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Abstract: Two new approximation formulas for Bateman’s G-function are presented with strictly
monotonic error functions and we deduced their sharp bounds. We also studied the completely
monotonic (CM) degrees of two functions involving G(r), deducing two of its inequalities and
improving some of the recently published results.
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1. Introduction and Preliminaries
Bateman’s G-function is defined as [1]

G(r)=y¢((1+7r)/2) —y¢(r/2), reR-{0,—1,-2,...} 1)

where ¥(r) = % InT () is the digamma function and T is the Euler gamma function [2].
The function G(r) has several inequalities, such as
Qiu and Vuorinen [3]: 4(15-In4)r2<G(r)—r 1< 1r? r>3 (2)
Mortici [4]: 0<G(r)<y+y(1/2)+3/2, r>2 (3)
Mahmoud and et al. [5]: ln<;i—§> + ﬁ <G(r) < ln(:_‘t—%) + ﬁ r>0 (4)
Nantomah [6]: G(r)>1+ 2(T11)2’ r>0 (5)
2271 < G(r) =2 <2e—2In2—2¢#1, r>0 (6)
where 7 is the Euler-Mascheroni constant and the constants ¢c; = 3 and ¢; = e4f216 are the

best possible.
Mahmoud and Almuashi [7] presented a generalization of Bateman’s G-function by

G =v(E57) ~(3).

and they proved the following inequality:

r# =2m,2m—p; 0<p<2;,m=0,1,2,...

P _ _r :
1n<r+£+1><Gp(r) (r+p)r<ln<r+0+1)’ r>0; pe(0,2)

where ¢ = W and ¢ = 1 are the best possible.
1
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Recently, Ahfaf, Mahmoud, and Talat [8] introduced the following rational approximations
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with

1 (1-22""2)By12
7 and A, = T m

m—1 2m—2s+2
1-2

s=1

BZm72s+2As
1—s+m

Al = ,m>1
where B]’-s are Bernoulli numbers. As a consequence, they presented the new bounds

4 2

,
2(r6 + 1t =32 4 ‘%7)

r

<G(r)—1/r< ), )

2(r4 + 323

where the lower bound and the upper bound hold for » > 0 and r > @, respectively,

and 1 1
2r2 My (r) <Gl -1/r< 2r2My(r)’ ®

where the lower bound and the upper bound hold for » > 0 and r > 15—3, respectively, with

1 3 27 423 9927 324423 14098527

Mi(r) =145 = AT 56 165 T 3210 642 T 12814
and
Ma(r) =14 13 27 423 997 324423 14098527 787622823
2T AT T A T g6 T 168 ' 3210 64rl2 128714 256116

Bateman’s G-function is useful in summing certain numerical and algebraic series [9].
For example:
= (=)™ 1 < b )
=—Gl5]), a#0,-p-28,... )
m;() x+pm 2B B
and hence we obtain 77 = G(1/2) and In4 = G(1). The function G(r) and its generalization
Gp(r) are related to the generalized hypergeometric functions by the relations [7]

1
G(r)=r"! 2F1<1,1;1—|—r;), r>0

2
and
Go(r) = ﬁ 3F2<1,1,P;2;2,r+§+2;1>, r>0,0<p<2.
There is a relation between the function G(r) and the Wallis’s ratio %, neN.

Furthermore, the sequence

-1 /2
L, = ’”T U (sinu)'“du], meN,
0

which appears in the computation of the intersecting probability between a plane couple
and a convex body [10], is related to the function G(r) (see Ref. [11]).

The outline of the paper is as follows: Section 1 provides the definition of the Bateman’s
G-function with some of its inequalities. In Section 2, we studied the CM degrees of two
functions involving G(r) and, consequently, we presented two new inequalities of G(r),
which improve some recently published results. Additionally, we proved that the function

el(r)—r3[ +ln<f++I> —G(r)}, r>0

r(1+r)

is strictly increasing with the sharp bounds 0 < 6;(r) < %, and the function

6(r) = r4[r(12+r) —|—1n(fj__;> _ % _ G(r)}, r>0
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is strictly decreasing with the sharp bounds > < 6;(r) < 0.

