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Abstract: The Saudi economy ought to maintain a significant amount of foreign exchange reserves
due to the pegged exchange rate regime. As a hydrocarbon economy, we measure the dynamic
response of external assets and liabilities of banks to the international oil price in Saudi Arabia. In the
presence of extreme observations, we apply sophisticated frameworks, including cross-quantilograms,
quantile-on-quantile and TVP-VAR approaches, to analyze weekly time-series data from 1993 to 2021.
Our results from the cross-quantilogram and quantile-on-quantile frameworks demonstrate that
foreign assets and liabilities responded asymmetrically to the volatilities of international oil prices
under the bullish and bearish states of the market over different memories. The TVP-VAR results
indicate that, during the COVID-19 pandemic, the Saudi economy encountered negative net foreign
assets, which occurred mainly as a significant plague of international oil prices. Our findings are
robust under different estimators.
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1. Introduction

Over the recent decade, the Saudi Arabian economy enjoyed a stable oil revenue along
with stable economic growth. The steady oil revenue and economic growth can be attributed
to the pegged foreign exchange rate system since June 1986. More importantly, the pegged
exchange rate system provided a credible anchor of stability, reduced transaction costs, and
simplified the conduct of the macroeconomic policy. Meanwhile, despite some progress in
diversification, the Saudi economy remains dependent, to varying degrees, on the hydrocarbon
economy and related activities. Despite the stability in the exchange rate, one of the drawbacks
of a pegged exchanges rate is that the Saudi Central Bank (SAMA) ought to maintain a
significant amount of foreign exchange reserves. Therefore, we are motivated to measure the
response of external assets and liability to the international oil price.

The prior literature overwhelmingly stressed the influence of oil prices on the current
account and trade balance, which can be classified into two main strands. The first strand of
the literature focuses on measuring the impact of the oil price shock on the trade balance
(excluding net service export). Several studies investigate the asymmetric effects of oil
price on trade balance by decomposing oil and nonoil-derived trade [1–7]. In contrast, a
list of studies measured the impact of oil prices on the overall trade balance [8–12]. For
example, Baek [9] investigated the oil price and trade balance nexus in the context of Korea
and 14 trading partners by applying an asymmetric approach. The results of Baek [9]
demonstrate that the Korean bilateral trade balance fluctuations are associated with oil
price volatility. A decrease in oil price elevates export as it reduces production costs, causing
an improvement in the trade balance. Interestingly, a rise in the oil price helped the Korean
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trade balance with Japan and the US, as the economy mostly trades technological products,
which are less oil-oriented. Yildirim and Arifli [13] documented that an increase in oil price
decreased the trade deficit in Azerbaijan as a narrow base hydrocarbon economy.

The study of Fratzscher et al. [10] is in line with the findings of Backus and Crucini [8],
and showed that the oil price shock increased the external liabilities of oil importers. In
contrast, the oil supply shock led to a deficit in the trade balance of oil importers, although
only after one year, after the shock trade balance was restored [3]. Nasir et al. [12] stressed
the response to oil price shocks in BRICS countries by applying a time-varying structural
vector autoregressive (TV-SVA) approach. The study found that the impact of oil prices is
more profound for Russia than for Brazil, since Russia is a more prominent oil exporter.
The balance of trade for Brazil experiences deterioration when the oil price increases.
Interestingly, Russia experiences improvements in the trade balance in response to the oil
price rising. Among oil-importing countries, India is more sensitive than BRICS member
countries to oil price shocks in terms of negative oil price impacts on inflation, GDP, and
trade balance. Though oil price shock effects are almost negligible for China, Nasir et al. [12]
argued that their influence is more profound. China is an energy-dependent country; thus,
maintaining a stable local currency and economic growth puts pressure on the economy.

