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Abstract: In this research, we investigate an optimal control problem governed by elliptic PDEs with
Dirichlet boundary conditions on complex connected domains, which can be utilized to model the
cooling process of concrete dam pouring. A new convergence result for two-dimensional Dirichlet
boundary control is proven with the Fourier finite volume element method. The Lagrange multiplier
approach is employed to find the optimality systems of the Dirichlet boundary optimal control
problem. The discrete optimal control problem is then obtained by applying the Fourier finite volume
element method based on Galerkin variational formulation for optimality systems, that is, using
Fourier expansion in the azimuthal direction and the finite volume element method in the radial
direction, respectively. In this way, the original two-dimensional problem is reduced to a sequence of
one-dimensional problems, with the Dirichlet boundary acting as an interval endpoint at which a
quadratic interpolation scheme can be implemented. The convergence order of state, adjoint state,
and Dirichlet boundary control are therefore proved. The effectiveness of the method is demonstrated
numerically, and numerical data is provided to support the theoretical analysis.

Keywords: dirichlet boundary control; complex connected domain; fourier finite volume element
method; error estimates; L2 norm

MSC: 65N12; 65N22; 35]67; 49M25

1. Introduction

Partial differential equations are commonly used to describe two-dimensional plane
stable field equations like steady concentration distributions, stable temperature distribu-
tions, electrostatic field equations, steady current field equations without rotation, and
steady flow equations without rotation [1-4]. The optimal control problems governed by
elliptic partial differential equations also play an important role in physical engineering,
biological engineering, and social sciences areas, see [5-10]. Since the 1970s, the numer-
ical approximation methods for optimal control problems have all received increasing
attention. The main research methods are the finite difference method [11], finite element
method [12-15], finite volume element method [16], and spectral method [17-19].

The optimal control problem [6,7] is a mathematical problem in which the minimum
value of an objective function is determined under differential equation constraints. Finding
a numerical solution is essential because it is challenging to find an analytical solution to
a problem of this nature. In this paper, we look at a Dirichlet boundary optimal control
problem on a complex connected domain that is governed by elliptic equations. The form
is as follows:

. 1 2 &2
min J(y,u) .= 5lly = yalliai) + 5 1ullz200,) 1)
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subject to
—Ay=f, inQ,
y=u, on an/ (2)
0
aszz =0, ond.

The set O C R? denotes a bounded complex connected domain with boundary
I' = 90 UdQ),. Equation (2) is a state equation, y is the state variable, u € 9(); is the
Dirichlet boundary control variable, « > 0 is a regularization parameter, and y; € H!(Q),
f € HY(Q). ny is the outer unit normal of the boundary 9Q),. U, is the admissible control
set which is assumed to be of box type

u € Uy = {u e HY2(d0y) 11y < u < ub}

with u, < u; denoting constants. The domain is shown as Figure 1.

.

Figure 1. Domain.

This optimal Dirichlet boundary control problem can be used to describe the cooling
process of concrete dam pouring [20]. 9€); is the pipe boundary on which the cold water
enters and is therefore a Dirichlet boundary control condition. () indicates the region where
the cold water acts, and y; is the ideal state; the goal is to control the temperature of the
cold water so that the temperature y € () is infinitely close to y;. Note that there is no heat
exchange on 0(); and hence a homogeneous Neumann boundary condition.

Dirichlet boundary control problems are more challenging than Neumann control
or distributed control problems in general, both theoretically and numerically. However,
the Dirichlet situation is attracting an increasing number of researchers. For example, the
semilinear elliptic Dirichlet boundary control problem with pointwise control constraints in
a convex, polygonal, open domain is studied and the 1 — 1/p convergence order of control
is derived in [21]. The authors in [22] considered Dirichlet boundary control problems
posed on smooth domains and obtained that the error order of control is k|Ink|'/?. Based
on a mixed variation scheme, the authors in [23] used a mixed finite element method to
approximate the optimal control problem posed on both polygonal and general smooth
domains. The authors in [24] used local mesh refinement toward the boundary by standard
finite element discretizations and arrived second-order convergence. [25] also derived
second-order convergence for elliptic Dirichlet boundary control but in finite dimensional
control space. Numerical analysis for elliptic control problems can be found in [21,26-28].
For more details, one may refer to [12,29,30] and the references therein. In addition, for
finite element approximations of distributed and Neumann boundary optimal control
problems one can see [31-35], and for other numerical methods, one may refer to [36-39].

The finite volume element method (FVEM) is a discretization technique for partial
differential equations. It is widely employed in the numerical approximation of some
problems for partial differential equations because of its local conservative property and
other appealing properties, such as robustness with unstructured meshes. For instance, the
authors in [40] analyzed the spatially semidiscrete piecewise linear finite volume element
method for parabolic equations in a convex polygonal domain in the plane. Two-grid finite
volume element discretization techniques were presented for the two-dimensional second-
order nonself-adjoint and indefinite linear elliptic problems and the two-dimensional
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second-order nonlinear elliptic problems in [41]. A priori error estimates for a semidiscrete
piecewise linear finite volume element approximation to a second-order wave equation in
a two-dimensional convex polygonal domain is discussed in [42]. More applications of the
finite volume element method can be referred to [43-50] and the references therein.

The combination of the finite volume element method with other numerical meth-
ods can generate competitive numerical methods for solving partial differential equation
problems. For example, an immersed finite volume element method was used to solve the
elliptic interface problems in [51]. A one-parameter family of discontinuous Galerkin finite
volume element methods was applied to approximate the solution of a class of second-order
linear elliptic problems in [52]. The Fourier finite volume element method was employed to
study two-dimensional quasigeostrophic equations on a sphere in [53]. The authors in [54]
utilized the Fourier finite volume element method to give the numerical experiments of two
classes of Dirichlet and distributed optimal control problems driven by elliptic PDEs on
complex connected domains. The main concept behind the Fourier finite volume element
approach is to employ the finite volume element method in the radial direction while
applying the Fourier expansion in the azimuthal direction. In the radial direction, choose
linear finite element and piecewise constant function spaces for the trial and test function
spaces, respectively. The control for the variational inequality is generated employing a
variational discretization technique (see [55]). As a result, the two-dimensional optimal
control problem can be simplified to a sequence of one-dimension problems. A desired
result can be obtained by this procedure.

