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Abstract: We consider the free boundary problem of MHD in the multi-dimensional case. This
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1. Introduction
1.1. Formulation of the Problem

We consider a two-phase problem governing the motion of two incompressible electri-
cally conducting capillary liquids separated by a sharp interface. Mathematical model of
MHD is found in [1,2], the transmission conditions on the interface for the magnetic fields
are found in [3-5], and the interface conditions for the incompressible viscous fluids are
found in [6-10].

In this paper, the problem is formulated as follows: Let (3, and ()_ be two domains
in the N-dimensional Euclidean space RN (N > 2). Assume that the boundary of each Q.+
consists of two connected components I and S+, where I' is the common boundary of ().
Throughout the paper, we assume that I is a compact hypersurface of C? class, that S
are hypersurfaces of C? class, and that dist (T,S+) > d+ with some positive constants d+.,
where the dist(A, B) denotes the distance of any subsets A and B of RN which is defined by
setting dist(A, B) = inf{|x —y| | x € A,y € B}. Let Q = Q; UTUQ_and O =Q,; UQ_.
The boundary of (3 is S U S_. We may consider the case that one of S+ is an empty set or
that both S are empty sets. Let I't be an evolution of T for time ¢ > 0, which is assumed to
be given by

Iy={x=y+h(ytn(y) [y €T} 1)

with an unknown function h(y, t). We assume that h|;—o = hy(y) is a given function. Let
Q¢+ be two connected components of () \ I'; such that the boundary of Q)+ consists of I';
and Si. Let n; be the unit outer normal to T; oriented from Q) into ();_, and let ny be
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[[ny x {a 'rotH — v x H)}]] =0, [[yH -n;]] =0, [[H-<H,n >n]=0 onTy

the unit outer normal to S+, respectively. For any given functions v+ defined in ()44, v is
defined by v(x) = v+ (x) for x € O+, t > 0. Let

[e])(x0) = lim v+ (x) ~ lim o (x)

}C*)XO

xeQpy xeQ;_
for every point xg € 'y, which is the jump quantity of v across I';. Let Oy = Oz U Q.
The purpose of this paper is to prove the local in time unique solvability of the free

boundary two-phase magnetohydrodynamical problem with interface conditions, which is
formulated as follows:

m(9yv +v-Vv) —Div (T(v,p) + Tyy(H)) =0, divv=0 inQ)y,
[[(T(v,p) + Tnu(H))ny]] = oH(T1)n; —pony,  [[v]] =0, Vi, =vy-n; onTy,
poH + Div{a tcurlH — y(ve H-H®v)} =0, divH=0 inQ,
[{a tcurlH — u(v@ H-H®Vv)}ni]] =0 onTy,
[WH-n¢]] =0, [[H-<Hn >ng]=0 onTy,
vi =0, ny-Hy=0, (curl Hi)ni =0 onS4,
(v,H)|t=0 = (vo,Hp) inQ, hli—g=ho onT 2

fort € (0,T). Here, v = vy = (v41(x, t),...,’UiN(.X,t))T is the velocity vector field,
where M stands for the transposed M, p = p+(x,t) the pressure field, and H = Hy =
(Hii(x,t),...,Hin(x, 1)) T the magnetic field. The unknowns are v, p, H, and I';, while
vp and Hj are prescribed N-component vectors. As for the remaining symbols, T(v,p) =
veD(vy) — p4I is the viscous stress tensor, D(vy) = Vvy + (Vvi)T is the doubled
deformation tensor whose (i, j)th component is 0jv4; + 0;v+j with d; = 9/dx;, Ithe N X N
unit matrix, Tpy(H) = Ty (Hy) = pe (Hy ® He — J|H.|?I) the magnetic stress tensor,
curlv = curl vy = Vvi — (Vvy) ' the doubled rotation tensor whose (i, j)th component
is ajvii — 0;04 j» Vr, the velocity of the evolution of I'; in the direction of n;, which is given
by Vr, = (dth)n - n; in the case of (1), and #H(I';) is the mean curvature of I';, which is
given by H(I'y)n; = Ar,x for x € T, where Ar, is the Laplace Beltrami operator on I';,
po the outside pressure. Moreover, m = m+, p = p4, v = v+, and & = a4, are positive
constants describing respective the mass density, the magnetic permability, the kinematic
viscosity, and conductivity. A positive constant ¢ is the coefficient of the surface tension.
Finally, for any matrix field K with (7,j)th component K;;, the quantity Div K is an N-

