot-link
pair. However, it demands an equal number of can-link and cannot-link pairs in a batch of training
data. On the other hand, triplet architecture receives three input data; a pair of can-link data and
cannot-link data, and then the DL architecture or the embedder is trained on randomly augmented
training data.
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The methodology section is organized as follows. First, we explain the preprocessing
step in Section 3.1. In Section 3.2, the self-supervision task is discussed, followed by the
problem formulation and assumptions in Section 3.3. Furthermore, the construction of
pairwise constraints is defined in Section 3.4. In Section 3.5, uncertainties in the pairwise
constraints are discussed. Finally, a detailed description of the DL framework, training
procedure, and data augmentation schema is presented in Sections 3.6 and 3.7.

3.1. Data Preprocessing

In our experiment, handwritten texts are considered to be manuscripts. Furthermore,
we require line segmentation of the handwritten scripts. Researchers, such as [49–51], have
introduced different line segmentation techniques. However, the IAM [52], and CVL [53]
datasets already provide line segmentation schema. However, some lighting, background,
and noise issues are observed in the line images. First, we apply a supplementary OpenCV-
based Python script [54] to eliminate unwanted data such as noise removal, background
elimination, etc. Figure 3 represents (i) the raw version of the image and (ii) the enhanced
version. The preprocessing part aims to enhance image quality and improve image read-
ability information. Afterward, we resize line-segmented images with a height of 112 pixels
while maintaining the aspect ratio. Note that the fixed-size representation of line images
may distort the writer’s handwriting characteristics. Then, we segment the line images into
smaller text blocks by using a non-overlapping sliding window approach. Finally, we have
scaled the dataset in the range [0,1].

Figure 3. Raw line segmented images of the IAM dataset and an enhanced version of the image after
applying a supplementary OpenCV-based python script.

3.2. Self-Supervision Task

Self-supervised learning has various forms based on the domain. Self-Writer aligns
with contrastive self-supervised learning strategies [55]. In order to learn from self-
supervised learning, the system must define a self-supervision task. In general, self-
supervised learning receives supervision signals by utilizing the underlying structure of
the data. Self-supervised learning takes advantage of the data’s structure. As a result, it can
leverage a wide variety of supervisory signals across large datasets based on cooccurring
modalities without relying on labels. Because our proposed writer recognition method is
based on self-supervised learning, we require handwritten scripts to get the supervision
signals from the data by considering each manuscript as a different individual assigning
a pseudo label. Furthermore, the documents are windowed into smaller text blocks to
train the DL architecture in a supervised manner based on the pseudo label. The self-
supervised task of the DL architecture is to generate clusterable embedding of the text block
of manuscripts. The self-supervision task leads us to a supervised loss function. However,
the final performance of the self-supervision task is usually unimportant to us. Instead,
we are more interested in learning the intermediate representation of data. We validate in
Section 4.3 that the self-supervision task holds excellent semantic or structural meanings
and be helpful for the DL framework to recluster data based on feature similarities instead
of the hypothetical assumption.

3.3. Paper’s Assumptions

The proposed strategy aims to resolve handwriting recognition in a self-supervised
manner depending on some hypothetical assumptions. Table 1 illustrates the mathematical
notations employed in this work to make it easier for readers. To understand the problem
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statement, consider D as a dataset of handwritten text in manuscripts, where Xk represents
a single manuscript containing an individual’s handwriting. Consider xi to be a smaller
text block of the manuscript, with xi ∈ Xk. M number of nonoverlapping text blocks are
extracted from a specific manuscript, Xk. Because a manuscript is associated with a single
person, the smaller text blocks are also associated with that person. Based on this criterion,
we created a cluster network known as pairwise constraints between two text blocks. If
two text blocks are from the same script, they are considered in the same cluster. On the
contrary, two text blocks from different scripts are considered different clusters. A set of
clusters C can be formed based on the pairwise relationship, where each cluster ci ∈ C
belongs to a particular manuscript.

Considering most manuscripts contain one person’s handwriting, we can consider
that most clusters ci hold a single person’s data. However, a single individual can have
multiple manuscripts, and the individual’s data may be spread across multiple clusters.
As a result, the challenge is to find optimal cluster relationships such that no two clusters
contain data from the same individual.

