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Abstract: Deterministic and stochastic models of Brownian motion in ferrofluids are of interest to
researchers, especially those related to drug delivery systems. The Brownian motion of nanoparticles
in a ferrofluid environment was theoretically analyzed in this research. The state of the art in
clinical drug delivery systems using ferromagnetic particles is briefly presented. The motion of the
nanoparticles in an external field and as a random variable is elaborated by presenting a theoretical
model. We analyzed the theoretical model and performed computer simulation by using Maple
software. We used simple low-dimensional deterministic systems that can exhibit diffusive behavior.
The ferrofluid in the gravitational field without the presence of an external magnetic field in the xy
plane was observed. Control parameter p was mapped as related to the fluid viscosity. Computer
simulation showed that nanoparticles can exhibit deterministic patterns in a chaotic model for certain
values of the control parameter p. Linear motion of the particles was observed for certain values of
the parameter p, and for other values of p, the particles move randomly without any rule. Based on
our numerical simulation, it can be concluded that the motion of nanoparticles could be controlled by
inherent material properties and properties of the surrounding media, meaning that the delivery of
drugs could possibly be executed by a ferrofluid without an exogenous power propulsion strategy.
However, further studies are still needed.

Keywords: Brownian motion; chaotic model; ferrofluid; targeted drug delivery; exogenous power
propulsion strategy

MSC: 62P10; 62P30; 62P35

1. Introduction

Models of Brownian motion, both stochastic and deterministic, have been of interest
to researchers for a long time [1]. Lucretius considered in 60 BC that the movement of
dust particles in the air is caused by the movement of small invisible particles. The chaotic
movements of coal particles in alcohol were described by Ingenhousz in 1785. In 1827,
the botanist Brown observed the movement of pollen in water under a microscope. A
mathematical description of Brown’s movement was given in 1880 by Thiele and in 1900 by
Bachelier. In 1905, Einstein developed a stochastic theory of Brownian motion [2], which
Perrin experimentally proved in 1909. Langevin in 1908 used a stochastic differential
equation to describe changes in macroscopic variables. In 1965, Mori described transport,
collective motion and Brownian motion within statistical-mechanical theory [3]. Saffman
and Delbruck investigated Brownian motion in 1975 in biological membranes. Caldeira
and Legget investigated the quantum Brownian motion of 1983 [4].

Fujisaka, Grossmann, Thomae and Geisel from 1982 to 1985 wanted to form a dynamic
theory of Brownian motion [5]. In 1998, Gaspard and his associates experimentally proved
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microscopic chaos [6]. In 2005, Cecconi attempted to determine the microscopic nature
of diffusion by data analysis [7]. Since 2011, Brownian motion in superfluids has been
considered. There are various studies of Brownian motion and stochastic and chaotic
models are observed, and the nature of this movement is a difficult question and the
answer is not determined by the character of the model [8,9].

The first definition of Brownian motion was related to stochastic process [10], in rela-
tion to a wide range of different real stochastic processes, and represented by the Wiener
process, which describes continuous-time stochastic process with real values [11]. Brownian
motion can be observed as stochastic or deterministic in chaos theory, based on the deter-
ministic equations that describe stochastic phenomena [11], but the governing parameters
that might provide a full replication of the experiment are difficult to determine or define.
Recent computer simulation experiments have shown the possibility to model the chaotic
system as a stochastic one, by controlling simulation parameters and initial conditions [11].
Such an approach has enabled research on how to govern the chaotic system (and determine
governing parameters) through the study of particle trajectories that have random motion,
that is, by using deterministic equations to reproduce random behavior [11].

The generation of deterministic Brownian motion is possible through additional
degrees of freedom in the Langevin equation of the phenomenological system of particle
mixing and agitation in fluids [12]. Another study [13] replicated Brownian motion by
using a fully deterministic set of differential equations and applied it to a real problem of
electronic circuit implementation. Their deterministic model showed that some variables
within the model can enable modeling of the circuit dynamics as a stochastic Brownian
behavior [13]. There are numerous real systems that exhibit Brownian behavior, and
modeling such systems by deterministic systems (without random components) is an
important area in recent research, including drug delivery systems [13]. An analysis of
126 different combinations of governing parameters is given in [13], and around 10%
of those cases involved deterministic Brownian-like motion. They obtained stochastic
or deterministic Brownian motion based on the initial setup conditions (assigned initial
parameters values for circuit implementation) [13].

Ferrofluids are a suspension of small particles of 10 nm, each of which contains one
permanent ferromagnetic domain [14]; thus, each particle is a permanent magnet, which,
in the absence of an external magnetic field, rotates randomly under the action of Brown’s
forces, which are strong due to the small particle size [15]. In ferrofluids, dipoles exist
without fields and rotate randomly by Brownian motion [16]. Ferrofluids are interesting
magnetic fluids that can be controlled by an external magnetic field [17]. There are several
applications for ferrofluids in industrial as well as technological fields such as magnetic
memory, inkjet printers, magnetic seals, etc. [18]. They are known for their biomedical
applications such as magnetic resonance contrast agents [19], hyperthermia [20], targeted
drug delivery to tumor and cancer cells, antibacterial activity, etc. [21,22].