vector of functions with the ith component Z]'I\i 19;K;;j. For any N-vectors of functions
u=(uy,...,.uy) and w = (wy,...,wy) ", divu = Z]«Zil diuj, u- Vw is an N-vector of

functions with the ith component Z]‘N:1 ujojw;, and u @ w an N x N matrix with the (i, j)th
component u;w;. We notice that

Av = —Divcurlv+ Vdivv, rotrotH = DivcurlH,
Div(vedH-H®v)=vdivH—-Hdivv+ H-Vv—v-VH, ©)]
rotvx H=Div(vRH—-H®v) (three-dimensional case).

In particular, in the three-dimensional case, the set of equations for the magnetic field
in Equation (2) are written by

#oH +rot (a 'rotH —uv x H) =0, divH =10 inQ), @

for t € (0,T). This is a standard description (cf. M. Padula and V. A. Solonnikov [4]),
and so the set of equations for the magnetic field in Equation (2) is the N-dimensional
mathematical description for the magnetic equations with transmission conditions.
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In the equilibrium state, v =0, H = 0, Iy = I, and p is a constant state, and so we
assume that

po = oH(T). %)

Problem (2) is overdetermined, because there are too many equations for the magnetic
fields H+. Instead of (2), we consider the following equivalent system:

m(9yv +v-Vv) —Div (T(v,p) + Tyy(H)) =0, divv=0 inQ),
[(T(v,p) + Tmu(H))n¢]] = cH(Te)ne —pony,  [[v]] =0, Vr,=vi-n  onTy
poH —a 'AH -Divu(veH-H®v) =0  in(),
[{a tlcurlH - (v H-H®V)}n]] =0, [[udivH]]=0 onT; (6)
[MH-n]] =0, [[H-<Hn>n¢]=0 onTy
vi=0, ng-Hy=0, (curlHi)ny =0 on Sy,
(v,H) =0 = (vo,Hp) in

for t € (0, T). Namely, two equations: div H+ = 0 in Q)4 is replaced with one boundary
condition: [[udivH]] = 0 on I'. Frolova and Shibata [11] proved that if for a solution
of (6) divH = 0 initially, then divH = 0 in () follows automatically for any ¢t > 0 as
long as the solution exists. Thus, the local well-posedness of Equation (2) follows from
that of Equation (6) provided that the initial data Hy satisfy the divergence free condition:
div Hy = 0, which is a compatibility condition. This paper devotes itself to proving the
local well-posedness of Equation (6) in the maximal L,-L, regularity framework under
the assumption that g is small enough. It means that at the initial moment of time, the
interface I'; is very close to the reference interface I'.

Since in problem (6) the domain (); and the interface I'; are unknown, with the help of
the Hanzawa coordinate transform (cf. Section 2.1), we reduce the free boundary problem
to a problem in the given domain (). In Sections 2.2-2.4, we derive all the equations and
boundary conditions to which Hanzawa transform maps (6). The main result is stated in
Section 2.5 (Theorem 1). In Section 3, we formulate the maximal L,-L; regularity theorems
for corresponding linearized hydrodynamical (Theorem 2) and magnetic (Theorem 3) prob-
lems. The main result is proved in Section 5 by the fixed point theorem, on the base of the
maximal L,-L; regularity theorems for the corresponding linear problems and estimates of
nonlinear terms (these estimates are given in Section 4).

1.2. Short History

The equations of magnetodydrodynamics (MHD) can be found in [1,2,12]. The solv-
ability of MHD equations was first obtained in [13]. The free boundary problem for MHD
was first studied by Padula and Solonnikov [4] in the case when ()_; is a vacuum region
in the three dimensional Euclidean space R3. They proved the local well-posedness in
the L, framework and used Sobolve-Slobodetskii spaces of fractional order. Later on,
the global well-posedness was proved by Solonnikov and Frolova [14]. Moreover, the
L, approach to the same problem was calculated by Solonnikov [15,16]. In [4], by some
technical reason, it was required that regularity class of the fluid be slightly higher than
that of the magnetic field (cf. [4] (p. 331)). However, in this paper, we do not need this
assumption; that is, we can solve the problem in the same regularity classes for the fluid
and magnetic field. The different point of this paper compared to [4] appears in the iteration
scheme (cf. (85) and (86)).