Generally, the Dirichlet boundary optimal control problem is typically challenging
to achieve a high order in two-dimensional environments. The purpose of this article is
to provide a related theoretical explanation of this problem, as a prior work on numerical
simulation [54] demonstrates that the Fourier finite element approach can reduce the error
order of Dirichlet boundary control on complex connected domains. In addition, it is worth
noting that, in contrast to [25], the Dirichlet boundary control space in this work possesses
infinite dimensions.

To the best of our knowledge, this is the first study to estimate the convergence order of
the Dirichlet boundary control problem using the Fourier finite volume element approach
on complex connected domains. The error of Dirichlet boundary control consists of two
parts: the Fourier truncation error and the one-dimensional finite volume element error.
The Fourier finite volume element approach is applied to reduce a two-dimensional optimal
control problem to a group of one-dimensional problems, with the Dirichlet boundary act-
ing as an interval endpoint at which a quadratic interpolation scheme can be implemented
so that Dirichlet boundary control can be reached to higher order convergence. It is pointed
out here that this proving method can also be extended to the parabolic problem.

The outline for this paper is provided below. In Section 2, we deduce the optimal
control problem and corresponding optimality conditions. In order to solve the elliptic
problem, the Fourier finite volume element method is introduced in Section 3. In Section 4,
the Fourier finite volume element method is used to demonstrate the convergence order of
the Dirichlet boundary control. A few examples are given in Section 5 to help illustrate the
theoretical analysis. Some recommendations are made toward the end of Section 6.

2. Optimality System

Form > 0and 1 < s < oo, applying the standard notation W""* for Sobolev space
on Q with || - ||n,s 0 and denoting by H™ (Q}) with norm || - ||, o and seminorm | - |, q for
s = 2. Thatis,

W™ (Q) :={v € L*(Q),|D*v € L°(Q)),Va € Z}, |a| < m},
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and

s

anwm,s(Q) = ( Z /Q|D1XU|de) ’ |U|Wm,s(0) = ( Z /Q|D"‘v|sdx) ,

la|<m |a|=m

where D*v denotes the a-th order weak derivative of v.

We use (-, -) for the L2(Q)-inner product, {-,-) 2, for the L?(90) )-inner product,
(+,+)q for the L?(Q)-inner product, (-, ), for the L?(Ty)-inner product, and (-, -), for the
L?(I)-inner product.

LetY := {v € HY(Q),v|pn, =u} and V := {v € H(Q), 0|50, = 0}; the weak formu-
lation of the state Equation (2) reads: find y € Y such that

a(y,v) = (f,0), Yo eV, ®)

where the bilinear form a(-, -) is given by

a(y,v) :/QVy-Vvdx.

Then, the optimal control problem (1) and (2) can be described as: Find (y, u) € Y x Uy

S uud (4)

oy min T ) = gl = valliz o) + § 1l 2o, ).
st. a(y,v) = (f,v),VoeV.

Suppose that (7, 1) is the optimal solution. This is due to the fact that the control
problem is strictly convex and satisfies the existence and uniqueness requirements of
the solution in the constrained state Equation (2). Then, using the Lagrange multiplier
method [5,7] to construct Lagrange function

L(y,u,p) = J(y,u) - /Q(—Ay ~fpdx = /anl y —wppds - /?502 (aézlz)pds'

We take the Fréchet derivative with respect to the state y and choose a special p(u),
such that
Ly(y(u),u, p) = 0. ®)

The adjoint state equation can be obtained as follows:

—Ap=iy—y,; inQ,

p=0, on 0Q)q, (6)
a% =0, on 0();.

The weak form of the adjoint state equation reads:
a(p,v) = (¥ —ya,v), Vo e V. @)

We take the Fréchet derivative with respect to u. Then, the variation inequality, that is,
the optimality condition is obtained:

9%
<rxﬁ—ap,u—ﬂ> >0, Yuely, (8)
n o0

where p is the solution of adjoint state Equation (6) and 71 is the outer unit normal of the
boundary 00);.
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That is, the necessary and sufficient condition for control # € U,; to be optimal is that it
satisfies the variation inequality (8).
Taken together, the following theorem holds.

Theorem 1 ([56]). Assuming that the objective functional is in the form of (1), the optimal control
of the problem (P) exists and is unique, and the control u € U,y is determined by the solution
{7, p, 1} of the optimality system, that is,

a(y,v) = (f,v), Vo eV, (9a)

a(p,w) = (J—yq,w), Yw €V, (9b)

Wil — a—p,u —1 >0, Yu € Uy. (9¢0)
anl 301

Ify € H*(Q) and p € H*(Q), then the optimality systems (9) can be written by

—Ay=f, =Ap =7 —Ya in €,
J=1i,p=0, on 0Q)q,
a7 ap
Tyz — 0, sza: , on aQZ,
_ p _
— " ) (u— > .
/801 <ocu o > (u—1)ds >0, Vuely

The variation inequality (8) is equivalent to

) 10p
u = Puud (aanl> |anl

and the action of the orthogonal projection Py ,: HY2(90)) v U,y is given by

Pu,,(8(x)) = max{us, min{g(x), up}}.

Then, the optimality system (9) can be written as

a(7,0) = (f,0), Vo e V, (102)

a(p,w) =G —yzw) YweV, (10b)
1 op

i =Py, ((xarﬁ) a0 (10¢)

3. Fourier Finite Volume Element Method
3.1. Polar Coordinates Transform

Given the definition of the arbitrary bounded annular domain

Q= {(X1,xz) P g1(x1,x2) < af 423 < gz(xl,xz)},
where g1 and g, are the functions defined on () satisfying

00 = {(xllxz) 1xf 4 a3 = gl(x1/x2)}/ 00 = {(x1,xz) x4 = gz(x1,x2)},
let x; = rcos® and x, = rsind, then, in the polar coordinates (7, 6),
00 —» T :r=Rq(0), 00y — T :r=Ry(0), 6 € [0,27),

i—cosei_@i i—sinei-k@i
o o 1 00 0xy ar  r 90
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ny = —

The Laplacian operator A in the polar coordinates is

2 19 102

A= et e
and
c089+Rggg sin 51n97R ) cos cosQ+RE) R,(e)
, N2 =
R’ (6) R, (6
Ve G e () LG \/H (4
y(rcosf,rsinf) (0) dy(rcosf,rsind)
Wx,x2) (i, xe) dy(xux) or () o
ony ox;  Oxp ! !