2. Main Results

Recall that a function H(r) on r > 0 is called CM if its derivatives exist for all orders,
such that
(=1)"H™(r) >0, r>0; meN.

From Bernstein’s well-known theory, the convergence of the following improper
integral determines the necessary and sufficient condition for H(r) to be CM on r > 0 [12]

H(r) = /Ooo e "dé(u), r>0 (10)

where & (u) is non-decreasing and bounded for > 0. Let H(r) be a CM function for r > 0
and consider the notation H(c0) = lim, e H(r). If ¥’[H(r) — H(c0)] is a CM function for
r > 0if and only if § € [0, @]; then, the number @ € R is called the CM degree of H(r) for
r > 0 and is denoted by deg,,[H(r)] = @. This concept gives more accuracy in measuring
the complete monotonicity property [13,14].

Theorem 1. The function

2 2471 1
Pl(r)—G(r)r(1+r)ln(r+1)+3r3, r>0 (11)
satisfies that 2 < degiy[Fi(r)] < 3.
Proof. Using the relation [5]
c ) 0o p—rU p 0 b
(r) = /0 Tren u, r> (12)
we obtain 2y (1)
© o= 2y (1)
E _ o P2\ g , 0
1(r) 0 6(e”+1)ue u, r>
where
o) = e®ud +e3u® +12e"u — 66 +6
_ oty i 2173 (m? — 3m? 4 2m — 48) +3""3 (m® —3m> 4 2m) +12m
m!
m=>5
> 0, u>0.

Then, F;(r) is the CM function. Furthermore, using the asymptotic formula [5]

1 & (22" —1)Byy,

G(T‘)_;NmZ::l W’ r — o0 (13)
we have
F = lim F(r) = li 3 2 L op9) =0
1(0) = lim Fy(r) = lim 54 55 (™)) =0.
Now,

) —2u
2 € —ru
rFrf/i we ™du, r>0
l( ) 0 3(6” 1)3u3X1( )
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where
x(u) = e"ud4 e (19u2 +27u + 18>u + 6(2142 +2u + 1) + 3¢t (u3 —u? —2u— 2)

4 3et (2u3 £ 110% + 10u + 4) 1 363 (9u3 T 2u— 4)

et 378u° N 468u° N 6073u” N 13318 | 42001u° N 504139110
B 5 5 70 2 945 18900
= fm m
+ Z u
= 2400m!
with
fm = —144000(2(3™) +4™ —2) +192(m — 1) (m — 2)m5™ + 125m(576(2m + 3) (m + 1)
+ o 9(=26+ (m—7)m)A™ + 64(m(3m — 8) — 1)3™ + 3(m(19m — 3) + 56)2m+3)

144000m° + 36000012 4- 216000m -+ 288000 + 5™ (192m3 — 576m? + 384m)
4+ o (1125m3 — 7875m® — 29250m — 144000)

+ 3™ (24000m3 — 64000m2 — 80001 — 288000)
n

i (57000m3 — 9000m? + 168000m) >0, m>10.

Then, 2 < degc,,[Fi(r)]. However,
00 6_2”

rPR(r) = /

——x2(w)e ™du, r>0
0 (en41)*ud ()
) = =264 <8u4 +2u3 — 6u — 9) + o (u3 +3u? + 6u + 6) — 2<4u3 + 6u” + 6u + 3)
—4e (2u + 100 + 1507 +12u +3) — e (2u* + 31 + 4507 + 42u + 18
—2¢% <5u4 +13u® + 15u® + 6u — 6)
with x2(0.5) = 2.08162 and x7(0.9) = —21.5214. Then, r3F;(r) is not a CM function; hence,
degiy[Fi(r)] <3. O

From Theorem 1, the function F; (r) is a decreasing function and F; (c0) = 0; then, we
obtain the following result:

Corollary 1. The function G(r) satisfies that

2 2+ 1
1 —— , . 14
r(1—|—r)+n(r+1> 3r3<G(r) r>0 (14)
Theorem 2. The function
2 2+7r 1 3
= - tsg— 1
E(r) AT +ln(r+1> 33 + 2 G(r), r>0 (15)

satisfies that 3 < degy,[Fo(r)] < 4.