As a related topics, in [17,18] and references therein Kacprzyk proved the local and
global well-posedness of the free boundary problem for the viscous nonhomogeneous
incompressible MHD in the case where an incompressible fluid is occupied in a domain Q¢
bounded by a free surface I'; subjected to an electromagnetic field generated in a domain
Q)4 exterior to ()_; by some currents located on a fixed boundary S of Q0. In [17,18],
it is assumed that S_ = @. On the free surface, I't, a free boundary condition without
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surface tension for the viscous fluid part and transmission conditions for electromagnetic
fields part are imposed. Since the surface tension is not taken into account, the Lagrange
transformation was applied, and so the viscous fluid part has one regularity higher than the
electromagnetic fields part. An L, approach is applied and Sobolev—Slobodetskii spaces of
fractional order are also used in [17,18]. Later, the local wellposedness of the same problem
as in [17,18] was proved in the L, framework by Shibata and Zajaczkowski [5] and in the
Ly in time and L, in space framework by Oishi and Shibata [19].

1.3. Notation

Finally, we explain some symbols used throughout the paper. We denote the set of
all natural numbers, real numbers, and complex numbers by N, R, and C, respectively.
Set Ng = NU{0}. For any multi-index x = (..., xx), kj € No, we set 9§ = 971 ... 9\,
|k| = k1 + ...+ xn. For scalar f, and N-vector of functions, g = (g1,...,8N), wWe set
Vif = (0f | [x| = n) and Vg = (dYg; | || =n,j=1,...,N). In particular, Vi =f,
Vog =g, Vlf = Vf,and Vlg =Vg. Forl < g <oco,méeN,s € R, and any domain
D C RN, we denote by L,(D), H"(D), and B; ,(D) the standard Lebesgue, Sobolev, and

q
Besov spaces, respectively, while || - ||Lq(D), I Hy (D), and Il B; (D) denote the norms of

these spaces. We write W3 (D) = B, (D) and H)(D) = Ly(D). For H € {H]",B;,}, the
function spaces #()) and their norms are defined by setting

H() ={f=fe | fr €eH(OQD)}  fllp) = I+l + 1~ lum.)-

For any Banach space X with the norm || - ||x, X denotes the d product space defined
by {x = (x1,...,x4) | x; € X}, while the norm of X? is simply written by || - || x, that is
Ix||x = Z;-izl [|xjl|x. For any time interval (a,b), Ly((a,b), X) and H}'((a,b), X) denote,
respectively, the standard X-valued Lebesgue space and X-valued Sobolev space, while
-l L,((ab),x) and Il HY ((a,),X) denote their norms. Let 7 and F ! be, respectively, the
Fourier transform and the Fourier inverse transform. Let H;;(R, X), s > 0, be the Bessel
potential space of order s defined by

Hy (R, X) = {f € Ly(R, X) | [Iflmsx) = 1F {1+ [T 2F (O], x) < 0}

For any N-vector of functions, u = (uy,...,u N)T, Vu is regarded as an N x N-matrix
of functions whose (i, j)th component is d;u;. For any m-vector V = (vy,...,0vy) and n-
vector W = (wy, ..., wy), V® W denotes an m x n matrix whose (i, j)th component is ViW;.
For any (mn x N)-matrix A = (Ai]-,k li=1,....mj=1,...,.n,k=1,...,N), AV@W
denotes an N-column vector whose k component is the quantity: 2}”21 2;1:1 Ajjkoiw;.
Moreover, we define AV @ W ® Z = (AV ® W) ® Z. Inductively, we define AV} ® ... @V,
by setting AV1 ® ...V, = (AV1 ®...®@ V,_1) ® V,, forn > 4.