Table 1. A summary of the mathematical notations used in the paper is provided.

Notation Description

D A set of manuscripts of handwritten text. We assume that most
manuscripts contain handwriting of an individual.

X A single handwritten manuscript, X ∈ D.

xi A text block, generated by taking non-overlapping sliding window
approach from a line segmented images of a manuscripts, xi ∈ Xk.

M The numbers of possible text blocks in a manuscript. Therotically, M×
|xi| = |Xk|

C A set of clusters. Those clusters are constructed by utilizing the hypo-
thetical cluster network. Because cluster correlation is established on
manuscripts relations, it can consider |X| = |C|

ci Represents a subset of the entire set of clusters. ci illustrates a cluster
constructed by the interrelationship of text blocks on the document Xk.

N The number of writers in X, considering the ground truth.

α The pairwise [19] architecture’s distance hyperparameter. In other archi-
tectures, may denote the state of connectivity between any two cluster
nodes.

The DL framework aggregates numerous clusters into a single cluster that holds all of an
individual’s embeddings. We imply that if a DL function may accurately extract features from
text blocks, it can provide an optimal reasoning of similarities and dissimilarities between text
blocks. Furthermore, a suitably trained DL architecture can successfully recluster the data
based on feature relationships rather than the number of hypothetical clusters.

3.4. Pairwise Constraints

The proposed approach uses a cluster network to train the DL embedding architecture,
also known as pairwise constraints. A pairwise constraint specifies a pairwise relation
between input pairs. Let us consider two input data xi and xj as two random text blocks.
There are two possibilities: (i) text blocks may belong to the same manuscript (can-link
constraints), or (ii) text blocks may belong to different manuscripts (cannot-link constraints).
Mathematically, we can represent it as follows,

∀xi ∈ Xk and ∀xj ∈ Xk; xi, xj ∈ ck

∀xi ∈ Xk and ∀xj 6∈ Xk; xi, xj 6∈ ck,
(1)
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where ck is a separate cluster of the same class and Xk is a specific manuscript.
In the problem’s current state, the writer’s label or ground truth is unknown for all

handwritten scripts, considering each document belongs to a distinct individual. As a
result, the number of manuscripts, |D| is the same as the number of unique pseudolabels.

The cluster constraints defined in (1) are used to train the DL framework. We define a
ground regression function based on pairwise criteria derived in Equation (1) to properly
introduce the intercluster and intracluster relation to a DL framework. The function is
described as follows:

P(xi, xj) =

{
0 if xi, xj ∈ ck

α if xi ∈ cp and xj ∈ cq.
(2)

In Equation (2), the Pc(., .) function returns the distance constraints between embed-
ding (generated from text blocks) pair. In general, the function implies that embedding
pairs belong to the same cluster when their distance is zero; otherwise, they must be sepa-
rated by α. However, embedding pairs from distinct clusters may be separated away by a
distance greater than α, as defined in the AutoEmbedder framework in Equation (4). The
pairwise constraints described in Equation (2) are used to train a DL framework.

3.5. Uncertainty of Pairwise Constraints

The cluster assignment of writers is uncertain due to two primary concerns: (i) the
cluster assignment is unspecified concerning ground truth, and (ii) the manuscript Xk
might be impure. Impurity, with regard to manuscripts, refers to a script that includes
the handwriting of more than one writer. Theoretically, the number of writers considered
ground truth labels, defined as |N|, is less than the number of cluster assignments according
to the pseudo label, where |N| < |C| and |C| = |X|. Due to such circumstances, the training
dataset established on pairwise attributes often perceives an “error in can-link constraints”
and “impurity in can-link constraints”, as defined below,

• Error in cannot-link constraints: Consider that the input pair xi and xj belong to two
different classes, xi ∈ cp and xj ∈ cq, where cp 6= cq. Because the cluster assignment
is based on manuscripts, the number of manuscripts outnumbers the actual number
of writers. In consideration of the ground values, the hypothesis cp 6= cq might be
incorrect, and the input pair could belong to the same author.