Ample studies measured the impact of the oil price shock on the overall trade balance,
decomposing oil and nonoil flows. For example, Jibril et al. [3] assessed the response
of oil, nonoil and overall trade balance to demand and supply shocks of oil prices. The
study highlights that oil supply shocks reduce the oil trade balance and the overall trade
balance of oil exporter countries, but insignificantly affect the nonoil trade balance. On
the contrary, an increase in aggregate demand and oil-specific demand improves the oil
balance and overall balance. Hathroubi and Aloui [14] investigated the cyclicality of
fiscal policy through the connectedness between oil prices and different macroeconomic
indicators in Saudi Arabia. The study found a strong connection between oil prices and
several macroeconomic variables. In particular, oil price negatively influences nonoil
GDP, but positively impacts government expenditures and the trade balance of Saudi
Arabia. Lopez-Murphy and Villafuerte [6] and Bova et al. [2] found similar results that
oil-producing countries often follow procyclical fiscal policies due to oil price shocks. More
specifically, during 2003–2008, oil-producing countries experienced a crowding-out effect
due to increased oil prices and expansionary government expenditures. Oil demand and
supply shocks jointly explain approximately half of the net foreign assets where their
contribution to oil importers’ current accounts is slightly less than exporter countries [4].
Rafiq et al. [7] explored the influence of oil supply and demand shock on the external
balances of oil exporters and importers, including the oil and nonoil trade balances. For the
oil-exporting group of countries, a rise in oil prices led to an increase in the oil trade balance
and a reduction in oil-exporting countries’ nonoil and total trade balances. Bodenstein
et al. [1] and Le and Chang [5] argue that oil price shocks insignificantly explain the trade
balance of many economies that oil and nonoil responses offset each other; hence, the
overall balance of payment remains unchanged.

The second strand measures the response of the current account (including the net
service export) to oil price [15–24]. Balli et al. [16] and Özlale and Pekkurnaz [22] showed
that the oil demand shock has a more noticeable impact on the trade balance than the oil
supply shock for Russia and China. For example, the oil supply shock negatively influences
the current Chinese account but positively impacts the existing Russian account. As for
the oil, demand shock hurts the Chinese trade balance and positively impacts the Russian
trade balance. Allegret et al. [15] also focused on demand and supply-side shocks, and
revealed that supply-side shocks are more profound than demand-side shocks for both
oil importers and exporters. Allegret et al. [15] argued that the effect of demand-driven
shock is smoothed through trade channels when oil prices go up due to higher economic
activity. Moreover, a higher responsiveness to supply-side shocks indicates a higher energy
dependency. Huntington [20] discovered that net oil exporters have a surplus in the current
account as a response to oil price shocks. Net oil importers are not affected by oil price
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shocks, though the trade balance of rich countries can run into a deficit. Huntington [20]
argues that oil exporters and wealthier oil importers may observe oil income gains and
losses as temporary income sources influencing their savings patterns. By analyzing the
influence of oil supply and oil demand shocks, Gnimassoun et al. [18] highlighted that
oil demand shocks have a postponed but significantly favorable influence on the current
account of Canada, while oil supply shocks are insignificant. Gnimassoun et al. [18] argue
that oil demand shocks have a more pronounced impact, because positive oil demand
shocks induce a 10% increase in oil prices, while negative oil supply shocks are followed
by a slight reduction in oil production of 1%. In addition, a higher oil price intensity (for
example, due to the Iraq War in 2002–2003) contributes to the current account in a greater
magnitude. Gomes et al. [19] explored the relationship between prices on biofuels and the
current account of emerging and developing oil-importing countries exporting agricultural
commodities used in biofuel production. The study found that biofuel prices did affect
the current account until oil prices reached a particular level. Gomes et al. [19] argue that
when the price of oil is above the threshold, the current account of countries, which are
biofuel exporters and oil importers at the same time, reduces, because they spend more
money on purchasing oil. Oil price fluctuations were shown to negatively impact the
Turkish current account with a more pronounced effect in the short term [22]. Varlik and
Berument [24] and Özlale and Pekkurnaz [22] documented that oil price shocks increased
the current account deficit of Turkey in the short term. Nevertheless, the detrimental effect
of oil price shocks disappears in the long run. By decomposing the current account into
subcomponents, Varlik and Berument [24] found that the current account was balanced
by a surplus or deficit in goods under merchanting, agricultural production, maintenance
and repair services, travel, construction, financial services, and compensation of employees.
Given the limited number of studies focusing on the response of foreign assets and liability
to oil price shocks, we intended to conduct this study in the case of Saudi Arabia, where
the economy adopted a pegged exchange rate.