Leta-b = <ab> = ]-Iil a;b; for any N-vectors a = (ay,...,ay) and b =
(b, ...,bN). For any N-vector a, let a; := a— < a,n > n. For any two N x N-matrices
A = (Ajj) and B = (B};), the quantity A : B is defined by A : B = 25:1 AjjBjj. For any
domain G with boundary 9G, we set

(uv)o = [u() vix)dx, (uv)s= [ u-v()do,

where v(x) is the complex conjugate of v(x), and do denotes the surface element of 9G.
Given1 < g < oo, let g’ = q/(q — 1). Throughout the paper, the letter C denotes generic
constants and C, }, . the constant which depends on 4, b, .... The values of constants C,
Cqp,.. may be changed from line to line.
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2. Hanzawa Transform and Statement of Main Result
2.1. Hanzawa Transform

Let n be the unit normal to I" oriented from Q) into Q)_. Since I'; is unknown, we
assume that the I'; is represented by (1). Our task is to find not only v, p, and H but also #.
We know the existence of an N-vector, @i, of C? functions defined on RN such that

n=n onl, suppn C Ur, ”ﬁ”Hgo(RN)SC (7)

with some constant C. Here, we set Ur = Uy cr{x € RN | |x — xo| < a} with some small
constant & > 0. We will construct fi in Section 2.3 below. We may assume that

dist (supp i, S+) > 3d+ /4.

Let Hj, be an extension function of / such that h = Hj, on I'. In fact, we take Hj, as a
solution of the harmonic equation:

(=A+MX)H, =0 inQ), Hylr=h (8)

with some large positive number Ay which guarantees the unique solvability of (8). In this
case, if h satisfies the regularity condition:

2-1/ 3-1/
he Hy((0,T), Wy I(T) n Ly((0,T), W~ 7(r), ©)
then Hj, satisfies the regularity condition:
Hy, € Hp((0,T), Hy (€)) N Ly((0,T), Hj(QV)), (10)
and possesses the estimate:
. i , P —
(01),H () S CHE)th||Lp((O,T),W;,l,1/q(r)) (i=01),
) < CllaiHyll, (i=01).

19iHl,
’ (11)

||alth||Lp((OIT)’W,?*l/q’i(r) (O,T),H,?*"(Q))

To transform Equation (6) to the problem in a domain with fixed boundary and
interface, we use the Hanazawa transformation defined by

x =y + Hy(ty)ay) := Ex(ty)- (12)

Let 6 > 0 be a small number such that

[Zn(y1,8) = En(y2, )] < (1/2)[y1 — v2 (13)
provided that )
sup [[VHp(-,)|L,q) <9 (14)
0<t<T

Henceforth, we use the symbol: VH;, = (0%Hj, | |«| < 1) = (Hy, VHy,). From (13)
and (14), the map x = E(y, ) is injective. Under suitable regularity condition on Hj, for
example, H), € C'*% for each t € (0,T) with some small a > 0, the map x = E;,(y,t)
becomes an open and closed map, so that {x = E;,(y,t) | y € Q} = O, because x = Ej,(y, t)
is an identity map on Q) \ Ur. We assume that the initial surface Iy is given by

To={x=y+ho(y)n|yeTl}

with a given sufficiently small function . Let Hy,, be an extension of iy which is given by a
unique solution of Equation (8), where Hj, and h are replaced with Hj, and hy, respectively.
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u(y,t) =v(E 0,0, awt) =pE, W00, Gy t) =HE (1)),
Ii={x=5,(y,t) |[yeTl}, Qu={x=E,t)|yeQs}
uy(y) = vo(E,.'(¥)), Goly) = Ho(E, ' (y))- (15)

Noting that x = y near S+, we have

ur =0, ny -G+ =0, (curlGi)ny =0 onSy x(0,T),
(u, G,I’l)|t:0 = (uo, Go,ho) in Q xT, Hh|t:0 = ho onT.

In what follows, we derive equations and interface conditions for u, q, and G.