• Impurity in can-link constraints: The main idea of the dataset is that a handwritten
manuscript Xk comprises only one person’s writing. In general, a manuscript may
incorrectly identify writing and contain the writing of numerous individuals in a
single manuscript. Let the input pair xi and xj belong to same script, xi, xj ∈ ci. The
manuscript might be impure, so the cluster assignment ci may be wrong, and the
input pair may belong to different individuals.

As our handwritten manuscripts contain a single individual’s handwriting, the task of
DL is to eliminate the error in cannot-link constraints based on the feature space relationship.
As a result, if the features can be prioritized to a DL architecture, it may apparently combine
appropriate clusters from inaccurate cannot-link constraints. However, impurity in can-
link constraints can be considerably reduced in further segmentation procedures, such as
sentence segmentation.

3.6. AutoEmbedder Architecture

We employ a pairwise constraint-based AutoEmbedder architecture as a DL frame-
work to recluster handwritten text blocks. Moreover, we present further improvements to
the network’s overall training procedure to enhance learning progress. To train AutoEm-
bedder architecture, we use pairwise constraints specified by function P(., .) in Equation (2).
The architecture adheres to Siamese network constraints, which can be stated as follows:

S(xi, xj) = ReLU(||M(xi)−M(xj)||, α). (3)
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In Equation (3), S(., .) denotes a Siamese neural network (SNN) with a pair of inputs.
The architecture shares a single DCNN, M(, ., ), which maps higher-dimensional input into
meaningful lower-dimensional clusterable embeddings. The distance between generated
embedding pair is calculated by using Euclidean distance and passed through a thershold
ReLU activation fuction, which is derived in Equation (4):

ReLU(x) =

{
x if 0 ≤ x < α

α if x ≥ α.
(4)

The threshold value α in Equation (4) indicates the cluster margin of the network.
As a consequence of the cluster margin α, S(.,.) function produces output in range [0,α].
Figure 4 illustrates the overall architecture of AutoEmbedder using a Siamese neural
network. The generic AutoEmbedder framework is trained by using the L2 loss function.
The AutoEmbedder framework is trained for each data batch with an equal amount of
can-link and cannot-link constraints. However, the problem is easily handled in a triplet
architecture because each triplet includes a combination of cannot-link (anchor-negative)
and can-link (anchor-positive) pairs.

Figure 4. The training architecture of AutoEmbedder using a Siamese neural network (SNN). The
subnetwork of SNN is weight-sharable, and the activation function is Relu, which is described in
Equation (4). The architecture calculates pairwise distance output based on the generated embed-
dings pair.

3.7. Augmenting Training Data

In terms of the ground truth, both can-link and cannot-link cluster connections may
include faulty assumptions. Therefore, a simple augmentation schema is applied to prevent
the DL framework from overfitting faulty cluster associations. Even though there are a
variety of augmentation approaches available, we prefer to combine the augmentation
process described in Table 2.

Here, the augmentation pipeline includes the nongenerative online augmentation of
half of the training batch data with an augmentation probability of 0.5. However, in a
“Oneof” block, the transformations are defined along with their probabilities. The block
normalizes the probability of all transformations within the block and applies one trans-
formation on the image based on normalization. In this way, there is more efficiency in
applying suitable transformations. The block also has a probability parameter, which indi-
cates the probability of undertaking the block or not. Furthermore, all the transformations
are defined according to their probabilities, and they are illustrated in Table 2.
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Table 2. The table presents the augmentation pipeline associated with transformation definitions
along with their probabilities.