We contribute to the existing literature in several ways. Given the best knowledge, our
study is a pioneer in investigating the response of foreign assets and liability to international
oil prices under a pegged exchange rate system in Saudi Arabia. We cover the nonlinear
extreme quantile dependency among foreign assets, foreign liability, and global oil prices
considering weekly, monthly, quarterly, and yearly memories. Our method also considers
bidirectional conditional dependency following double-condition quantile distribution.
This study’s empirical investigation clearly shows that foreign assets and foreign liability
respond positively to international oil prices, mostly in long memory at a moderate quantile
of foreign assets, liability, and oil prices (1-year lag). The frequency connectedness analysis
shows that the Saudi Arabian economy encounters a downfall in foreign assets due to the
plunge in the international oil prices during the early wave of the COVID-19 pandemic.

The remainder of the paper is organized as follows: Section 2 discusses the data and
methodology. Section 3 provides the sample descriptive statistics, the panel unit root test,
and the main results. Section 4 concludes.

2. Methodology
2.1. Data, Definition, and Source

We utilized weekly data for the period of January 1993–June 2021. We employed
foreign assets (FAs) and foreign liabilities (FLs) as the dependent variables and oil price as
our independent variable. The description of variables is represented in Table 1.
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Table 1. Description of variables.

Variable Definition Source

Foreign Assets (FAs)
Foreign assets (FAs) refer to the
amount of foreign assets that Saudi
Arabia owns in USD

Saudi Central Bank

Foreign Liabilities (FLs)

Foreign liabilities indicate the
assumed liabilities (in each case, as
defined in the asset transfer
agreements) that are to be assumed
by the buyer from the foreign asset
sellers pursuant to the asset transfer
agreements in USD

Saudi Central Bank

Oil price (OP) Weekly international oil price based
on West Texas Intermediate (WTI)

U.S. Energy Information
Administration (EIA)

Figure 1 demonstrates the trend of foreign assets, liabilities, and oil price shocks. The
graph clearly indicates that oil price was highly volatile. Moreover, the foreign asset was
more stable compared to foreign liability.
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Figure 1. Trend of foreign asset, liability, and oil price.

2.2. Quantile-on-Quantile Approach

We developed our model as follows:

F =
∫

(OP) (1)

where F is the dependent variable and indicates either foreign liability (FL), foreign asset
(FA), or net assets (NAs), and OP is the international oil price.

The quantile-on-quantile (QQ) approach was proposed by Sim and Zhou [11]. This
approach has a number of advantages distinguishing this approach from others, such as the
typical linear regression or quantile regression. First, the typical linear regression considers
the quantiles of the independent variable quantile, whereas quantile regression considers
only the quantile of the dependent variable. Meanwhile, the QQ approach combines the
aforementioned frameworks and overcomes their limitations by assessing the dynamic
influence of each independent variable quantile on each dependent variable quantile under
nonparametric properties. Second, compared with the OLS, the QQ framework allows for
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the detection and capture of the asymmetric response of both the regressand and regressor.
Third, the QQ approach overcomes the problem of reverse causality. Specifically, by keeping
the quantile of the independent variable fixed, the method estimates its impact on each
quantile of the dependent variable. Analogically, the method estimates the influence of
each quantile of the independent variable on the quantile of the dependent variable when
the latter remains fixed. Thus, the method provides a matrix of slope coefficients. Fourth,
since our data were abnormal, we presumed the QQ approach to be the most appropriate
method, because it allowed for the presence of outliers, skewness, and kurtosis. These
advantages motivated us to employ the QQ approach. We provided the following equation,
representing the
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2.3. Cross-Quantilogram Dependence

In order to assess the effect of oil price on foreign assets, foreign liabilities, and net
assets, we applied the cross-quantilogram (CQ) approach developed by [25], for several
reasons. First of all, the method was applicable to different parts of data distribution,
including extreme observations as well as the central part of the distribution. Secondly,
by using this method, we could calculate the magnitude and duration of the oil price
shock’s impact on the dependent variables. Thirdly, the CQ technique employs quantile
matches that do not require moment conditions. Hence, the method is suitable for fat-tailed
distributions. Finally, the method allowed us to take long lags assessing the strength of the
oil price effect, its duration, and direction at the same time.