Numerical computational simulations have emerged in the past decade as powerful
tools for the analysis and prediction of the material physical behavior at macro/micro and
nano scales, with extensive research on applied models and software solutions. Thermal
conductivity of fluids is the most influential factor for the fluid behavior, and different
approaches to estimate or predict it for novel nanofluids have been studied using mathe-
matical models [23–25] or experimentally based models [26]. For example, models related
to the rheological properties of hybrid non-Newtonian nanofluids are important, since it is
proven that with the increase in volume fractions of nanoparticles, the effect of temperature
increase is more influential, leading to the non-Newtonian behavior of the nanofluid and
also having a strong effect on viscosity [26].

A mathematical model was developed, using SigmaPlot software, to study the thermal
conductivity of nanofluids, through the study of different volume fractions of ternary
hybrid nanofluids and mono and binary hybrid nanofluids [23]. This model correlated
volume fractions of different nanofluids and resulting thermal conductivity in order to
provide a tool for the estimation of thermal conductivity of a ternary hybrid nanofluid [23].
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Thermal properties of DNA structure in water fluid were estimated by using equilib-
rium and non-equilibrium molecular dynamics approaches and LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) software [24]. Another work on the pre-
diction of the thermal conductivity of hybrid Newtonian nanofluid proposed an algorithm
to solve the problem in the Artificial Neural Network (ANN) [25] that considered the
volume fraction of nanoparticles and temperature.

This paper studies the possibility to use and influence Brownian motion to produce
patterned trajectories of particles in a diffusive motion of the ferrofluid, aiming to assist
in more efficient drug delivery nanofluid systems. A chaotic model of Brownian motion
was theoretically analyzed and simulated by using Maple software. The chaotic model was
mapped with an introduced control parameter, p, which depends on the viscosity coefficient
and particle mass and size, in analogy with the Langevin equation. The ferrofluid in the
gravitational field without the presence of an external magnetic field in a two-dimensional
model was observed.

2. Materials and Methods
2.1. Brownian Motion

Numerous experiments show that there is a constant internal movement in every
substance. This internal movement is in fact the movement of the molecules that make
up the observed substance. This movement of molecules is unregulated, never stops and
depends only on temperature. The phenomenon discovered by Brown directly indicates
the stochastic nature of the movement of molecules, where the same initial condition will
not replicate the resulting motion (the same trajectory in time). Using a microscope, it
was observed that very small particles floating in a liquid are in a state of continuous
stochastic motion, and the smaller the particles, the faster they move [27]. This motion,
called Brownian motion, never stops, does not depend on any external cause and is a
manifestation of the particles’ motion due to colliding with surrounding molecules of
fluid and internal energy of matter: the potential energy of all the particles and thermal
energy of moving particles (kinetic energy), which is correlated to the temperature and
number of particles (mass). When they collide with a solid body, liquid molecules, which
are constantly moving, are subjected to a certain amount of movement. If the body is in
a liquid and has larger dimensions, the number of molecules that come across it from all
sides is also very large, and their shocks are compensated at any time and the body remains
practically motionless [28].

If the body is small, such compensation may be incomplete: it can accidentally hit one
side of the body with a much larger number of molecules than the other, causing the body
to move [28]. It is a movement performed by Brown’s particles under the action of chaotic
blows of molecules. Brown’s particles have several billion times the mass of individual
molecules and their velocities are very low compared to the speeds of molecules, but their
movement can be observed with a microscope. In this way, too, a substance not only has a
granular structure—that is, it consists of individual separate parts—but it also consists of
particles that are constantly moving.

2.2. Ferrofluid

A magnetic colloidal particle, also known as a ferrofluid, is a colloidal suspension
of single-domain magnetic particles, typically about 10 nm in size, dispersed in a liquid
carrier [15,16]. The liquid carrier can be polar or non-polar [14]. Since the 1960s, when
ferrofluid was initially synthesized, its technical and medical applications have not stopped
growing [18]. Ferrofluid differs from ordinary magnetorheological fluids used for shock
absorbers, brakes and clutches, formed by micron-sized particles dispersed in oil [18]. In
magnetorheological fluid, the application of a magnetic field increases the viscosity, so
that for a sufficiently strong field, it can behave like a solid [16,18]. On the other hand,
ferrofluid retains its fluidity even if it is exposed to a strong magnetic field. Ferrofluids are
optically isotropic, but in the presence of an external magnetic field, they show induced
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birefringence [29]. Wetting of certain substrates can also cause bifurcation in thin ferrofluid
layers. To avoid agglomeration, the magnetic particle should be coated with a shell of a suit-
able material [30,31]. In relation to the coating, ferrofluid is divided into two main groups:
surfactant, if the coating is a surfactant molecule, and ionic, if it is an electric shell [30,31].

Colloidal suspensions of magnetic particles in liquids that have the ability to magnetize
in an external magnetic field are called ferrofluids [32]. These are magnetic materials in
liquid form. The liquid can be water or an organic solution in which ferromagnetic or
ferrimagnetic particles are dispersed. The particles are most often hematite, Fe2O3, or
magnetite, Fe3O4, and they need to be stabilized due to high surface energy by adding a
polymer or ionic component (surfactant). Usually, such stable particles are about 10 nm
in diameter, and their surface energy is reduced by long-chain surfactants which, thanks
to the long chains, prevent agglomeration, or the same charge on the surface of magnetic
particles leads to a mutual repulsion, preventing agglomeration [30]. Ferrofluid particles
do not precipitate even for a long time, they do not agglomerate and they do not separate
from liquids even by applying an extremely strong magnetic field. The combination of
the liquid phase and the magnetic behavior makes it possible to manipulate the fluid by
changing its position using an external magnetic field [32].