1(6) ) 2
Tt ( Ri(©)
where 17 denotes the outer unit normal of the boundary I';.
Assumption 1. There exist positive constants 71, y2, y3 and 74 such that

0 <91 < Ri(0) < Rap(8) <72 < 00,

[Ri(0)] <715 < o0,

2(6)] < 74 < oo

Setting y :=y(r,0), f := f(r,0), yq := ya(r,0), on the boundary u = u(0)|r,. The form
of (2) in polar coordinates is

y=u, only,
R0 oy (11)
" R3(6) %
=0, onTsp,

where Q = (R1(0), Rp(0)) x (0,2m).

Remark 1. The boundary condition on T'y of (11) can be written as % =0, ﬁ%gz) g—z =0, the
2

=

derivation process will be given later.
Let Yf = {U S Hl(Q),Uh"l = M(G)}, Uudf = {u S Hl/z(l“l) CUg <u< ub}, Vf =
{v € HY(Q),v|r, = 0}. Define that

1

1 27 2
o]l 12(q) = (©,0)§ = (/ / (r,0)| drd9> Vo €V,

1

% 27 5 2
ull2(ryy = (u,u)f, = (/0 Rq(0)[u(R1(6),0)] d9) Vi€ Uy

Obviously, there holds that ||o(r,0)| 20y = llo(x1,%2) |12y, [4(R1(8),0) |12 (r,)

l[u(x1, %2) | 1206, )-
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In the polar coordinates, the optimal control problem (4) can be redescribed as: Find

(y,u) € Y¢ x Uggr such that

lIGU[,df

porond T, u) = 31y — vall?2(0) + §llull iz,
' st. A(y,v) = (f,0)g, Vv eV,

where the bilinear form A(+,-) and (f,v), are given by

_ dy dv 1%y
Ay, v) = /Qrggdrde— Q;Wvdrde,

(f,0) = /Q Fordrde,

respectively.
The optimality system (9) can be written as

A(3,0) = (f,0)g Vo €V},
Alpw) = (7 ya),w) o, Yw €V,

a5 R.(6)9p
7 /R (0)2 1+ R2 ap _™\v)op g >
<ocu Ri(0)" +R%(0) + <8r R) ae)R1(9),u u>r > 0,Yu € Uggy-
1

3.2. Fourier Expansion and Truncation

Since the solution y(r,0) of (11) is periodic in 6, it can be written as:

[0 9)

y(r,0) = | ; Ym(r)e™,
m|=0

21 .
where v, (r) = %/ y(r,0)e”™m0dp.
0
Taking an truncation [57] to (14),

M .
yr(r,0) = Y ym(r)e™.
|m|=0

Substitute (15) into (11), we can obtain

Py 19y | 1%y .
- <8r2 ror Taae ) = fp inQ

yf = Llf, on Fl,
Wi _ g Ry0) 9y _
Trf =0, Rg(e)TGf =0, on Iy,
M . M 4
with fr = ¥ fn(r)e™® and up= Yy t (r)e™.
|m|=0 |m|=0

(12)

(13a)
(13b)

(13¢)

(14)

(15)

(16)

The optimal control problem (P) can be redescribed as: Find (yf, u f> € Y¢ X Ugay

such that

2
L2(Q
s.t. A(yf,vf> = (ff,vf)Q,V vf € Vf,

. %Huf i?(rl)’

up€Upgm

(pf) min ](yf,uf) = %Hyf—ydf

(17)
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M .
where yg, = % ya, (e,
|m|=0
Obviously, (16) can be rewritten as:
Py | 1dym w2 .

(B2 ) =g m

Ym = Um, onTIy, (18)

Aym R, (0

=0 Régeiym =0, on Ty,

where m = 0,+1,+2,..., =M.

We now give the process of deriving the boundary conditions on I'; of (11), (16)
and (18):

Proof. The initial form of the boundary condition on 9(), of the Cartesian coordinate
system is

Y 0 onaQn.
anz

After a polar coordinate transformation, it becomes

dr  R3(f) 90
Ry(0)?
1+ (rw)
According to Assumption 1, it is the equivalent to

dy _Ry(6)dy _

ar  R%(6) 00 o

=0, on 1"2.

0, onlIjy.

Expanded and truncated by Fourier series, then, we have

W Ry(0) s _,

or Rie) o8 " oM

namely

dr R2(0)

M / )
<d]/m im RZ(G)]/W[)elme — 0/ on rz.

|m|=0

According to the orthogonality of the trigonometric system and Assumption 1, we
derive
27 Ry (6)

27, .
0= —ZNE/ emle—ind gg <
0

. . 27 .
eme—inf gg < ZHE/ eme=infgg — 0 n #m,
72 0

Jo  R3(6) T

then, we have

7 (dyw . Ry(0) imo —imo 10 _ [T [ dym . R5(0) _
/0 (dr—sz%(e)ym e"e dﬂ—/o W—sz%w)ym dd =0, onTs.

From R, (27) = Ry(0) # 0, we get

dym R)(0) _
i 0, R%(G)ym =0, onTs.
Thus, we have
0 R.(6) 0
Wi _o, KOs onr,,

or R2(0) 09
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and 9 R,(0)d
Y 2 Y
-2 =0, =0, onI,
or R3(0) 90
O
Correspondingly, the adjoint state equation of (18) is
pw dpm .
_(dfz +%%_% ) fi’l’l/ an/
pm =0, onTy, (19)
dpm R, (0
b _ o, Rggei P =0, on Ty,
where m = 0,£1,42,...,£M.
The weak forms of (18) and (19) are as follows:
Am(Jm, om) = (fm,vm)Q,va € Vs, (20a)
Am(Pmy m) = ((Fm — ydm),wm)Q,Vwm € Vg, (20b)

where fi, U, Wi, Pm, Yq,, are defined like y,,, with m = 0, £1, £2,..., £M and the bilinear
form Ay (-, -) is given by

dym dv m?
A (Y Om) = Qr%d—;"drdﬂ n /Q " ynondrde.
From the above, 6 € [0,277), and y, (1) = % f )e~™dp. Consider the Fourier
interpolation at point 6, = 2;&" (k=1,2, 3 ):
17 —imf 1 ¢ —imf
ynr) = 5= [ y(r, 00 a0 ~ 52 Yy, 0)e %, ey
k=1

where M is the number of grid lines in the 6 direction. It applies to fu, Ya,,, Vm, Wi, P, Um-
Denoting vy, () = ym(7, 6x), correspondingly, (15) becomes

M
Vi = Z( Zymk ”"9"> ", (22)

m|=0

where y_is the approximation of y¢ and the definition of f¢ and y, ,, are similar.