Oneof
Blocks Transformations Description Probability of

Transformations
Probability of
Oneof Blocks

Augmentation
Probability

Oneof
Flip Flip the input either horizontally,

vertically 0.5
0.5

Crop and Pad Randomly crop input image and pad
images based on image size fractions. 0.5

Oneof

Downscale Decreases image quality by downscaling
and upscaling back. 0.3

0.5

0.5

Gaussian Blur Apply a Gaussian filter with a random
kernel size to blur the input image 0.3

Motion Blur Apply motion blur to the input image
using a random-sized kernel. 0.3

Oneof

Multiplicative
Noise

Multiply images to a random number or
array of numbers. 0.3

0.5
Random
Brightness
Contrast

Randomly change brightness and contrast
of the input image. 0.3

Gaussian Noise Apply gaussian noise to the input image. 0.3

Oneof
Pixel Dropout Set pixels to 0 with some probability. 0.5

0.5
CoarseDropout Coarse drop out of the rectangular regions

in the image 0.5

In the case of erroneous data pairs, augmenting image frames makes the AutoEmbedder
network less confusing. The architecture may be enhanced by augmenting it while disregard-
ing erroneous data pairs caused by different transformations. Furthermore, augmenting data
causes data variation, which allows the network to extract more useful features from the data.
Algorithm 1 presents the pseudocode of the pairwise training process.

Algorithm 1: Self-Writer training algorithm
Input: Subset of training dataset X, DL model with initial weights M, Number of

iterations epochs, Training batch size batchSize, Distance hyperparameter α
Output: Trained Embedding DL model.
Initialize a siamese network with ,ReLU(S(., .), α);
iter ← 0;
while iter < epochs do

foreach Xbatch ∈ X do
Initialize empty lists, I, I′, Y ← {}, {}, {};
counter ← 0;
foreach x ∈ Xbatch do

I ← append x in I, ;
if counter mod 2 then

I′ ← randomly choose and append a can-link text block from X ;
Y ← append 0 in Y;

else
I′ ← randomly choose a cannot-link text block from X ;
Y ← append α in Y;

counter ← counter + 1;

I ← randomly choose half of data and augment them;
I′ ← randomly choose half of data and augment them;
S← Train S with I, I′, Y
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4. Results

This section evaluates the proposed self-supervised writer recognition method called
Self-Writer. As the architecture objective is to generate clusterable embedding, the K-means
algorithm is used to measure the purity of the embedding clusters. In Section 4.1, we
present the evaluation metrics. A brief description of the dataset is provided in Section 4.2.
Section 4.3 discusses the implementation details and the training procedure of our proposed
Self-Writer. Finally, the result analysis is presented in Section 4.3.

4.1. Evaluation Metrics

To measure the clustering effectiveness of generated embeddings of the Self-Writer
schema, three well-known metrics, normalized mutual information (NMI), accuracy (ACC),
and adjusted rand index (ARI), are used. The evaluation metrics are discussed below.

• Normalized Mutual Information: The normalized mutual information can be mathe-
matically defined as

NMI(c, c′) =
I(c, c′)

max(H(c), H(c′))
, (5)

where c and c′ are the ground truth and predicted cluster, respectively. I(.) define the
mutual information between c and c′, and H(.) denotes the entropy.

• Accuracy: Accuracy refers to the unsupervised clustering accuracy, expressed as

ACC(c, c′) =

(
max

∑n
i=1 l

(
ci = m(c′i)

)
2

)
, (6)

where li defines the ground truth labels, ci denotes the cluster assignment produced
by Self-Writer, and m(.) ranges over all possible one-to-one mapping of the labels and
clusters, from which the best mapping is taken.

• Adjusted Rand Index: The adjusted rand index is calculated by using the con-
tengency [56]. The ARI can be expressed as

ARI =
∑ij (

nij
2 )−

[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)

1
2

[
∑i (

ai
2 ) + ∑j (

bj
2 )
]
−
[
∑i (

ai
2 )∑j (

bj
2 )
]
/(n

2)
. (7)

Here, nij, ai, and bj are the values of the contingency table produced by the Self-Writer.

All three metrics produce a result in between the [0, 1] range. The higher value of
these indices indicates a better correlation between ground truth and cluster prediction.

4.2. Datasets
4.2.1. IAM

The IAM is one of the most prominent and renowned English handwritten datasets,
containing 1539 scanned handwritten scripts with 657 distinct writers using various pens.
The manuscripts are scanned at 300 dots per inch (DPI) with 256 gray levels. However,
the dataset comes with different forms such as manuscripts, sentences, words, and lines
that provide different handwriting and word-recognition protocols. Out of 657 writers,
356 writers contribute only a single handwritten script. Each writer provided a number of
documents ranging from one document (356 writers) to the most oversized (59 documents
from one writer). Due to the variance of patterns of each writer, we consider the writers
who provided more than equal four manuscripts and conducted the experiment with the
first four manuscripts of the writers.