To avoid agglomeration, ferrofluid particles are coated [30,31]. Depending on the
coating, ferrofluids are divided into two groups: surfactant-coated ferrofluids and electro-
statically stabilized ferrofluids [31]. Surfactant-coated ferrofluids contain magnetic particles
coated with amphiphilic molecules such as oleate to prevent aggregation. Spherical repul-
sion between particles acts as a physical barrier that keeps the particles in solution and
stabilizes the colloid. If the particles are dispersed in a nonpolar phase, such as oil, the
polar head of the surfactant is attached to the surface of the particles, and the hydrophobic
chain is in contact with the liquid (Figure 1a). If the particles are dispersed in the polar
phase such as water, a two-layer coating of the particles is required to form a hydrophilic
layer around them (Figure 1b).
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One of the fastest developed areas of research is one in which nanotechnology, biology
and medicine intertwine. According to many experts, the application of nanotechnology in
medicine, better known as nanomedicine, will lead to a revolution in the field of targeted
drug delivery systems [33,34], disease diagnosis, bioengineering and the improvement of
contrast agents in magnetic resonance imaging. The term “teragnostics” is usually used
in this context, which, as the name itself implies, is a synthesis of diagnostics and therapy.
The localization of ferrofluids by the applied magnetic field gives an interesting application
of ferrofluids in medicine. A lot of research has been dedicated to the use of ferrofluids
as a system for targeted delivery of drugs used in chemotherapy [35]. A drug is injected
into tumor carcinomas and retained there for some time by a magnetic field. The amount
of medicine needed is much less than the amount of medicine that would be needed to
distribute the medicine throughout the body. After turning off the magnetic field, the drug
will disperse in the body, but since it is a much smaller amount, there are practically no
side effects.

The ability of ferrofluid to absorb the energy of electromagnetic waves at a frequency
different from the frequency at which water absorbs energy allows heating of the localized
part of the tissue where the ferrofluid is injected (for example, tumors) without heating the
surrounding tissues. This phenomenon is called hyperthermia. Hyperthermia is one of the
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methods used in cancer therapy that is based on increasing the temperature of tumor tissue
above 41 ◦C. As a result, the function of tumor cells is disturbed and they die. Magnetic
hyperthermia is based on the effect of releasing heat when magnetic nanoparticles are found
in a changing magnetic field. Magnetic nanoparticles can be successfully localized in tumor
tissue, which allows heating only in the desired place. In therapy, these particles are most
often used in colloidal form. It is possible to bind chemotherapy drugs or radionuclides to
these particles and thus achieve a combined effect.

2.3. State of the Art in Clinical Drug Delivery Systems Using Ferromagnetic Particles

Drug delivery systems based on nanotechnology have improved the delivery of drugs
due to their changes in pharmacokinetics, enabling a longer half-life of the drug in the
bloodstream and reducing toxicity [36]. Magnetic nanoparticles play an important role in
the diagnosis and treatment of diseases such as cancer, heart and neurological diseases [37].
These particles are often used in the targeted delivery of medically active substances
because they deliver the drug to the desired place via tissue magnetic absorption or strong
ligand–receptor interaction [38].

The drug–carrier complex can be administered intravenously or by arterial injec-
tion [39]. It can also be administered orally, but the main problem with such administration
is the delivery of peptides and proteins due to their breakdown in gastric acid, low absorp-
tion and first-pass metabolism through the liver [40].

If a drug is delivered by a magnetic field, the gradient of the external magnetic field
associated with the magnetic field within human tissues enables the transfer and accu-
mulation of magnetic nanoparticles in the body [41]. However, there are a number of
intracellular and extracellular barriers that can be limiting factors. One of the possible
solutions is covering the surface of nanoparticles with biocompatible materials (different
organic and inorganic compounds) [37]. Coating the surface of nanoparticles increases the
half-life of the drug by delaying clearance [38]. Macrophages take up uncoated nanopar-
ticles at a rate that depends on their functional surface, size and hydrophilicity, followed
by clearance in the liver and spleen. Plasma proteins bind to the surface of nanoparticles,
accelerating phagocytosis. Coatings enable the slowing down of detection by macrophages
and thus reduce clearance. For this purpose, the most often used is polyethylene glycol
(PEG), the attachment of which provides a “stealth” protective effect. PEG is suitable for
this purpose because it shows low toxicity and immunogenicity and is excreted by the
kidneys [42]. In addition, surface coating enables covalent binding of biomolecules such as
antibodies and proteins and their transport to the target tissue. It is necessary that these
coatings be sensitive to the change in pH value, which would enable the controlled release
of the drug [43]. Drug release can be stimulated by chemical radiation, mechanical forces
and magnetic hyperthermia [38].

Figure 2 shows the structure of a magnetic nanoparticle carrying the active molecule
on the surface.