2.2. Derivation of Equations

In this subsection, we derive equations obtained by the Hanzawa transformation:
x =y + Hy,(y, t)A(y) from the first, second, and third equations in Equation (6). We assume
that Hj, satisifies (14) with a small positive number § > 0. We have

ox _ ;. 9(Huh)

Ay %y

and then, choosing J > 0 in (14) small enough, we see that there exists an N X N matrix,

Vo(K), of bounded real analytic functions defined on U; = {K € RN*! | |K| < 6} with
Vo(0) = 0 such that

oy dx\ 1 -

= == =14 Vo (VHy). 1

5 = (5,) =T+ Ve(VHy (16)

Here, we use the symbol K = (xo, k1, ..., kn), where kg, k1, ..., ky are independent

variables corresponding to Hy,, dH}, /9y, ..., 0Hy/dyn, respectively. Let Vp;;(K) be the (i, j)

th component of V(K). Then, by the chain rule, we have

0 Y 0

Pl k;((sjk + VOjk(K))aT/k/ Vi = (I+Vy(K))V,. (17)
Since Vi (0) = 0, we write

14 5 L o
Vojr (K) :/0 70 (Voix(6K)) d6 = Vo (K)K - with Vo (K) :/0 Vojx (6K) a6,

where Vé ik denotes the dirivative of Vy;, with respect to K. In particular,

dv;  0y;
curl ij(v) = aixj — aixl = curl ,-]-(u) + VCZ‘]‘(K)VII,
) . (18)
v; i
Djj(v) = a—x; PP Djj(u) + Vp;j(K)Vu,
with
N aui au]
Veij(K)Vu = k;(VOjk(K)aT/j - VO""(K)aT/k)’
N aui au]
Vpij(K)Vu = k:Zl(VOjk(K)aT/j + VOik(K)TW)-

Here and in the following, for an N x N matrix A, A;; denotes its (i,7) th component
and (A;j) denotes an N x N matrix whose (i, j) th component is A;;. To obtain the first
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equation in (72) in Section 2.5 below, we make the pressure term linear. From Vp =
(I+ Vo(K))Vy, it follows that

9y ox
5 = Y (O £

Vi o 9y,

9%
axk'

)

Let i = (fiy,...7ly) ', then

00; d au
atl = at 1(]/+th t 1

E)ul E)Hh i
Z 3yt (19)

Thus, the first equation in (6) is transformed to

q N axm aul aul aHh . N ou;
— = —m Y (O + =2 j S + Vo (VH
aym 1;1( mi y Z ]‘,kz—1 ( ik Ojk( h))ayk

N ax d
+ )Y (© y’” (8 + Vo (VHy)) 5—
1

i i1 ayk {V(Dij(u) + VDi]'(VHh)Vu) -+ TMz’j(G)}

d
= —mojily + Z %(VDmk(u)) +f1m(u/ G, Hh)
=1

with

(20)

=—(v(Dyj(u) + Vp, (VH;) Vu) + T (G)).

Thus, setting f;(u, G, Hy) = (f11(u,G, Hy), ..., fin(u,G, H;)) ", we have
mdsu — DivT(u,q) = f;(u,G, Hy) in Q) x (0,T). (21)
Since Vjjx(0) = 0 and Vp;;(0) = 0, we may write

f1(u,G, Hy) = foVH), @ 9yu + F3 (VH,)9:H, @ Vu + FL(VH,)u ® Vu

o _ N (22)
+ F}(VH,)VH, ® V?u + Fi(VH,)V?H;, ® Vu + F} (VH,)G ® VG,

where f3 is abounded function and J’:j1 (K) are some matrices of bounded analytic functions
defined on Uj. Here and in the following, we write V¥Hj, = (9yHp | |« < k) fork > 2and
VHj = (@8Hy | || <1).

We next consider the divergence free condition: divv = 0. By (17),

. N a?)] N - au]
j k=
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Let | = det(dx/9y), choosing J > 0 small enough in (14), we have

J =1+ Jo(VHy), (24)
where Jy(K) is a real analytic function defined on Uy such that J5(0) = 0. Using this symbol,
we have