Equation (6) represents the cross-quantilogram between the two events {y1t ≤ q1t(τ1)}
and {y2t−k ≤ q2t−k(τ2)}, where k signifies the lag length (k = ±1,±2) for a pair of τ1 and τ2:

ρτ(k) =
E
[
ψτ1

(y1t ≤ q1t(τ1))ψτ2(y2t−k ≤ q2t−k(τ2))
]√

E
[
ψ2
τ1
(y1t ≤ q1t(τ1))

]√
E
[
ψ2
τ2
(y2t−k ≤ q2t−k(τ2))

] (6)

where yit represents the stationary time series, i is equal to 1, 2, or 3, and indicates the
liability, asset, or net asset, and t is time (t = 1, 2, . . . T). Fi(·) and fi(·) are the distribution
and density functions of yit, i = 1, 2. qit (τi) = inf {v : Fi(v) ≥ τi} is the corresponding
quantile function for τi ∈ (0, 1), and ψa(u) = 1[u < 0]− a is the quantile-hit process.

The CQ approach allowed us to find the serial dependence between variables at
various quantiles. Moreover, monotonic transformation was considered in both series. In
the case of the two events {y1t ≤ q1t(τ1)} and {y2t−k ≤ q2t−k(τ2)}, ρτ(k) = 0 means
no cross-sectional dependence from event {y2t−k ≤ q2t−k(τ2)} to event {y1t ≤ q1t(τ1)}.
When assessing how ρτ(k) varied with the lag length k, we were able to identify how the
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cross-quantile dependence between foreign liabilities, assets, and net assets varied across
different time horizons, thereby quantifying the magnitude and duration of dependence.
We considered k = . . . . . . in our study.

Afterwards, we tested the statistical significance of ρτ(k) by employing a Ljung–Box-
type test, where the t-statistics were calculated as follows (7):

Q∗τ(p) = T(T + 2)∑p
k=1 ρ̂

2
τ(k)/(T − k) (7)

where ρ̂τ(k) represents the cross-quantilogram calculated as follows:

ρ̂τ(k) =
∑T

t−k+1ψτ1
(y1t − q̂1t(τ1))ψτ2(y2t−k − q̂2t−k(τ2))√

∑T
t−k+1ψ

2
τ1
(y1t − q̂1t(τ1)

√
∑T

t−k+1ψ
2
τ2
(y2t−k − q̂2t−k(τ2))

(8)

where q̂it(τi) (i = 1, 2) indicates the estimated quantile function.
By applying a stationary bootstrap, we approximated the null distribution of the

cross-quantilograms (8) and the Q-statistic (7).
Further, we calculated the partial cross-quantilograms (PCQs) between the OP and

dependent variables (FA, FL, and NA) in order to account for the effect of uncertainties. zt
= [ψτ3(y3t − q3t(τ3)), . . . ,ψτl

(ylt − qlt(τl))] is a (l − 2)× 1 vector for l ≥ 3 of the control
variables. The correlation matrix of the quantile hit process and its inverse matrix were
defined as:

Rτ = E
[

ht(τ)ht(τ)
T
]
; Pτ = R−1

τ (9)

where ht(τ) = ψτ1
(y1t − q1t(τ1)), . . . ,ψτl

(ylt − qlt(τl)) is an l× 1 vector of the quantile hit
process. For i, j ∈ [1, . . . , l], let rτij and pτij be the il-th element of Rτ and Pτ. Note that the
cross-quantilogram was rτ12/

√
rτ11rτ22. The partial cross-quantilogram was represented

as follows:
ρτ|z = −

pτ12√
pτ11 pτ22

ρτ|z can be regarded as the cross-quantilogram between y1t and y2t, conditional on the
control variable z.

2.4. TVP-VAR

Afterwards, we employed dynamic connectedness under the time-varying parameter
vector autoregression (TVP-VAR) approach, developed by Antonakakis and Gabauer [26].
The main advantage of this approach is that it allows for the variance to be different by
employing the stochastic volatility Kalman filter estimation and forgetting factors by Koop
and Korobilis [27,28]. Hence, the framework allows for overcoming inconsistent parameters
that can occur because of the random selection of rolling window size [29]. Moreover, the
dynamic connectedness under the TVP-VAR framework was applicable for less frequent
data [16], as well as for the short period of time series.