The most important characteristics of nanoparticles used for drug delivery are intrinsic
magnetic properties, the shape and size of nanoparticles, non-toxicity, stability in water,
surface charge and coating. Many magnetic materials with ideal magnetic properties, such
as cobalt or chromium, are very toxic and cannot be used in medicine, while materials
based on iron oxide (magnetite or maghemite) are safe. In addition to low toxicity, these
nanoparticles show high stability against degradation [38]. The size of the particles is such
that they allow entry into biological structures, and it varies from 3 to 30 nm [41].

This method can be applied to solid tumor mass, neoplasms with metastases and
tumors that are in the early phase of cell growth. Treatment would involve the application
of particles that specifically recognize clusters of cancer cells, carrying a medically active
substance that will act [44].
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2.4. Motion of Particles in an External Field and as a Random Variable

Nanoparticles move after collision with smaller water molecules. Smaller water
molecules come across the nanoparticle from all directions and collide with it, thus impart-
ing their momentum to it. When at some point after such a collision a particle receives
a momentum in that direction, it starts to move in that direction, until another water
molecule collides with it and gives it its momentum by collision. If in the field of classical
mechanics, this mode of motion is, in principle, deterministic and there is a corresponding
Hamiltonian [45]. In reality, due to the large number of water molecules that interact with
each other and with the nanoparticle, and due to the unknown initial conditions, such a
system cannot be described using the Hamiltonian in practice, i.e., it is impossible to say
with certainty how much and in which direction the particle will move in at some point. On
the contrary, a shift in any direction is equally probable (this can be seen intuitively from
the symmetry of the system). That is why the tool of statistical physics is used to study such
a system. Due to the large number of water molecules that make up the system, instead
of observing the microscopic effect on the nanoparticle of each of them, one can observe
their “total” macroscopic effect after some time. After repeating such an experiment several
times with the same initial conditions (as much as it can be controlled, e.g., placing a
nanoparticle with the same physical values in the same place), a different value is obtained
for the total macroscopic displacement of the nanoparticle after a certain time. This gives
an empirical distribution of the probability of the total movement of a nanoparticle, and
therefore, instead of looking at exactly how much a nanoparticle will move at a given
moment, one can look at the probability that the particle will move by a certain value at a
given moment.

A fluid containing a large number of particles (Brownian particles) and moving in one
dimension is observed. The density is given by n(x, t), where n is the particle density, x is
the position coordinate and t is the time. Brownian motion over time makes the density
uniform. The flow of particles during diffusion jd is defined by:

jd(x, t) = −D
∂n(x, t)

∂x
(1)

The flow of particles causes a change in density in time according to the continuity equation:

∂n(x, t)
∂t

= −∂jd(x, t)
∂x

= D
∂2n(x, t)

∂x2 (2)
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In the equation, D [m2/s] is the diffusion constant (it depends on the type of particle
material), and the given equation is the diffusion equation. The flow of particles is opposite
to the direction of the density gradient and the flow direction is from the area of higher
density to the area of lower density.

A uniform force field (gravitational field) acts on the Brownian particles. The stated
field accelerates the particles until the velocity reaches a certain limiting velocity, ug, and
where the sum of the forces acting on the particle, the force field, F, and the friction force
is equal to zero, F = mγug, where m is the mass of the particle and γ [1/s] is the velocity
gradient. Now, the particle moves with a velocity ug, which is determined by the force F
and the friction that the fluid acts on the particles. Now, the flux of particles is jF in the
gravitational field:

jF(x, t) = n(x, t)ug =
nF
mγ

(3)

where m is the mass of the particle and mγ is the mass flux [kg/s] and n is the density,
while F is the strength of the force field. The total flow of particles is written:

j = jd + jF (4)

Now, the diffusion equation is:

∂n(x, t)
∂t

= −∂j(x, t)
∂x

= D
∂2n(x, t)

∂x2 − F
mγ

∂n(x, t)
∂x

(5)

For the diffusion coefficient, Einstein finds that the Brownian particle is related to its
mobility µ [s/kg] via the equation:

D = µkT (6)

where k is the Boltzmann constant and T is the temperature. This equation is derived as
follows. For an arbitrary distribution of the density of Brownian particles after a long time,
the flow of particles will equalize and an equilibrium state is obtained (it does not change
with time), n(x, t) = n(x). This is the sedimentation equilibrium, which is independent of
time t0, and then the particle density is where the position coordinate is x0:

n(x) = n(x0)e
F(x−x0)

kT (7)

Now, the first and second derivatives of the particle flow are performed and the total
flow is zero and is obtained as:

D
kT

=
1

mγ
(8)

Accordingly, Einstein’s relation is obtained as:

D =
kT
mγ

= µkT, (9)

where µ = 1/mγ is the mobility of the particles, which is equal to the ratio of the force F
and the limiting velocity ug. The force field can also be of electric potential if the Brownian
particle is charged.