4.2.2. CVL

Another recent handwriting dataset for writer recognition is the CVL [53] handwriting
dataset containing 1606 handwritten scripts with 310 distinct writers using different color
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pens. A total of 282 writers contributed five manuscripts samples (four in English and one
in German), and the rest contributed seven manuscripts (six in English and one in German).
The dataset is also different from the IAM dataset. However, unlike the IAM dataset, the
CVL dataset is well distributed. In this experiment, we also consider all the manuscripts
for each writer.

4.3. Results and Comparison

To analyze the embeddings based on the proposed strategy, AutoEmbedder (pairwise
architecture) and a triplet architecture are implemented. Except for these two techniques,
the most popular DL approaches for writer recognition do not adhere to the training
characteristics discussed in the study. They often operate supervised learning strategies.
Hence, they are omitted in this experiment.

For both DL frameworks, we use DenseNet121 [57] as baseline architecture. Further-
more, both DL architectures are connected with a dense layer containing 16 nodes. As
a result, both architectures generate 16-dimensional embedding vectors. For the triplet
network, we have added l2-normalization on the output layer, as it is suggested to increase
the framework’s accuracy [58], and valid triplet is generated manually. The pairwise ar-
chitecture is trained by using default L2-loss also known as the mean square error (MSE),
while semihard triplet loss [18] is used to train the triplet architecture. The training pipeline
is illustrated in Figure 5.

Text Block1

Text Block3

Text Block2

Augmentation

Em
be

dd
er R16

Augmentation probability = 0.5

Figure 5. The same data processing pipeline is used to train both pairwise and triplet frameworks.
The DL frameworks receive half of the inputs randomly augmented with an augmentation probability
of 0.5.

The evaluation phase ensures that both frameworks are trained by using an identical
dataset. Because the proposed approach is self-supervised and deals with unlabeled
datasets, the frameworks get the exact dataset for training and testing purposes. However,
the labels for the training process are unspecified and initiated on the paper’s hypothetical
premises. A dataset such as this is referred to as a training dataset. Considering the ground
truth values of writers with the same dataset is referred to as the ground dataset. We used
a batch size of 64 to train both frameworks. The training is carried out with the Adam [59]
optimizer with a learning rate of 0.0005.

The training phase of Self-Writer includes high computational complexity, including
online data augmentation. In addition, computing NMI, ACC, and ARI metrics required
quadratic time complexity. As a result, we have decided to restrict the number of writers to
150. We trained on a subset of the dataset rather than the entire dataset. In order to test the
ground truth data, two random samples of each text segment are chosen. The model was
trained over 400 epochs.

Figure 6 compares the triplet and pairwise networks during training on two distinct
datasets, with writers equal to 25 and impurity equal to 0. The triplet architecture learns
from the training dataset in a seamless manner and overfits immensely on the augmented
training data. The benchmark of the ground dataset is also anticipated because the metrics
of triplet architecture increase at first and then drop dramatically due to overfitting. From
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Figure 6’s triplet architecture on two different datasets, it can be conceded that it only
remembers the features related to the hypothetical labels.

Sc
or

e
Sc

or
e

Epoch Epoch

Architecture: Triplet 
Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 6. Graphs illustrating the metrics of the training and ground dataset containing 25 writers
with an impurity of 0. The first row represents the triplet network and the second row represents the
pairwise network, respectively.

In contrast, the pairwise framework produces an adequate performance with some
inconsistencies. Generally, DL frameworks generate more accuracy on training data than
validation data. However, the performance of the ground dataset is mostly superior to the
training data in our method. Nevertheless, after 300 epochs, the performance on the ground
dataset started to decrease gradually. The architecture started getting overfitted on training
data due to the limited number of writers. Furthermore, for reducing overfit on training
data, we increase the number of writers to 50, shown in Figure 7. The triplet framework
still gradually overfits training data. Furthermore, the ground dataset’s accuracy started to
drop due to memorizing feature relationships based on hypothetical labels. However, the
pairwise framework performed a steady performance on ground datasets.