3.3. Finite Volume Element Method

For any fixed k = 1,2,---,M, I'1 = Ry(f) x (0,271) becomes to I';, = Ry(),
I = Rz(@) (0 27'[) to ng = RZ(Gk) and I = (R1(9 ,R2< )) to I = (R1 (Gk) Rz(e )
u

Y, = {veH' (L) vo=umonTy}, Upy = {u € HY2(Ty,) tup <u <
M M M

Vi, := {v € H'(It),o =00n Ty },and Yy, := k® Yo Unag, := k® Undmgr Vi, = & Viny.
=1 =1

Define some norms and seminorm as follows:

! R (6x) 5 7
HUHLZ(Ik) = (U,v),k = / ) rlo|*dr | Vv € Vy,,

R1(6k
_ (9dv Jv 2 o o |2
|U|H1(Ik) = g,g L =

/Rz(f’k)
R1(0k) ' or

2
dr) Vo € Vi,
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. 2 2 2
respectively, and ||v||H1(Ik) = [loll2,) + \v|H1(Ik),Vv € Vi,

Il o, ) = (w0, = (Ra(@)]u(Ra(00), (60)F) it € Ung,.

It is easy to prove that these norms are well defined. There holds:

[or

1
2

L2 < ZHUHLZ Ik ) ’vvf'r € Yf‘r’
1

2
2(r ( 2” ||L2< )) ’vufTeuadfT'

The corresponding discrete norms are defined as follows:

o

1 .\
lonll2y) = (@non)p, = (Z/ rlop| dr) Nop €Y,

1

””hHLz(rlk> (“h/uh)l%“ = (R1(9k)|uh(|R1(9k)/ (ek))|2)§rvuh € Uy, -

1k

There holds:

H Ui

1
2
12(Q - ( Z”UhHLZ (I) ) Vg, € YJ]?T,

1
2
h
H | 2 ( ZHuhHL2< )) Vg, € Upg.
The definition of discrete functions and discrete spaces will be given later.
The cost functional with state Equation (18) becomes an optimal control problem over
a one-dimensional fixed interval. From (18), it can be inferred that:

A2y, Aym 2 .
( LT L. *;zymk) — fu, in I = (Ri(6), Ra(60),

Ymy = Umy, only,, (23)
d?;:k —0, %Ez'}:;ymk =0, onT,,
wherem = 0,+1,4+2,...,£M.
The optimality system can be rewritten as:
Ay (T vmy) = (karUMk)Ik/VUMk € Vi, (24a)
Ay (Por o) = (9, ydmk>,wmk)lk,Vwmk € Vi, (24b)

i
<“ﬂmk \/ Ry (6)% + R3(6x) + Zrm" Rq(6k), i, — ﬁmk>r > 0, Vi, € U, (24c)
1k

where the bilinear form A, (-, ) is given by

AYm, dv
Ay (Ymyr Omy) :/ 7 d’:k d;""d +m/ — Yy Uy dr.
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The optimal control problem (Pf) can be redescribed as: Find (y Forlh fr) € Yy, X Uggy,
such that

2
Ji%

+§ us

min ](yfT,MfT) = %Hyfr — Yy, 2

Pe ) { e laise 12(Q)t L2(ry), 7 (25)
(%) st. Ar(vpovr) = (Frovr) o " O € Vi

M M . .

wherey¢ = ¥ (1\1/[ Y Ym, (r)e”"ek> e™0, the definition of UferYd o ¢, ff, are similar.

|m|=0 k=1 ’

For the purpose of finite volume element approximation of (24a), discretizing the
interval [Ry(6x), R2(6x)] into a grid Tj, with nodes

R, (Gk) = TQ(Qk) <rmn (9]() < Tz(ek) << TN_1(9k) < TN(Qk) = Rz(ek).

Denoting the mesh size h;(6x) = r;(6x) — ri—1(6k), and writing I, = [r;i_1(0k), 7i(6k)]-
Placing a dual grid T;; with nodes

Ri(0x) = 7r0(6k) < 11/2(6k) < 713/2(0k) < ... <7n—1/2(6k) < 7n(0k) = Ra(6),

write It = [ri_1/2(0k), rit1/2(00)], I, = [ro(6k), 71/2(0k)] and I = [ry—1/2(6k), 7 (6k)]-
Typical basis function ¢;(r) on I, and ¢;(r) on I]fj are shown below

T—n7 r—ri(0)|,  ri1(B) <7 < ri(6),
¢i(r) = 1=h br—ri(0)], ri(6) <7 <ripa(6k), (26)
0. elsewhere.
1, relr,
() — j
$i(r) { 0. rél. (27)

Now, let Y,ﬁk be the standard linear finite element space defined on the Tj:
Y,Zk = {v € C(I) : vy, is piecewise linear function for all I; € T }
and its dual volume element space Y#,:
Y#;; = {v € L3 () : vl I is piecewise constant function for all Iy € Ty }

Obviously, Y} = span{cp]«(r)}jlio and Yji' = span{lpj(r)}]-lio.
Two interpolation projection operators I, : Yy, — Yf,‘lk and IT; : Y, — Y,ﬁ: are
defined and satisfy HZY,},’W =Y

my/
N N

thmk = Zymk,i(Pi(r)r szmk = vak,jlpj(r)/
i=0 =0

where Yy, i = Yy (1i(6k)) and vy j = Oy (rj(65)). Denoting v, := yy, (m,), the finite
volume element approximation corresponding to the state equation in problem (P, ) is
defined by the function yfnk € Yf}lk such that