If the density is high, then the interaction of Brownian particles is ignored and the
density is defined as follows. The probability that a Brownian particle is located at the
position coordinate x at time t is defined if it was at time t0 at x0 with V(x, tIx0, t0). Now,
the density is n(x, t), the integral of the product n(x0,t0) and the probability of passing over
all possible values of x0. Moreover, since there are many Brownian particles of density at



Mathematics 2022, 10, 4791 8 of 19

some x, there is a certain probability that the Brownian particles arrived at a certain x in
some time t − t0 from all other particles of the liquid as:

n(x, t) =
∫

n(x0, t0)V(x, t/x0, t0)dx0, (10)

where V(x,t/x0,t0) is conditional probability.
The given equation is included in the diffusion equation as:

∫
n(x0, t0)

∂V(x, t/x0, t0)

∂t
dx0 = D

∫
n(x0, t0)

∂2V(x, t/x0, t0)

∂x2 dx0, (11)

where V is the probability of the position x of the particle at time t.
Both equations are shifted to one side and equalized to zero:

∫ [
n(x0, t0)

(
∂V(x, t/x0, t0)

∂t
− D

∂2V(x, t/x0, t0)

∂x2

)]
dx0 = 0 (12)

The equation will be correct regardless of the value of dx0, which is the derivative
of the position coordinate. Accordingly, the probability V (x, tIx0, t0) fulfills the diffusion
equation as:

∂V(x, t/x0, t0)

∂t
= D

∂2V(x, t/x0, t0)

∂x2 (13)

Since the equation is valid regardless of the selected initial position coordinate x0 and
initial time t0, it is written further as:

∂V(x, t)
∂t

= D
∂2V(x, t)

∂x2 (14)

It is assumed that the initial condition is that at the initial time t0, all particles are at
the same coordinate position x0, and the following can be stated:

V(x0, t0) = δ(x – x0), (15)

where the right side of the equation is the Dirac delta function.
So, the solution for conditional probability, V, is:

V(x0, t0/x, t) =
1√

4πD(t− t0)
e
− (x−x0)

2

4D(t−t0) (16)

The resulting solution is a Gaussian distribution with expected value x0 and variance
4D(t − t0), and the resulting equation is the Green’s function [46].

Now, the time interval within which Brownian motion is observed can be divided
into t0, . . . ,ti, . . . ,tN. ∆X(ti) is the displacement of the Brownian particle between time ti
− 1 and ti. Next, X(ti) is the position of the particle at time ti, and we put X(t0 = 0) = 0.
The Brownian particle is surrounded on all sides by an average equal number of particles
(which is shown by the symmetry of the system), and since there is no total flow of water
in which the particles are located (the average total velocity of water molecules is zero),
the expected probability of the Brownian particle motion is zero because it is equally likely
that it can be hit by a particle from any direction. Accordingly, it can be stated:

〈∆X(ti)〉 = 0 (17)

Now, the position of the particle is:

X(tN) =
N

∑
i=0

∆X(ti) (18)
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The probability of the position is zero:

〈X(tN)〉 = 〈
N

∑
i=0

∆X(ti)〉 =
N

∑
i=0
〈∆X(ti)〉 = 0 (19)

The autocovariance of the displacement of the Brownian motion is:

〈∆X(ti)∆X
(
tj
)
〉 = 0, i 6= j (20)

So, the covariance between two variables is observed. Autocovariance is a measure
of the covariance between the value of a stochastic variable at some time t and its value
at some other time. Correlation is the covariance divided by the product of the variances
of both variables (normalized to the interval from −1 to 1). The correlation between two
variables measures how much one variable changes as the other variable changes, and it
is a measure of their mutual linear dependence. Two variables with a correlation of −1
change exactly the opposite (when one increases, the other always decreases); when the
correlation is 0, there is no linear dependence of one variable on the other; and when the
correlation is 1, when one increases, the other always increases. Furthermore, it is valid for
the variance if there is no autocorrelation between the shifts:

〈X2〉 =
N

∑
i=0
〈∆X(ti)

2〉 (21)

It is assumed that they are all 〈∆X(ti)
2〉 equal and their value is ∆X2, so:

〈X2〉 = N〈∆X2〉 = t
∆X2

∆t
(22)

The time ∆t is the time between collisions between water molecules and Brownian
particles, where a water molecule hits a Brownian particle and then it moves by ±∆X.
When the time ∆t has passed, the Brownian particle collides with the water molecule again
and moves by ±∆X, and so on. The speed of all particles has been replaced with the
average speed, which is the most probable in thermal equilibrium. The displacement of the
Brownian particle ∆x = x(t) − x(0) is related to the diffusion coefficient, as:

D =
1

2∆t
, (23)

and in the following way:
〈X2〉 = 2Dt (24)

Based on the obtained equation and Einstein’s relation [2], it is concluded that the
collision time between two molecules is inversely proportional to the friction constant and
temperature. A higher friction constant (viscosity coefficient) actually means that collisions
with a Brownian particle are more frequent, and a higher speed (temperature) of the particle
leads to more frequent collisions.

2.5. Maple

Maple, a computer algebra software, is general purpose software for symbolism, nu-
meric, graphics and simulation. The symbolic approach implies the exact treatment of
numbers, symbols, expressions and formulas. The numerical approach involves approxi-
mating decimal numbers (the number of digits can be large).

Maple’s library contains over three thousand functions: calculation of derivatives,
solving algebraic and differential equations, operations with matrices, factorization of
polynomials, data processing, creation of FORTRAN or C-code, Fourier transform. Maple’s
document combines text, commands for calculation, results and graphics, and can be
translated into LATEX code. An integral part of Maple is a high-level programming
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language that allows the users to work with their own procedures. They also have packages
of special functions for linear algebra, statistics, geometry and combinatorics.