The performance of the training method comprehensively depends on the impurity
of training data. Increasing the impurity ratio reduces the architecture’s performance.
Benchmarks were conducted with impurity = 0.1 and 0.05, while considering writers =
50, as shown in Figures 8 and 9. The training architecture continues to overfit the triplet
architecture. On the other hand, pairwise architecture gradually memorizes the training
dataset based on feature relation.
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Sc
or

e
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or
e

Epoch Epoch

Architecture: Triplet 
Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 7. Graphs illustrating the metrics of pretext task and ground dataset containing 50 writers
with the purity of 0. The first row represents the triplet network and the second row represents the
pairwise network, respectively.

Sc
or

e
Sc

or
e

Epoch Epoch

Architecture: Triplet 
Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 8. Graphs illustrating the metrics of the pretext task and ground dataset containing 50 writers
with a purity of 0.05. The first row represents the triplet network and the second row represents the
pairwise network, respectively.



Mathematics 2022, 10, 4796 16 of 20

The semihard triplet loss function is designed to minimize the embedding distance
between positive and anchor data and strictly distance the embeddings of negative and
anchor data. As the triplet architecture is trained over semihard triplet loss and heavily
adheres to the aforementioned criteria, the architecture overfits hypothetical constraints
while ignoring the real feature-dependent relationships.

In contrast, instead of overfitting training data, the pairwise architecture learns to
extract features. The reason lies in AutoEmbedder’s training strategy as L2-loss does not
take into consideration the pseudolabel; instead, it learns aggregately from a batch of
data. Therefore, the framework can obtain feature similarities because it is not precisely
supervised using L2-loss. As a result, the architecture can recluster the data in hyperspace
depending on the feature similarities.

Sc
or

e
Sc

or
e

Epoch Epoch

Architecture: Triplet 
Dataset: IAM

Architecture: Triplet 
Dataset: CVL

Architecture: Pairwise 
Dataset: IAM

Architecture: Pairwise 
Dataset: CVL

Figure 9. Graphs illustrating the metrics of the pretext task and the ground dataset containing 50
writers with impurity 0.1. The first row represents the triplet network and the second row represents
the pairwise network, respectively.

With pairwise architecture-based AutoEmbedder, we further investigate several writ-
ers and impurity conditions. Tables 3 and 4 show the IAM and CVL datasets’ evaluation
metrics on the training and ground datasets. The table represents a comprehensive sum-
mary of the performance variance in the training dataset depending on the number of
writers and impurity. On any dataset, the AutoEmbedder-based paired architecture retains
a marginal performance with impurity = 0. Furthermore, increasing the number of writers
and the impurity ratio causes a reduction in the architecture’s performance. Although the
number of writers is held constant at 25 and 50, a slight fluctuation is observed in both
datasets. Increasing the number of writers by 50 resulted in an inconsistent improvement
in performance.



Mathematics 2022, 10, 4796 17 of 20

Table 3. The table illustrates the pairwise architecture in the IAM dataset across four-speaker groups:
25, 50, 100, and 127. The table also analyzes two segmentation impurities, 0 and 0.1, for each group of
writers to illustrate the shortcomings of the faulty assumption.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

NMI ACC ARI NMI ACC ARI NMI ACC ARI

25 writers Pretext task 0.801 0.463 0.334 0.791 0.422 0.352 0.778 0.430 0.372
Ground task 0.956 0.948 0.912 0.898 0.854 0.848 0.856 0.807 0.792

50 writers Pretext task 0.849 0.452 0.351 0.845 0.432 0.348 0.834 0.424 0.345
Ground task 0.988 0.969 0.934 0.958 0.943 0.897 0.903 0.861 0.801

100 writers Pretext task 0.841 0.419 0.309 0.7895 0.394 0.310 0.731 0.398 0.312
Ground task 0.901 0.841 0.813 0.876 0.823 0.801 0.851 0.816 0.794

127 writers Pretext task 0.836 0.404 0.301 0.779 0.396 0.294 0.711 0.382 0.299
Ground task 0.898 0.817 0.798 0.847 0.794 0.776 0.816 0.787 0.741

Table 4. The table illustrates the pairwise architecture in the CVL dataset across four-speaker groups:
25, 50, 100, and 150. The table also analyzes two segmentation impurities, 0 and 0.1, for each group of
writers to illustrate the shortcomings of the faulty assumption.