Am, (y’fnk,l_[vak) = (fes h0m) 10 yzﬂrlk = U, VIT}0m, € Y0, (28)
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where

i172(06) T
. ) ymk,jJrlfymk,j
=Tj-1/2 - ]+1/2(9k)T

+m? (111 (”j+1/2(9k)) —In (ij1/z(9k)) )ymk,j
_ rim12(8k) o rir12(0) .
- h] mk/]fl h/ur] mk/]+l
rio172(0k)  rir1/2(6%)
+ (1 STl e s (ln(”j+1/2(9k)) —1n(7j—1/2(9k))))ymk,j-
7iv1/2(0k)

(fmkﬂl’j(”))lk = Sy (7)rdr.

rji-172(6k)

ri12(00) dyy, dip;(r) 200 1
P B j+172(06) Ay, dip; 2/ i
A, (ymk,ll;](r)) —/r o) r o dr dr+m ) Y, A1

j—1/2
ymk,jf]/mk,jfl
(Gk) IR

(29)

The formulation (28) is reduced to the linear system

h
Kmkymk - fmk/

the elements of Ky, with

- 1(8 ; 4 i

ajj =" 1;;( 2 m}ll]/if D <1n(r]-+1/2(9k)) - ln(rf—lﬂwk)))’ J=12 N,
6

agog = 7‘1/%17(“ —+ mz(ln(rl/z(ek)) - ln(ro(ek)))’

4 1

any = 320 2 (in(ry (6)) — In(ry_1/2(61)),

. _ _"j—l/z(ok) -
a1 = = i=12,...N,

o ripya(8) . B
Tl = ="y j=012,..,N-1,

T T .
where yf’nk = (y%klo,yf’nkrl, .. .,yﬁlk/N) , fmy = (fmkroffmk,lr .. "fmk,N) . The numerical solu-
tion of the Equation (23) is obtained by solving this linear system.
Now, the optimality system is:

Amk (y%k/HZUmO = (fmkznzvmk)lk/ Vnzvmk S Yiﬁl’;}t/ (303)
A (Pl T0m, ) = (7, — ydmk),HZwmk)Ik,VHZwmk €Y, (30b)
T / 2 2 dﬁlf/lflk —
it/ R (0) + R2(60;) + PR (O) g — ) 2 0, ik € Ungy, (300)
I

k

M M

Let Y}’ =Q Yf,ik, Y}’* =Q Yf,i: The semidiscrete optimal control problem can be
T k=1 T k=1

described as: Find (yj%r,u f1> € Y}’T X Uggf, such that

2

(Ph ) ufrnellil?dfr ](yﬁ,uﬁ) = %Hyﬁ ~ Yy, iz(Q),T +3||up 12(1y), 31)

Je s.t. Afr (y?T,H;;va) = (fferZUfr)Q/T/VH;vfr S YhT*,

M M M M
hoo_ 1 W —imby \ ,imb hooTTE ._ 1 —h
where e = m)|:—o(MkE1ymke " k>61m r A (yfT’Hhva) o \m%;:o(ﬂkglmmk(ymk’

HZUMk))e—imGk)eimG_
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Last, the variational discretization method is used to discretize u;,,, denoting

Uy 1= u%k, Y= y%k (u’fnk); then, the optimality system is

Au (T T50m,) = (o T0m ), VIT0m, € Yo, (32a)

A (Pi Tyom,) = (7 - ydmk>,HZwmk>Ik,VH,’;wmk e Y, (32b)

d
<Dﬂ/_lh \/Rll (Gk)z + R%(Bk) + %Rl (Gk)r uy — ﬁh> >0, Vuh c Uadmk- (32C)
I,

The full-discrete optimal control problem can be described as:  Find
(yfh,u fh) € Yj}k X Ufjd such that

+%H”fh

miLrllf?d Jn (yfh’ufﬂ) = %Hyfh ~ Yy, 2 i2(r1/T),

P us, € L2(Q),7 (33)
( fh) S.:. Afr (yfh,H;‘lva> = (ffT,HZUfT)Q,T,VHZUfT € th*/

M M . .

where Ul := Uggr, yp, = L (1\1/1 X yhe’m9k> ¢™® and the definition of py,, u, are sim-
|m|=0 k=1

ilar.

Theorem 2. The discrete optimal control of the problem (Pfh> exists and is unique, and the control

ugp € U;’d is determined by the solution {}7 Fur Pror R, } of the optimality system, that is,

- * * * h*
Af, (yfh,Hhva) = (ffT,Hhva)Q,T,VHhvfr € Yf'[ , (34a)
— * = * * hx
Af (pfh’nhwﬂ) - ((yfh - ydfr)’]'—[hwa>Q,T’ VILywr, € Yi7, (34b)
_ ap _
<"‘”fh \/R/1(6k)2 +R3(0) + a:h Ry (6k), up, — ufh>r ] > 0,Vuy, € Ul (34c)
1,

4. A Priori Error Estimates
In this section, the error estimate between continuous optimal control problem (P)
and discrete optimal control problem (Pfh> are obtained.

Here and in what follows, we use “a S b” to denote that there exists a positive generic
constant C, which is independent of M and #, such that “a < Cb”. “a ~ b” means that
“a<b<a.

Before giving the main result, some Lemmas need to be listed.

Lemma 1 ([17]). For arbitrary v € H'((0,27)),1 > %,

<M o), (35)

o=

M 1 M . imb
whereve, = ¥ (3 L Oy (1r)e ™05 ) g,
Im|=0\ " k=1

From the results of [16], we can derive the next two Lemmas similarly.

Lemma 2. It holds

h h h h
Amk (ymkfnzvmk> 5 Hymk‘

Umk

VY O €Y (36)

H(I) H(I)
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2
h h
Amk (ymk’ thmk) z ’y%k Hl(lk)/ Vymk € Ymk' (37)
Lemma 3. It holds
( Hv) —(vh Tyt ) vyt ot e Yl (38)
ymk/ hYmy I - my’s hymk Ik’ ymk/ my my*
Amk (y}flflk’ szhmk) Amk( my/ Zygﬂ(> vymk/ My 6 Yh (39)
1/2 . )
Set H ‘y%k = (y%k'niﬁ‘y%k)ﬂ(lk)’ then |||-|| is equivalent to [|-[|; on'Y, mk' that is
h h h h
Hymk LZ Ik) < ‘Hymk S Hymk Lz(lk)! Vymk S Ymk' (40)

Lemma 4. Let i, € H?(I;) be the solution of Equation (23) and y‘%k € Y,’}Zk be the solution of
Equation (28); then, the following estimate holds:

_ _h _
‘ymk ~ Yy HI(L) S h‘ymk‘Hz(]k)' (41)

The proof refers to [16].