Maple is used to perform a computer experiment (simulation) when performing an
imaginary experiment. Computer simulation is complementary to theory and experiment.
The model of a system is complex and no analytical solution can be found, so the numerical
method and simulation are used. The computer experiment is based on equations. In the
dynamic model, there is a connection between applied mathematics, computer science
and applied science. One way to explain the motion of ferrofluids in a gravitational field
without the presence of an external magnetic field is:

1. Within the theory, a mathematical model is constructed.
2. Applied mathematics itself provides basic algorithms, computer science provides a

scientific program and computer science provides system software.
3. A computer prediction is obtained which is experimentally verified.

The motion of a ferrofluid in the gravitational field is observed, with the modeling
concept based on the previously elaborated theoretical model. Its chaotic and deterministic
behavior in the system is studied.

3. Results
3.1. Dynamic Model

We analyzed the theoretical model as previously presented and used Maple software
to perform the computational experiment. The ferrofluid in the gravitational field without
the presence of an external magnetic field in the xy plane was observed and the initial
condition on the x and y axes for the ferrofluid is given. It performs 400 collisions with
fluid molecules. For the values of the control parameter p that depend on the viscosity
coefficient and particle mass and size (in analogy with β coefficient in Equation (26), as
shown in the following equations), we obtained a path on the basis of which the movement
can be characterized. The character of the movement itself depends on the value of the
control parameter. The numerical model can conduct a large number of different computer
simulations in a short time. We started with simple low-dimensional deterministic systems
that can exhibit diffusive behavior. Chaotic behavior is possible to be associated with
diffusion in simple low-dimensional models, supporting the idea that chaos was at the
very origin of diffusion [47].

Deterministic diffusion is a phenomenon also present in chaotic maps on the line.
Many researchers are dealing with this phenomenon [5]. In 1908, Langevin used a stochastic
differential equation to describe slow changes in macroscopic variables. A Stokes viscous
force and a fluctuating random force with a Gaussian distribution act on the particle.
Einstein views Brownian motion as diffusion. The Langevin equations are defined as
stochastic equations [48]. Fujisaka and Grossmann worked on the dynamical theory of
Brownian motion [5]. A one-dimensional discrete-time dynamical system example can be
given by Equation (25):

x(t + 1) = [x(t)] + F(x(t)− [x(t)]), (25)

where x (t) is the position of the particle x as a function of time t that is performed by the
diffusion in the real axis. The brackets [ ] denote an integer number of arguments. F(u)
is a map defined at interval [0, 1]. Based on the Langevin equation, we can observe the
Brownian motion of a particle of mass m in a two-dimensional model as follows:

d2ξ

dt2 = −β
dξ

dt
+ fξ , (26)

where:

β =
6πηr

m
, fξ =

Fξ

m
, ξ = x, y, (27)
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where η is fluid viscosity, r is particle radius and m is particle mass. In Equation (26), the
Stokes viscous force and a fluctuating random force with a Gaussian distribution act on
the particle [12].

3.2. Chaotic Model

Considering the equations given in a previous section, the chaotic model can be
mapped as given in Equation (28). Equation (28) is derived from Equation (25) and
describes the Brownian motion of particles in a two-dimensional chaotic model, where
variable t is substituted by ξ = x, y.

ξ(t + 1) = [ξ(t)] + F(ξ(t) − [ξ (t)]); ξ = x, y, (28)

where [ξ] is the integer part of ξ while

F(u) =
{

2(1 + q)u, 0 ≤ u ≤ 1
2

2(1 + q)(u− 1) + 1, 1
2 ≤ u ≤ 1

, (29)

where F(u) is a map defined on the interval [0, 1] that fulfills the following properties:

(i). The map, u(t + 1) = F (u(t)) (mod 1) is chaotic.
(ii). F(u) must be larger than 1 and smaller than 0 for some values of u, so there exists a

non-vanishing probability to escape from each unit cell (a unit cell of real axis is every
interval C` ≡ [`, ` + 1], with ` ∈ Z); ` is a number from the group of integer numbers
Z.

(iii). Fr(u) = 1 − Fl(1 − u), where Fl and Fr define the map in u ∈ [0, 1
2 ] and u ∈ [ 1

2 , 1],
respectively. This anti-symmetry condition with respect to u = 1/2 is introduced to
avoid a net drift.

If the theoretical model presented in our study is mapped by the chaotic model, it can
be stated as in Equation (30). With the introduction of the previous F(u) sinusoidal function,
Equation (28) can be accordingly stated as Equation (30).

ξ(t+1)=ξ(t)+psin(2πξ(t)), (30)

where ξ = x, y is a time-dependent coordinate t and p is a control parameter that depends
on the viscosity coefficient of the fluid.