The TVP-VAR estimation was defined as follows:

Yt = βtYt−1 + εt εt|Ft−1 ∼ N(0, St) (10)

βt = βt−1 + νt νt|Ft−1 ∼ N(0, Rt) (11)

where Yt denotes the N × 1 conditional volatility vector and Yt−1 indicates the lagged
conditional vector of Yt with Np × 1 dimension. βt represents the time-varying coefficient
matrix following the N×Np order. εt denotes the vector of error with the N× 1 order along
with N× N time-varying covariance matrix St. The vector of the coefficient matrix βt relies
on their respective values βt−1 following the N × Np dimensional residual matrix, along
with the Np × Np variance–covariance matrix. This approach subsequently measured the
generalized connectedness following [30], considering time-varying parameters and error
covariance. This framework eventually allowed us to obtain an estimate of the volatility
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spillover by utilizing generalized impulse response functions (GIRFs) and generalized
forecast error variance decompositions (GFEVDs), as suggested by [28,31]. Thus, by trans-
forming the VAR to the vector moving average (VMA), we obtained representation for
GIRF and GFEVD estimation following the Wold theorem, which was defined as:

Yt = βtYt−1 + εt (12)

Yt = Atεt (13)

A0,t = I (14)

Ai,t = β1,t Ai−1,t + . . . + βp,t Ai−p,t (15)

where βt =
[
β1,t, β2,t, . . . ..βp,t,

]′ and At =
[
A1,t, A2,t, . . . ..Ap,t,

]′; consequently, βi,t and Ai,t
are dimensional parameter matrices following the order NxN.

The GIRFs demonstrated how all respective variables responded to a shock in variable i.
We tested the differences between the J− step− ahead f orecast both when variable i was

shocked and not shocked, since the model we employed did not follow structural modelling.
Equation (16) shows how we estimated the difference to the shock in variable i.

GIRt
(

J, δj,t,Ft−1
)
= E

(
Yt+J

∣∣εj,t = δj,t,Ft−1
)
− E

(
Yt+J

∣∣Ft−1
)

(16)

ψ
g
j,t(J) =

AJ,tStεj,t√
Sjj,t

δj,t√
Sjj,t

δj,t =
√

Sjj,t (17)

ψ
g
j,t(J) = S−

1
2

jj,t AJ,tStεj,t (18)

In our study, the oil price was taken as variable i, and foreign liabilities, foreign assets,
and net assets represented variable j, which also reflected the forecasting period, δj,t, was the
selection vector, and Ft−1 represented the information set until t− 1. Thereafter, the GFEVD
was examined, which was the ratio of variance’s share of one variable to other variables.
We normalized the examined variances by merging the rows into one row, representing
the forecast error variance of variable i being described by all variables. Equation (19)
demonstrates the described estimation:

φ̃
g
ij,t(J) =

ΣJ−1
t=1 Ψ2,g

ij,t

ΣN
j=1ΣJ−1

t=1 Ψ2,g
ij,t

(19)

With ∑N
j=1 φ̃N

ij,t(J) = 1 and ∑N
i,j=1 φ̃N

ij,t(J) = N. By employing the GFEVD, we examined
the total connectedness index with the following equations:

Cg
t (J) =

ΣN
i,j=1,i 6=jφ̃

g
ij,t(J)

ΣN
i,j=1φ̃

g
ij,t(J)

∗ 100 (20)

=
ΣN

i,j=1, i 6=jφ̃
g
ij,t(J)

N
∗ 100 (21)

The first step of the TVP-VAR was to assess how shock in a variable spillover affected
other variables. The process when the shock variable i influenced other variables j was
described as Equation (22):

Cg
i→j,t(J) =

ΣN
j=1,i 6=jφ̃

g
ji,t(J)

ΣN
j=1φ̃

g
ji,t(J)