Lemma 5 ([58]). Let y%k € Y,’;k be the solution of Equation (28), and ¥, be the solution of
Equation (23) with §m, € Y, N H?(Iy), and §, € H*(Iy), fm, € H'(Ix); then, the following
estimate holds:

The proof refers to Theorem 3.5 in [58].

|7 = 7,

Remark 2. Similarly, for ﬁ’fnk € Y,’Zlk and Py, € Y, N H?(I;) as the solution of corresponding
adjoint state equation of (28) and (23), respectively, and Ya,, € H L(Iy), it holds

H1<1k>> ' #3)

Lemma 6 ([7]). Let (Jmy, my, Pmy) € (Yo X Uggmy, X Vi, ) be the solutions of (24), (i, iy,
pn) € (Y,ﬁ;k X Upgm, X Y,ﬁ;k) be the solutions of (32) and (3721](, ;‘%J € (Y,ﬁk X Y,’;k) be the
solution of (30), respectively. Then, the following estimates hold

Hﬁmk - ﬁlfnk 12(1y) < hz(”ﬁmkHHZ(Ik) + H]]mk _]/dmk

dp, dp , _ _ 12 . o2
<R1(9k)( I drmk>/“mk - Mh>r1k S —Hy’fnk Ll P Hy’,ﬁik ~Ime]| oy 44
_ _ 12
D(C()Humk - uhHL2< ) + Hymk yh 12(1,) i (45)
- - d_l”l dpnl - -
S [l — uhHLZ(Hk) (e 12(r,) + Hy”‘k L L2(1)’

. 2
where ¢y = _min \/(R’l (6k))” + R3(6x).
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Proof. We first show (44). Using I} (ﬁ%k> and IT; (p) time the state equations about

g},lnk and g, [T, (yﬁi}) and I} (7;,) time the adjoint state equations about ﬁhmk and pj, and
integrate on interval I, respectively, we can obtion that

Amk (y‘ilnk,l_[; (ﬁ%») - (fmk,HZ (pﬁnk))l

Amy (f”fnkrnfz (?%k» = (y_mk = Yy, 1T (?ﬁqk))lk - <(d?:k)f mle(Qk)>r , (46)
T

A (T TH (PR ) = (Fng T (P)) 1 o
A, (P T (7)) = (90 = v, 153 (7)), = () o R1@0) ) @

m@m%m<mw%x

_ - _ (48)
v (Pl TH50) ) = (T = Vit 11 < 113 R1(0) >r /
1k
i (G0 XT3 (Pn)) = (o T (P1)) 0 "
= * (= ~ * [ = dpy
Ay (P 1T, (F1)) = (yh - ydmkfnh(yh))lk - <( T ) ”th(Gk)>r]k- #9)
From Lemma 3 and the above four formulas, it can be deduced that
w [ zh (s _ * [ =h % 7 —
(o 04)), = s 5 68)), + () i), =0
(= N * [ Sh di - _
U 0P, = (90 = v, 131 (7)), + () amiRs 00), =0,
app, \ -
(P 10 () ) = (e = Ve T ) )+ (S ) uRa8) ) =0,
I k I ry, (51)
N ‘(i )\ - _
(fouer 1T (P1)) 5, (yh ]/dmk/Hh(yh))Ik + <( ; )/uth(f)k)>rlk =0.
Then, from the above two formulas, we have
dp}, o\ -
), - -8, +{ (%~ B i), o
& (52)

slh o i 4pin
(fmkfﬂh (Pf%k - Ph))lk = (G = T T () g, + <( e~ d’”) uhR1(9k)>r =0.
Tk

Subtracting the two equations in (52), we can derive that

A dpy  Pm )\
(ymk = Un 1y, (yilnk - yh))lk + < (;rh - drm) (it — uh)R1(9k)> =0. (53)
I

k
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Hence, using Young's inequality and the definition of |||-|||, we have

dpy,  dpn,\
<R1<ek)< P _ ;k>,umk —uh>
I

- (yh — Fmp, 115 (y%k - yh))lk

= (90~ o TG (T =) ), + (P — T T (7, — 1)), )
2 2

<o (7, —m) L%&)+-C<@Hymk—-y%k v = [~
2 2

< e ||15; (7, — 9) T )| — | ey~ 70— 7| 2’

where ¢ > 0 is a bounded constant. Let ¢ — 0, we complete the proof of (44).
Next, we show (45). Let uy,, = 1y, in (24c) and uy, = i, in (32¢), respectively. Then,
adding the two inequalities, we obtain

dp,  Apm\ - _
oy (R} 60))7 + B3 @0) , — 3y, ) < (Rato) (2~ )’”h>r 65)

According to (44) and Cauchy inequality, we get

dp dp
<R1(9k) <dprh_ Z;nk)/ﬁmk_ﬂh>r
Tk

— dp dﬁil”k - - dﬁ}flﬂk dﬁmk - -
- <R1(9k) (dr - d?’ /umk — Uy i + Rl (ek) dr - dr /umk — Uy : (56)
1 Ik
2 2 dﬁh dp
< 7. _gh e, ok = M Py
S e = Ty = = g Wlha(r,) | a 2(r,)
Lk

Combining (55) and (56), we complete the proof. [J

Lemma 7. Let the conditions of Lemma 6 be fulfilled, also, py, € H>*F(I), 3 < B < 1. Then,
there holds

dr dr

< K2,

~

H dpw, AP,

L2 (le)

Proof. Forany fixedk = 1,2,3,..., M, R1(6y) is a fixed point. From the Sobolev embedding
theorem [16]: H>*P(I;) — C2(I;) for 4 < B < 1. Then, using quadratic interpolation
scheme, we have

Ph (1, ) = 2P (Ral06) ~ 40, (RaO0) 1) (280 +20)

by the Taylor expansion,

Remark 3. Based on the regularity of the right-hand side of the adjoint Equation (24b), we assume
that pm, € H>TP(Iy), % < B < 1is reasonable.

h
(R (8))| S

= | PPy (0))

[
=i

dﬁmk dﬁ%k

dr dr

12 (le)