When a series of computer experiments are performed where the parameter p changes,
it is observed that the Brownian particle can be in a stochastic or chaotic motion. Legitimacy
can be derived from the following. The particle motion has deterministic patterns for the
following values of the parameter p:

p = N +
1
2

, N = 0,
1
2

, 1,
3
2

, 2,
5
2

. . . (31)

Computer experiments showed that the ferrofluid can exhibit different modes of
deterministic dynamics within the two-dimensional model, depending on the initial value
of the parameter p, as shown in Figures 3–8. Figure 3 shows the linear trajectory of
the ferrofluid. Figures 4 and 5 are classic examples of the chaotic motion of a particle.
Figures 6–8 show the transition from a deterministic to chaotic state of the system. This is
demonstrated by the computer experiment where for the same initial condition (input value
of the parameter p), the same patterns were obtained each time the computer simulation
was repeated.
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The condition of the system is described by the vector ξ(t) of d dimension—Equation (30).
The trajectory is discretized in time where the discretization step is τ and the vector of
dimension d is introduced in Equation (32) with the associated string (of m length) given in
Equation (33).

Ξm(t) = (ξ(t), ξ(t + τ), . . . , ξ(t + mτ − τ)) (32)
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Wm(ε, t) = (i(ε, t), i(ε, t + τ), . . . , i(ε, t + mτ − τ)) (33)

where i(ε,t + jτ) denotes the cell of ξ(t + jτ), with a length of ε.
The value of 0.3060 for Kolmogorov–Sinai entropy (equal to the sum of positive

Lyapunov exponents) was obtained, calculated according to the following equations:

hKS = lim
ε→0

h(ε, τ) (34)

h(ε, τ) =
1
τ

lim
m→∞

1
m

Hm(ε, τ) (35)

Hm(ε, τ) = − ∑
Wm(ε)

P(Wm(ε)) ln P(Wm(ε)) (36)

Variable hKS has a value between zero and infinity, thus proving that the system
is chaotic.

4. Discussion

The behavior of a particle (ferrofluid) moving in a fluid under the influence of a
gravitational field without the presence of an external magnetic field is observed. Likewise,
the delivery of drugs to the body could be possible without the presence of any electric
or magnetic field, but only under the influence of the gravitational field. Accordingly,
Brownian motion is studied, which, under the influence of the gravitational field, can be
stochastic, deterministic or chaotic. Different models of the aforementioned movement
have been observed, showing stochastic and chaotic movement [10–13]. Based on the
model in our study, it can be observed that the particle moves randomly for certain values
of the control parameter p and exhibits linearity in motion for other values of the parameter.
The control parameter affects the movement of the particle. Linear motion of the parti-
cles was observed for certain values of the parameter p (as shown in Equation (31) and
Figure 3). For other values of the parameter p, the particles move randomly without any
rule (Figures 4 and 5). It can be noticed from Figures 4–8 that even the chaotic motion can
exhibit patterns of a deterministic movement for certain material properties of the particles
(and the surrounding fluid, as well as their interrelated properties) that will result in the
desired nanofluid behavior.

The control parameter, p, is related to the friction constant and viscosity coefficient.
Friction constant in a fluid motion has a direct relation with Reynolds number that further
determines whether the laminar or turbulent flow of fluid will occur. Parameter p can be
further correlated to the Peclet number in a microfluidic setup, thus indicating advectively
dominated distribution or diffuse fluid flow. Changes in the parameter p are associated with
changes in the viscosity coefficient and particle mass and size. The rheological behavior of
nanofluids is complex because the increase in volume fractions of nanoparticles in a fluid
may result in non-Newtonian nanofluid, with more pronounced temperature effects on
viscosity changes [26].

If we compare Figures 3–8, it can be seen that trajectory shapes were significantly
changed for slight changes in parameter p: a value of 1 resulted in a fully linear trajectory,
while a value of 0.9 produced a fully random path. A further decrease in p to the lowest
value, 0.5, again introduced patterns of linearity within chaotic motion. Since parameter
p is related to the viscosity and particle radius and mass, it could be assumed that such
transitional behavior with changes in p can be attributed to a complex phenomenon
underlining dependencies between viscosity and volume fractions of particles in nanofluids,
consistent with [26]. The rheological behavior of nanofluids is dramatically different for
Newtonian and non-Newtonian nanofluids and dynamic transitions among these two
modes, as influenced by the changes in viscosity are still not fully clarified. Figure 3 (with
the highest p value) and Figure 8 (with the lowest p value) exhibit certain similarities in
trajectory pattern, since both of these have fully linear parts of trajectories, in accordance
with values in Equation (31). For values of p in between these numbers (Equation (31)),
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fully random trajectories were generated by simulation. However, for both of these regimes
(random and linear trajectories), a decrease in p value produced a closer path (denser
total trajectory), in accordance with the fact that viscosity decreases with the decrease in
parameter p.

Accordingly, we could tailor the trajectory path of the particle in the liquid, regardless
of the exogenous power propulsion strategy (e.g., external magnetic field), by tailoring the
values of the parameter p which is related to viscosity and volume fractions of nanopar-
ticles in a fluid. This means that it could be possible to realize targeted drug delivery by
designing the system of nanoparticles in a fluid media at certain temperatures, consistent
with recent research articles [49]. Research showed that there is dependence between
the motility of particles and the density of neighbors, which has been a foundation for
designing self-organizing nanofluids for drug delivery by tailoring the active Brownian
motion of the particle [50]. The density of trajectories in our simulation significantly
changed with changes in parameter p (Figures 3–8), in accordance with research [50] that
showed a different size, density and shape of nano-cluster aggregates due to changes in
Brownian motion.