Proof. Using the relation (12), we have

« Kl(u) —ru
F(r) = ————e ""d
2(r) /0 12(e“+1)ue u, r>0
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where
ki(u) = 3But4e"(Bu—2)u —2u® — 24e "u — 1272 +12
215 & by,
= 5t Loqggm 70 w0
with

b, = 2m2 (81m4 — 594m3 + 1215m> — 702m + 5184)
13m (4m4 — 323 + 68m? — 40m) — 2592m

> (m-2) (85m3 — 456m> + 371m — 2592) >0, m>6.

Then, F,(r) is a CM function. Furthermore, using the asymptotic Formula (13), we
obtain

F(0) = lim F(r) = lim ( 25 + O(r7)) =0.

r—yc0 oo\ 55 6
Now,
PE(r) = /Oo Luélxg,(u)e*mdu, r>0
0 2(e*+1)ut
where
xs(u) = 3Pyt 4t (50u4 + 8u® — 24y — 36) + 4(4u3 +6u% + 6u + 3)

ot (4u4 + 6203 +90u> + 84u + 36) 4265 (6u4 —u® —3u? —6u— 6)
4 4% (8u4 + 133 + 1512 + 6u — 6) 4 (19u4 + 8813 + 12002 + 961 + 24)

672u° N 19681° N 6851217 N 8250718 N 717838u°
5 105 105 945

him

5
[ee)
+ Z 648000071
m=10

m

with

2560000m*3™ + 1265625m*4™ + 124416m*5™ + 625m*2"+33m+1 4 961875m*2"+3
25920000m* — 850176m35™ — 625m32" 43"+ _ 625m,32m+53m+1 _ 3200001332
1569375m>2" 4 — 3391875m322" 1 4 246240000m°> + 339200001m%3™
11491875m%4™ + 124416m>5™ + 625m>2m+63m+1 | 25,22 +33m+2
8150625m22"+3 — 336960000m> — 14950656m5™ + 608000013™ 1

—  625m2" 43 +2 4 13314375m2™ 4 — 22426875m2°™ 1 4 6091200001

—  (124416)5™+* — (640000)3" 3 + (151875)2" 10 — (455625)22"+9 4 233280000

= 25920000m* + 246240000m> — 33696000012 + 6091200001 + 233280000

5" <124416m4 — 850176m° + 124416m> — 149506561 — 77760000)

hm

+ o+ o+ o+

p2m (1265625m4 — 6783750m° + 11491875m2 — 44853750m — 233280000)
o (7695000m4 + 251100001 4 6520500012 + 2130300001 + 155520000)

6" (15000m4 — 90000m° + 1650001 — 90000m)

+ o+ o+ o+

3" (25600001114 — 288000013 + 339200001 4 18240000m — 155520000) >0, m2>09.
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Then, 3 < deg,[F>(r)]. However,
HE(r) = /oo l)@(u)e*”‘du, r>0
0 (e +1)°ud
where
xa(u) = <u4 + 41® +120% + 24u + 24) - 8<2u4 + 413 + 6u% + 6u + 3)

— 263y (11u4 + 7513 + 1400 + 180u + 120) +2¢4 (u5 — 35u* — 60u® — 60u* + 60)
— e <2u5 +31u* + 60u + 84u? + 72u + 24)

S (2u5 + 79 + 15613 + 22817 + 2161 + 96)

+ o <732u5 — 11w — 1207 + 120 4 72u + 96)

with x4(1.2) = 1268.84 and x4(1.3) = —1981.21. Then, *F,(r) is not a CM function and,
hence, degq,[Fi(r)] < 4. O

From Theorem 2, the function F,(r) is a decreasing function and F,(c0) = 0; then, we
obtain the following result:

Corollary 2. The function G(r) satisfies that

2 2+ 1 3
G(r)<7’(1+7")+1n(1’—0—1>_31’3+27"4’ r > 0. (16)
Lemma 1. The function
01(r) = 1 m(Z ) e, r>o0 (17)
N v+ ) r+1 ’

is a strictly increasing function with sharp bounds 0 < 61(r) < %

Proof. Using the relation (12), we have

—2u u 2u
® e 2etu —e 4+ 1
61(r) = —r3/ ( )e_”‘du, r>0
0

(e +1)u
and p .
—0(r) = rz/ Lu)ze*’”du
dr 0 (et + e21)?y
where
o(u) = -— (Zuz +7u+ 3)6” + (3 —4u — 4u2)62“ +(B+u)e —2u—3
_ i MmA9 a1 2 (m? 4+ m —3) + (14 m) (3 + 2m) S w0
= m! 9+m ’ ’
Using the induction, we obtain
g1 (m? +m —3)2" 4+ (m +1)(3 +2m) s

9+m
with the aid of the relation

3(2m(m*+m—3)+ (2m+3)(1+m)) 2" (m+ (m+1)? —2) + (m+2)(5+2m)
m+9 a m + 10




Mathematics 2022, 10, 4787 70f8

4 2412 17) 4+ 2" (m3 + 9m? — 31m — 72
_ m(m* 4+ 12m +17) 4 2" (m> 4 9m m )>0, .
(m+9)(m +10)

Then, 6, (r) is a strictly increasing function on r > 0. Furthermore,

lim 6 (r) = lim | (—y — 2 +1n(2) — ¥(1/2))r® + (; — ”2> 4y O(rS)} =0,

r—0 r—0 6
and . 3 .
. TSN I G S| N
fim 61 (r) = }13;0[3 2 o ﬂ 3
where v = —I"(1) is the Euler-Mascheroni constant. Hence, 0 < 6;(r) < } with sharp
bounds. O
Lemma 2. The function
2 2+7r 1
4
Or(r) =7 {r(1+r)+n(r+1> 33 G(r)}, r>0 (18)

is a strictly decreasing function with sharp bounds _73 < 61(r) <0.

Proof. Using the relation
02(r) = —r*F (r), r>0

we have p
[ee)
—0y(r) = —1’3/ _ () s—e du
dr 0 6(e" +1)u
where
— 4u, 3 3uf,3 _ u
w3(u) = eMu’+2e <u 3u 12) +12(u+2) + 6e*(u+4)2u+1)
+ e®(u(u(u+24) +36) — 24)
= 870912u° + 11197440u° + 93747456u” + 645470208u® + 39709440001°
o0
le m
+ ) u"™ u>0
=, 1728m!
with
4, = 4" (27m3 —81m? + 54m) 43 (128m3 — 38412 — 3200m — 41472)

+2m (216m3 +9720m? + 21168m — 41472) + 72576m + 41472 + 20736m>
> 0, m>10.

Then, 6,(r) is a strictly decreasing function on r > 0. Furthermore,

lim 6 (r) = lim [+*(— —2+In(2) - $(1/2)) - £ + O(*)] =0,

r—0 r—0
and — 3
. _ . v <2 -2 _ >
}52092(7)_}%[ 2+5r+O(r )] =5

Hence, 5> < 61(r) < 0 with sharp bounds. O

Remark 1. The lower bound of (14) is better than the lower bound of (4) for r > 1.62. Furthermore,
the upper bound of (16) is better than the lower bound of (4) for r > %.

Remark 2. The lower bound of (14) is better than the lower bound of (5) for v > 1.2.
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Remark 3. The lower bound of (14) is better than the lower bound of (6) for r > 0.73. Furthermore,
the upper bound of (16) is better than the upper bound of (6) for r > 0.97.

Remark 4. The lower bound of (14) is better than the lower bound of (8) for 0.86745 < r < 2.45.

Remark 5. The Upper bound of (16) is better than the upper bound of (8) for 0 < r < 2.77879.

3. Conclusions

The main conclusions of this paper are stated in Lemmas 1 and 2. Concretely speaking,
the authors studied two approximations for Bateman’s G-function. The approximate
formulas are characterized by one strictly increasing towards G(r) as a lower bound, and
the other strictly decreasing as an upper bound with the increases in r values. Furthermore,
our new two-sided inequality for G(r) improved some of the recently published results.
The results enable us to obtain the bounds of some alternating series, some generalized
hypergeometric functions, Wallis’s ratio, and some other functions.
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