O
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Proof. Since f,, € H'(I;), we have §,, € H?(I;). From §u, — Ydn, € H'(I) and elliptic
regularity, it implies that p € H3(I) N Vi, € H2*P(Iy) N Vi, 3 < B < 1, using the trace
theorem with this together, and the relation of iy, and p,, we obtain i, € Hl(lk) C
H? (Ix), which combining with f,,, € H*(I;) in turns gives ,, € H2(I;) N Yy, O

Lemmas8. Let (i, Pm;) € (Y, X Vin,) be the solutions of (24) and (g, andpy,) € (Y,’flk X Y,ﬁk)
be the solution of (32), respectively. Then, there holds

1Pme = Pullizgsy S 19m = il + [P = Ph] oy, (57)
Proof. Combined with (30b) and (32b), then
Amy (ﬁ%k - ﬁh,H;w) = (T, — Jn Iw) V€ Yy, . (58)

Taking w = ﬁ%k — P in (58) to get
A (Pl = P T (P = 1)) = (9 = 90 T (Pl = P1) ) Vo €0 (59)

By Lemma 2 and Young’s inequality,

A (Pl = pu TG (P, = 21)) 2 [P = 2 i 6O
o0, <l sl Sl

2
<y _ 2 “h =
~ ||]/mk thLZ(Ik) + Hpmk Pn Lz(lk)’
which, together with the triangle inequality, leads to the estimate (57). O

Based on the above Lemmas, we can immediately obtain the following main results of

optimal error estimates.
Theorem 3. Let (7,p,11) € (HX(Q)NY) x (H*F(Q)NV) x U,y and (y'fh,ﬁfh,ﬁfh) €
(HZ(Q) N Y}Zk) X (H2+ﬁ(Q) N Yj’}k) X U";d, (% <B< 1) be the solutions of the problems (P)

and (Pfh) respectively. Then we have

- < _1 2

H” Uil 2 any ~ M2 + Mh?, (62)
. _1 2

Hy “Yhill 2 S M72 + Mh?, (63)
_ _ _1

Hp ~Phill 20 < M2+ MK (64)
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Proof. Combined with the above Lemmas, there holds:

Hﬁ_ﬂfh 12(30)) = Hﬂ_ﬂfT Lz(rl)+HﬁfT_ﬂf“ L2(Tq)
M 1 M
< M~ 72| + I .
H2M) =0 Mk;l( e 2(ry)
SME4 ) Z( e P (65)
mmol| Mz \ dr dr 12(y)
M |1 M
+ ) ﬁZ(y’mk—y’ﬁik)e imB
|m|=0 k=1 12(Q)
<M+ MK,
Hy_y_fh ) = Hy_yff 12 +H37ff Il 2
M M
SMgl oy Y | v X e — e
H2 () |m|=0 Mk:l L2(Q)
M 1 M
SME Y Y (T — 7 e (66)
|m|:0 k=1 LZ(Q)
1 1 M M
SM72+ 4 Yoy
|m|=0k=1
< M2 + MR?,
Hﬁ_ﬁfh @) = Hﬁ_ﬁfT L2(Q)+Hﬁfr_ﬁfh 12(Q)
SM7pl g+ f iﬁ(ﬁmﬁm)e‘im@
HZ () |m|=0 Mk:l 12(Q)
<M7 4 f i%(— — ) e + % i%( _ )efz‘mek (67)
~ M ymk Yn M pmk pmk
|m|=0 k=1 2(Q) |ml=0 k=1 12(Q)
<misyl ﬁ %h%ri ﬁ %lﬁ
~ M |m|=0k=1 M |m|=0k=1
<M 2+ MI?

where M can be controlled artificially so as not to affect the error order. [

5. Numerical Experiments

In this section, numerical experiments are presented for the Fourier finite volume
element method to confirm the theoretical results. The numbers of grid points are N + 1 and
L in the radial and azimuthal direction, respectively. So the total number of computational
nodes is NL = (N + 1) x L. Here, fixed M = L = 64. In the numerical experiments, L2
and L* norms are defined as follows (see [59]):

Ey = $I\}LI§ (”fh) (Uexa); 2, \J Zl(uﬁj (Uexa);

2

7
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Ew = max{' (Wh) — (Uexa);

i

Et = max{‘ (”fh) — (Uexa);

i

,i=1,2,..,NL},

i=1,2,...,L}

For the error functional, the experimental order of convergence is defined by

log E(hy) — log E(hy)

Order = log hy — log hy

The Algorithm 1 is as follows:

Algorithm 1: Algorithm for the solution of optimal control problem.

1: Provide an initial u( of the control function u;

Solve the equation of state in y using the above u;

Solve the adjoint equation for p, being known y and y;

Compute the new control function u; using the above p;

If |ug — u1] < 1.0 x 10719, setting us, = uy, else setting 1o = u1 and goto step 2;
Take the last computed control function uy, to compute the yz, and py, .

5.1. Experiment 1

The first experiment is an unconstrained problem defined on the domain Q) = {1 <
x? +x% < 2} with

2
T 1Y . /N . T TN .
f= (16 + ﬂ) sm(zr) sinf — P cos(Zr) sin 6,
(TN T 1 TN . 1 . /oy .
Yi = sm(Zr) sinf — \fz“[(4 - 7'[7’2> cos(zr) sin@ — > sm(zr) sm9].
The optimal solution is given by
. (TT .
y= sm(zr) sinf,
V2
p=a— cos(Er) sin 6,
V2

u= - sin6,
where « = 1.3 is selected.

The corresponding numerical results of grid refinement analysis for experiment 1 are
presented in Table 1, which contains the error and convergence order of the control u, the
state y and the adjoint state p in the sense of both L2-norm and L®-norm. Figure 2 depicts
the convergence orders by slopes. It is apparent that the second order convergence rates of
u, 1, p are achieved with this methods.

The numerical solution uy, versus exact solution u with N = 64 is shown in Figure 3a,
and the error of control u is plotted in Figure 3b. Figures 4—-6 show the numerical solution
and the exact solution for the state and adjoint the error between them, respectively. From
Figure 6, we find that both errors are of the scale of 10~* at N = 64, which indicates that
the numerical method has a good approximation.
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Table 1. Error of control u, state y, and adjoint state p for experiment 1 with fixed L.