Fine tailoring of the Brownian motion can produce different desired effects, including
tailoring of the time and amount of the drug release [51]. On the other hand, drug delivery
systems based on micro/nanomotors have been designed to overcome the influence of the
Brownian motion through the control of nanoparticles’ motion by some exogenous force
(like external magnetic field) [49]. If the immobilization of nanoparticles increases, heating
efficiency decreases [51]. How is this related to the confinement of the space within which
the particles’ trajectories can appear (as in the case of path shown at Figure 8) has not been
the study yet, even though there are some studies related to the nanoparticle motion in a
cylindrical tube and associated effects of the boundaries, curvature, size and density of the
particle, including the influence of the Brownian dynamics [52] and transport phenomena
in confined flows of nanoparticles [53]. Tuning of polymer amphiphilicity can increase the
efficiency of drug delivery systems [54]. Amphiphilicity has direct influence on the particle
collision modes, thus indicating that chaotic models of Brownian motion might exhibit
patterns in particle trajectories for certain conditions.

Néel relaxation of magnetic nanoparticles has been studied, but the study on the cor-
relation of Brownian motion to another magnetic relaxation mechanism is recent, showing
the influence of Brownian relaxation on nanocage size [55]. There are complex interactions
in the coupling of Brownian and Néel relaxation processes [56], which produces a highly
nonlinear field-dependent magnetization response, including the pronounced influence of
the size of nanoparticles clusters [57].

There is a correlation between the magnetization curve of the ferromagnetic particles
system and Langevin curve [58]. If we observe single-domain ferromagnetic particles, their
magnetic behavior at elevated temperatures can be correlated to the atomistic Langevin
paramagnetism [59]. On the other hand, changes in temperature result in viscosity changes;
thus, it is reasonable to expect that we could apply our model to a colloidal suspension
of single-domain magnetic particles—ferrofluid, as described in previous chapters. The
magnitude of the uniform magnetization vector for a single-domain ferromagnetic particle
is proven to be constant with the direction of fluctuation based on a random motion of
particles due to the heat changes (thermal agitation) [60]. Accordingly, the deterministic
stochastic processes might be representative of such a process, meaning that the Langevin
equation is relevant [60]. In the case of our model, we assume that parameter p has a corre-
lation to the viscosity coefficient, particle radius and its mass, which further influences the
degree of deterministic behavior of the chaotic system, as shown in Figures 3–8. However,
further study is needed in relation to additional parameters that describe the magnetic
behavior of ferrofluids.

Based on the above results, it can be concluded that the delivery of drugs could
be executed without the presence of an external magnetic or electric field. Patterns of
deterministic trajectories can be designed by predefined values of the parameter p in a
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computer simulation, which can further lead to the design of the nanoparticle system
for targeted drug delivery without an exogenous power propulsion strategy. However,
complex relations between different influential factors need further study, including further
development of the theoretical model for the motion of nanoparticles in an external field
and fluid environment. The significance of such a dynamic model for the development
of drug delivery systems is related to the possibility to control the motion of the drug-
containing nanoparticles, through the design of the inherent material properties of the
particles and surrounding media. The possibility to use and influence Brownian motion
to produce patterned particles’ trajectories in diffusive motion of the ferrofluid aiming to
assist in more efficient drug delivery systems of ferromagnetic nanofluids would support
significant advancements in medical treatments.

5. Conclusions

A chaotic model of Brownian motion was theoretically analyzed and simulated using
Maple software. The chaotic model was mapped and control parameter p was introduced,
which depends on the viscosity coefficient and particle mass and size, in analogy with
the Langevin equation. The ferrofluid in the gravitational field without the presence of
an external magnetic field in a two-dimensional mathematical model was observed. It
performed 400 collisions with fluid molecules.

Computer simulation showed that nanoparticles can exhibit deterministic patterns in a
chaotic model for certain material properties of the particles (and the surrounding fluid, as
well as their interrelated properties) that could result in the controlled nanofluid behavior.
Trajectory shapes were significantly changed for slight changes in the parameter p: a value
of 1 resulted in a fully linear trajectory, while a value of 0.9 produced a fully random path.
The lowest value of p (0.5) introduced patterns of linearity within chaotic motion, with
noticed changes in the shape and density of trajectories. Since parameter p is related to
the fluid viscosity and particle radius and mass, it could be assumed that such transitional
behavior with changes in the parameter p can be attributed to a complex phenomenon
underlining dependencies between viscosity and volume fractions of particles in nanofluids.
For values of p in between the designated numbers (Equation (31)), fully random trajectories
were generated by simulation. Accordingly, we could tailor the trajectory path of the
particle in the liquid, regardless of the exogenous power propulsion strategy (e.g., external
magnetic field), by tailoring the values of the parameter p, which is related to viscosity and
volume fractions of nanoparticles in a fluid.

Fine tailoring of the Brownian motion can produce different desired effects, including
tailoring of the time and amount of the drug release. Patterns of deterministic trajectories
can be designed by predefined values of the parameter p in a computer simulation, which
can further lead to the design of the nanoparticle system for targeted drug delivery without
an exogenous power propulsion strategy (e.g., external magnetic field). However, complex
relations between different influential factors need further study, including further devel-
opment of the theoretical model that will consider magnetic properties of the nanoparticles
in a ferrofluid.
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