Impurity = 0 Impurity = 0.05 Impurity = 0.1

NMI ACC ARI NMI ACC ARI NMI ACC ARI

25 writers Pretext task 0.786 0.372 0.228 0.811 0.384 0.246 0.771 0.368 0.250
Ground task 0.943 0.910 0.908 0.899 0.862 0.857 0.907 0.850 0.810

50 writers Pretext task 0.800 0.368 0.231 0.800 0.362 0.246 0.800 0.374 0.268
Ground task 0.974 0.941 0.919 0.930 0.901 0.845 0.914 0.867 0.816

100 writers Pretext task 0.786 0.352 0.228 0.764 0.340 0.219 0.744 0.336 0.214
Ground task 0.908 0.871 0.819 0.894 0.846 0.770 0.861 0.811 0.784

150 writers Pretext task 0.753 0.337 0.216 0.727 0.312 0.178 0.703 0.297 0.154
Ground task 0.846 0.793 0.764 0.824 0.781 0.743 0.816 0.775 0.725

In order to investigate the appropriate feature relationship between text blocks, the
architecture requires a significant amount of handwriting characteristics variations from
users. Limiting the number of writers to 25, the architecture struggles to find more appro-
priate feature relationships and observes a reduction in performance. By increasing the
number of writers to 50, the feature variances in training data are balanced and observed a
performance improvement.

5. Discussion

The pairwise architecture with training strategy performs well in the writer recognition
process. However, throughout the study, the architecture has several difficulties that must
be addressed. First, training the architecture with less handwriting variation results in
overfitting, as observed while the number of writers’ dataset is 25. Secondly, as the system is
fully segmentation-dependent, the target lies in developing an optimal audio segmentation
procedure. Resolving these challenges would benefit the architecture for a wide range
of writer recognition and evaluation usage. Furthermore, due to the use of Siamese
architecture, the architecture has an identical subnetwork, increasing the computation
throughout the process. Thus, the training strategy required a long period of time.

Apart from the limitations, the self-writer strategy requires no pretraining on large
handwritten datasets, which is often observed in other writer recognition methods. Fur-
thermore, the Self-Writer strategy requires comparatively less per-writer data than the
other writer recognition methods. From an overall perspective, the Self-Writer keeps the
requirement of labeled data to a minimum.
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6. Conclusions

This paper presents Self-Writer, a self-supervised writer recognition system that gener-
ates clusterable embeddings depending on the writers’ unique handwriting characteristics.
Self-Writer deals with unlabeled data and is trained with pseudolabels. Self-supervised
learning has its various forms based on the domain; self-writer aligns with contrastive
self-supervised learning strategies. We evaluate such a strategy with two relevant DL
architectures, pairwise and triplet. The empirical results demonstrate that the pairwise
architecture-based AutoEmbedder, as an embedding architecture, performs better than
triplet architecture for our proposed self-supervised writer recognition. Furthermore, the
architecture performs well regarding the number of writers and handwritten text segmen-
tation errors in unlabeled data. However, depending on the writers’ variations, the method
requires clean documents and robust line segmentation techniques to generate clusterable
embeddings. Therefore, a segmentation technique and VLAD encoding might be an ex-
tended version of the proposed work. In addition, to evaluate the clusterable embedding,
we use the K-means algorithm. However, locally weighted and multidiversified ensemble
clustering, which enhances the clustering robustness by fusing the information of multiple-
based clusterings, might be an extended version of the proposed work. Nevertheless,
we firmly believe that such a comprehensive and hypothetical technique for generating
hypothetical labels to train writer recognition systems will assist researchers in developing
new strategies.
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