∗ 100 (22)
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The second step was to compute the total directional connectedness from others, which
showed what spillover effect i received from variables j. The calculation was represented
as follows:

Cg
i←j,t(J) =

ΣN
j=1,i 6=jφ̃

g
ij,t(J)

ΣN
i=1φ̃

g
ij,t(J)

∗ 100 (23)

Eventually, the total directional connectedness to others was subtracted from the total
directional connectedness to others. Thus, we obtained the net total directional connectedness,
which measured the magnitude of variable i′s impact on the network of variables. The
calculation of the net total directional connectedness is shown in Equation (24):

Cg
i,t(J) = Cg

i→j,t(J)− Cg
i←j,t(J) (24)

In cases when Cg
i,t(J) was positive, the strength of variable i′s impact was more pro-

found than the influence of other variables on variable i, indicating that all other variables
were influenced with variable i. In the contrary, when Cg

i,t(J) was negative, the influence
of the variable of other variables on variable i was more profound than the influence of
variable i on all other variables.

3. Results and Discussion
3.1. Descriptive Analysis

We started our analysis with descriptive statistics of the return series of each variable
(∆Rt = Rt − Rt−1). Table 2 reports that our respective variables followed a non-normal
distribution with considerable fluctuations. Moreover, we applied the Elliott–Rothenberg–
Stock unit root test. Table 2 confirms that all our variables were stationary at the level. Given
the nonabnormality and stationarity, the pre-conditions of the quantile and time-frequency
connectedness analysis were satisfied.

Table 2. Descriptive statistics.

FA FL OP

Mean 11.8868 11.1730 3.7400
Median 11.8548 11.0919 3.8437
Maximum 12.6918 12.5082 4.9111
Minimum 11.2679 10.45915 2.4186
Std. Dev. 0.4315 0.475522 0.621013
Skewness 0.1650 0.5098 −0.168026
Kurtosis 1.3829 2.6583 1.8103
Jarque–Bera 168.7683 71.6469 94.6893
Probability 0.0000 0.0000 0.0000
ERS 26.3202 *** 41.3138 *** 15.7693 ***
Sum 17675.72 16614.36 5561.516
Sum Sq. Dev. 276.7558 336.0155 573.0866
Observations 1487 1487 1487

Note: ***, **, & * indicate 1%, 5%, & 10% significance level. ERS indicates Elliott–Rothenberg–Stock.

3.2. Cross-Quantilogram

In order to conduct the cross-quantilogram analysis, we considered 19 quantiles with
long high-frequency data. We employed 1, 4, 21, and 52 lags, which implied weekly,
monthly, semiannual, and yearly data. Figures 2 and 3 represent the results of the cross-
quantile dependence from oil price to foreign assets and foreign liabilities, respectively. The
results were demonstrated in the form of a heatmap matrix, where black squares indicate
a strong dependency, while white squares signify a weak dependency. In addition, the
significant relationship was marked with a star sign (where a white star stands for a 10%
level of significance and a black star indicates a 5% level of significance).
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Figure 2. Cross-quantile dependence from oil price to foreign assets. Note: * indicates significance at
10% level.

Figure 2 demonstrates the volatility spillover from oil prices to foreign assets. The
weekly heatmap matrix reported that the relationship between the oil price and foreign
assets was less significant under weekly memory. Precisely, foreign assets responded
positively to oil price shocks under 0.3, 0.35, and 0.4 quantiles of oil price and 0.5 quantiles
of foreign assets. We also observed that foreign assets reacted positively to oil price shocks
under 0.75 and 0.8 quantiles of oil price and 0.4 and 0.45 quantiles of foreign assets. The
intensity of the response of foreign assets substantially increased when we considered
them semiannually (21 weeks). Lastly, we incorporated yearly (52 weeks) memory into our
analysis. The results demonstrated that the foreign assets responded positively to oil price,
with high significance at the middle quantiles of both variables.