(a) L2-norm
N llug, —ulli2aa,)  Order |lyg, —yll2q)  Order ||ps, —plli2@q) ~ Order
8 1.2641 x 102 1.0022 x 102 6.1839 x 1073
16 2.9821 x 1073 2.12 2.3802 x 1073 2.11 1.4400 x 1073 2.15
32 7.2104 x 10~4 2.07 5.7755 x 10~4 2.06 3.4628 x 1074 2.08
64 1.7706 x 10~4 2.04 1.4208 x 104 2.03 8.4826 x 107> 2.04
128 43852 x 107> 2.02 3.5227 x 107> 2.02 2.0988 x 107> 2.02
256 1.0914 x 10—° 2.01 8.7656 x 10~° 2.01 5.2182 x 10~° 2.01
512 2.7245 x 107° 2.00 2.1842 x 10~° 2.01 1.3001 x 10~ 2.01
(b) L*°-norm
N llug, —ull~@aq,) Order  |lyg, —yllix(q) Order  |[ps —pllr=q) Order
8 1.7877 x 102 1.6492 x 1072 1.1750 x 102
16 42173 x 1073 2.12 4.0400 x 1073 2.04 2.8245 x 1073 2.08
32 1.0197 x 1073 2.07 9.9734 x 10~* 2.03 6.9079 x 10~4 2.04
64 2.5040 x 10~* 2.04 24758 x 10~ 2.01 1.7070 x 10~4 2.02
128 6.2016 x 107> 2.02 6.1673 x 107° 2.01 42423 x 107> 2.01
256 1.5435 x 10~ 2.01 1.5383 x 10~ 2.00 1.0571 x 10~° 2.01
512 3.8531 x 10~° 2.00 3.8379 x 10~° 2.00 2.6369 x 107° 2.00

) —— lluy-ull 2 5 —t— -l =
i —— vl 2 i —a— vl =
28 —— lIpy-pll 2 28 ——llpy,-pll =

o) oit)

08 1 1.2 14 16 18 2 22 24 26 28 08 1 1.2 14 16 18 2 22 24 26 28
logy () logy )

Figure 2. Convergence orders of uy, — 1,y —y, and py, — p in different norms.

+  numerical solution

exact solution

(a) (b)

Figure 3. The numerical solution u f, versus exact solution u (a), error u 5, — u(b) for experiment
1 with N = 64.
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Figure 6. Error for state y (a) and adjoint state p (b) with N = 64.

5.2. Experiment 2
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The second experiment is an constrained control problem defined on the Q) = {1 <

x? 4+ x5 < 2} with

max(0, sin 6),

5
— -7 — =+ = +3 ) max(0,sin6),
a2
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the optimal solution is given by

y

14

1 <r2 — 4y + 5) max(0, sin0),

p= (r2 —4r +3) max(0, sin 6),

2
u=- max(0, sin 6),

where &« = 1.3 is selected.

Table 2 presents the error and convergence order of the control u, the state y, and the

adjoint state p in the sense of both L?>-norm and L*®-norm, the corresponding profiles of
their convergence order are shown in Figure 7. From them, we derive that the convergence
order of these three variables are second.

Table 2. Error of control u, state y and adjoint state p for experiment 2 with fixed L.

(a) L2-norm
N ugp, —ulli2@q,)  Order  |lys, —ylli2q)  Order  |[|ps —pll2(q) ~ Order
8 1.8638 x 1073 7.5762 x 10~4 1.4328 x 1073
16 4.6715 x 104 1.99 2.0419 x 10~* 1.86 34342 x 1074 2.09
32 1.1707 x 10~4 2.00 5.2882 x 107° 1.93 8.4040 x 10™°> 2.04
64 29414 x 1073 1.99 1.3358 x 10~ 1.98 2.0831 x 107° 2.02
128 7.5096 x 10~° 1.96 3.2515 x 10~° 2.05 5.2401 x 10~° 1.99
256 2.0341 x 10~ 1.85 7.1071 x 107 2.29 1.3680 x 10~° 1.92
(b) L*®-norm
N lup, —ull=@0,)  Order |lyf —yllp=@q)  Order ||ps, —plli~q)  Order
8 3.7278 x 1073 29252 x 1073 4.4435 x 1073
16 9.3417 x 10~* 2.00 8.2853 x 104 1.77 1.1098 x 103 2.00
32 2.3401 x 1074 2.00 2.2003 x 10~* 1.88 2.7740 x 10~* 2.00
64 5.8703 x 107> 1.99 5.6482 x 107° 1.95 6.9430 x 107> 2.00
128 1.4881 x 10~° 1.97 1.4089 x 10~° 2.00 1.7464 x 105 1.99
256 3.9240 x 10~° 1.90 3.3027 x 10~° 2.13 4.4741 x 10~° 1.95
? —— liyull 2 ? —— vl =
—a— ¥l 2 —a— llyyll =
N —e—lipbll 2 —a— Pl
ot [elip)

log, ferror]
&

22 24 2B 28

12 14 16 18 2
logy 4 (M)

03 1

log, ferror]

T os

22 24 2B 28

112 14 16 18 2
log, (1)

Figure 7. Convergence orders of uy, — u,y5, — y, and ps, — p in different norms.

Figure 8a,c describe the profile of the exact and numerical solution of control u, while
Figure 8b,d display its numerical error with N = 64 and N = 128, respectively. From this
figure, we can also observe that the convergence order is second. The numerical solution
and the exact solution of the state and adjoint are presented in Figures 9-11 and error
between them is showed in Figure 11. Figure 12 depicts the continuous Dirichlet boundary
control u and discrete Dirichlet boundary control u, together with their active sets, it is
clear to see that the discrete active set is approximate to active set. These numerical results
demonstrate the efficiency of our proposed method.
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6. Concluding Remarks

This research explored an optimal control problem on a complex connected domain
governed by elliptic PDEs with Dirichlet boundary conditions. First, the optimality system
for the optimal control problem is determined. Then, using the Fourier finite volume
element approach to convert this problem into polar coordinates and discretize the optimal
control problem. Next, the convergence order of the Dirichlet boundary control, the state,
and the adjoint state are proven. This error estimate contains two components: the Fourier
truncation error and the one-dimensional finite volume element error. Finally, numerical
experiments are shown to back up the theoretical findings.
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