Figure 3 highlights the response of foreign liabilities to the international oil price under
a four-lag order. Foreign liability responded positively to international oil price volatilities
under short memories. Interestingly, the response of liability to oil price was symmetric
over weekly and monthly memories. Particularly, oil price under the middle and higher
quantiles (0.4–0.85) influenced foreign liabilities under the lower and middle quantiles
(0.1–0.5) when considering shorter memory (weekly and monthly). When considering
semiannual memory, we observed that the oil price under 0.1–0.9 quantiles influenced
foreign liabilities positively under 0.1–0.65 quantiles. Notably, the response of foreign
liabilities intensified in the long term.
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3.3. Quantile-on-Quantile

By applying the Quantile-on-Quantile approach, we examined the impact of oil price
fluctuations on the foreign assets and liabilities of Saudi Arabia by following Chandrarin
et al. [32]. We considered nine quantiles in our analysis. Figures 4 and 5 demonstrate the
response of foreign assets to oil price fluctuations for monthly and quarterly data, respectively.
Figure 4 shows an increase in foreign assets under the quantiles of 0.3, 0.4, and 0.6 as a
response to oil price increases in all quantiles (0.1–0.9). The oil price increased under the lower
quantiles (0.1 and 0.2), leading to an increase in foreign assets at lower quantiles (0.1, 0.2, and
0.3). However, an increase in oil prices under the quantiles of 0.1–0.9 was associated with a
decrease in foreign assets under the medium to higher quantiles. An increase in oil price in the
lowest quantile (0.1) was associated with a decrease in foreign assets under the quantile of 0.6.
Moreover, an increase in oil price under the quantiles of 0.6, 0.7, 0.8, and 0.9 led to a decrease
in foreign assets under the quantiles of 0.1 and 0.2. We argued that oil price shocks mostly
led to a decrease in foreign assets because of the higher-frequency data and low-lag structure,
indicating that foreign assets could not rapidly adjust to oil price shocks. On the contrary,
the results for quarterly data (Figure 5) demonstrated more plots with a positive shock in
oil prices and the response of foreign assets, demonstrating that foreign assets required a
longer time to adjust. Moreover, foreign assets in the quantiles of 0.8 and 0.9 decreased as a
response to an increase in oil price in all quantiles (0.1–0.9), and foreign assets in the lower
quantiles (0.1, 0.2) experienced a decrease as a response to an increase in oil price in the higher
quantiles of 0.4–0.9. The oil price increase under all quantiles (0.1–0.9) led to an increase in
foreign assets under the quantiles of 0.3, 0.4, 0.5, 0.6, and 0.7. An increase in oil price under
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the quantiles of 0.1, 0.2, and 0.3 resulted in an increase in foreign assets under the quantiles of
0.1 and 0.2. We observed that the foreign assets of Saudi Arabia responded positively to oil
price shocks in most quantiles, proving the concept that oil-exporting countries benefit from
oil price increases.
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Figures 6 and 7 highlight the response of foreign liabilities to the oil price. Foreign
liabilities plunged under quantiles of 0.6, 0.7, 0.8, and 0.9 as a response to oil price increases
under all quantiles (0.1–0.9). Figure 6 depicts foreign liabilities decreasing under the lowest
quantiles (0.1 and 0.2) due to oil price shocks under 0.1 quantiles. An increase in oil price
under quantiles of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 led to an increase in foreign liabilities
under quantiles of 0.1 and 0.2. Foreign liability increased under the quantiles of 0.3, 0.4,
and 0.5 as a response to an increase in oil price under all quantiles (0.1–0.9). Thus, higher
quantiles of oil price increases resulted in a decrease in foreign liabilities under lower
quantiles, meaning that higher oil price was beneficial for Saudi Arabia as an oil-exporting
country. Figure 7 shows that Saudi Arabia experienced an increase in foreign liabilities
under the quantiles of 0.1, 0.2, 0.3, and 0.4 as a response to oil price in all quantiles (0.1–0.9),
except for the 0.2 quantile of foreign liabilities and 0.1 and 0.2 quantiles of oil price. In the
higher quantiles (0.5, 0.6, 0.7, 0.8, and 0.9), we observed a decrease in foreign liabilities
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due to oil price (0.1–0.9 quantiles). When oil price went up, Saudi Arabia experienced an
increase in foreign liabilities at lower quantiles and a decrease in foreign liabilities at higher
quantiles. This result could be explained by the fact that oil-exporting countries experience
an appreciation for local currency with an increase in oil prices, thus, benefiting importing
industries. Since Saudi Arabia follows a pegged exchange rate, oil price shocks reflect on
foreign liabilities and foreign assets. However, being the most significant net oil exporter in
the world, Saudi Arabia gains in a greater magnitude if the price of oil rises, meaning that
its foreign liabilities eventually significantly decrease.
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As for the quarterly data, under the lower quantiles (0.1–0.4), our results demonstrated
a deficit in the trade balance (liabilities grew, while assets decreased), whereas under
the upper quantiles (0.5–0.9), we could observe a surplus in trade balance (assets grew,
while liabilities decreased). As for monthly data, under the higher quantiles (0.6–0.9), we
observed the simultaneous growth of assets and liabilities and a simultaneous increase in
middle quantiles. Moreover, we observed a trade balance deficit at lower quantiles. The
results obtained using the QQ approach were slightly inconsistent with the results of the
cross-quantilogram, mainly due to the lag order selection.
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This result indicated that oil price fluctuations had a long-term effect on foreign liabilities
and assets, consistent with our following results using the quantile-on-quantile approach.

3.4. Time-Frequency Analysis

Oil price mainly acted as a net contributor over time, specifically during the periods of
1993–1999, 2007–2018, and the first wave of the COVID-19 pandemic. Alternatively, foreign
liabilities appeared to be the net receiver from 1999 to 2005 and from 2019 to 2020. Figure 8
shows the volatility spillover from oil prices to foreign liabilities for 1993–2021.
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Figure 9 shows the volatility spillover from oil prices to foreign assets. Oil price was
the net transmitter in the periods of 1993–2002 and 2006–2018. Interestingly, we observes oil
prices as the net receiver in 2003–2004 and during the first wave of the COVID-19 pandemic.
During the COVID-19 pandemic, oil prices experienced a significant plunge, eventually
turning into negative oil prices.
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Apparently, the pegged exchange rate facilitated the oil export industry by stabilizing
the exchange rate. Because the devaluation of the SAR would allow for the exporting
sectors to earn more local currencies, it would, however, be counterproductive towards the
import sectors. Nevertheless, if the United Kingdom followed the floating exchange rate,
the real effective exchange rate would be devalued, implying that the devolution of the
local currency promoted nonoil GDP. Our findings corroborated several existing studies
that observed that the banking sector was sensitive to the internal oil price in the context of
oil-exporting countries [33,34].
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4. Conclusions

Saudi Arabian, characterized as a hydrocarbon economy, has enjoyed a notable re-
source rent under a pegged exchange system. The current study is a pioneer in measuring
the dynamic response of external assets and liabilities of banks to the international oil price
under different economic circumstances in the context of Saudi Arabia. Through this, we
applied sophisticated frameworks, including cross-quantilogram, quantile-on-quantile,
and TVP-VAR approaches, to analyze weekly time-series data from 1993 to 2021 due to the
presence of extreme observations in the sample.

The empirical findings from the cross-quantilogram demonstrated that foreign assets
and foreign liabilities responded positively to the international oil price mostly in long
memory at moderate quantiles of foreign assets, liabilities, and oil price (1-year lag), since
Saudi Arabia is one of the largest oil exporters. The frequency connectedness analysis
showed that the Saudi Arabian economy encountered a downfall in foreign assets due
to the plunge in the international oil price during the early wave of the COVID-19 pan-
demic. The TVP-VAR approach provided consistent results, indicating that, during the
COVID-19 pandemic, the Saudi economy encountered negative net foreign assets, which
occurred mainly as a significant plague of international oil prices. The findings of the
cross-quantilogram and quantile-on-quantile approaches demonstrated that foreign assets
and foreign liabilities responded asymmetrically to the volatilities of international oil prices
under the bullish and bearish states of the market over different memories. Our findings
implied that the Saudi monetary policy unit could predict the foreign assets and liabilities
concerning international oil price volatility in different quantiles. For instance, the current
price could facilitate the central bank of Saudi Arabia to forecast short-, medium-, and
long-run foreign assets.

Our study was based on the bivariate model; thus, future studies can consider more
control variables to explain the oil price and foreign assets nexus.
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