N N a(p
(diV xV, (P)Qti = 7(Vif ngo)ﬂtj: = Z(I”:I:,jr 2(5]k + VO]k(VHh))ayk)
j=1 k=1
N ) B
= ('Z 57 U Ok + Vo (VH) i}, ¢)o
so that
Noa
. -1 =
divve=J"")" 5, U Ok + Vo (VH) s} (25)
jk=1 Yk
Combining (23)—(25) yields
divu = ¢(u, Hy,) = divg(u,H,) inQ x (0,T), (26)
where
N _ du i] Bu‘
g(w Hy) = Z Voir(VHy) = o + Jo(VHy){divu + 2 Vojk( VHh)ay }
j k=1 k=1 (27)
N ) N
g(u, Hy)le = Y Vo (VHp)uj + Jo(VHy) Y (65 + Vo (VHy) ) uj
j=1 =1
Since Vyjx(0) = Jo(0) = 0, we may write
g(u, Hh) = gl(th)VHh ® Vu, g(u, Hh) = gz(th)th Xu, (28)
where G;(K) are some matrices of bounded analytic functions defined on Uj.
We next consider the third equation in Equation (6). By (19),
oG 0Hj,
uoH = udiG + Z )
=t ]E)y] ot
Moreover,
N N N 9
A=) () 6+ VO]k(VHh))a )Y (6j0 + Vo;é(VHh))T)
=1 k=1 k=1 ye
i 2 i 9 9 % 9
=) {7+ 2 5 (Voje(VHy) 5—) + 0k (VHp) 5—((8j¢ + Voje(VHy)) 5 —)
ooy Sy = Iy’ ! %Y
= A+ Vpo(VH,)V? + Va1 (VH,)V
with
(PHIV? =2 3 Vel TH) 52+ 3 V(T Vo (V) -
Va2(VHp) V=2 Voix(VHy, + Voix (VHp) Voje(V Hy,
k=1 ! a]/jayk jk =1 ! ! Y9y,
N aVO‘E(th) d N = oV g(th) 0
Var(VH)V B ) Vor(VH) —
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Thus, setting

o _9GoH, | 4 = 2 -1 =
fz(tl, G,Hh) = —HU 2 n]a—T o VAz(VHh)V Gy +ua VAl(VHh)VG
ji=1 dyj ot
(29)
N )
+u ) (6 + Vojk(K))a—(u ®G-G®u),
jk=1 Y
we have
10:G —a 'AG = f,(u,G,H,) inQx (0,T). (30)
Since Vj;x(0) = 0, we may write
f,(u,G, H,) = VG ®:Hy, + F2(VH,)VH, ® V>G + F3(VH,)V?H, ® VG 1)

+ F2(VH,)Vu® G+ F2(VH,)u® VG.

where f; is a bounded function, .7-']-2(K) are some matrices of bounded analytic functions
defined on Us.

2.3. The Unit Outer Normal and the Laplace Beltrami Operator on T

Since T is a compact hypersurface of C> class, we have the following lemma.

Lemma 1. For any constant My € (0,1), there exist a finite number n € N, constants Mp > 0,

d,d’ € (0,1), n N-vectors of functions ®' € C3(RN)N, n points x' € T and two domains O

such that the following assertions hold:

(i)  Themaps: RN 3 x s ®‘(x) € RN are bijective for j € N.

(i) Q= (Ul D (By)UO+UO_, By(x') C ®(By) C Q, By(x')NQy C ®(ByN
RY) € Qi and TN By (x') € ®Y(ByNRY), where By = {x € RN | |x| < d}, By(x!) =
{x eRV | |x—x| <d'},RY = {x = (x1,...,xn) | £xny > 0}, and R) = {x =
(x1,...,xn) € RN | xy = 0}.

(ili) There exist n C™ functions {* such that supp {* C By (x*) and Yj_, {* =1onT.

(iv) Vo' = A+ B!, V(@)1 = AT 4 BY~1 where A' are N x N constant orthogo-
nal matrices and B’ are N x N matrices of C3(RN) functions satisfying the conditions:
HBEHLOO(RN) S M1 and HVBEHHAQ(]RN) S szOT { = 1, R (B

In what follows, we write By (x’) simply by B’ and set Vj = B; N R)’. The index ¢
runs from 1 through 7. Recall that T N Bf € ®(Vp), Y ¢" =1onT,and supp‘ C Bf C
@' (By) C Q. Let
oD’ (u)

au]-

Ti(u) =

_ Al l

forj=1,...,Nand u = (uy,...,uy) € RN, By Lemma 1, Af are N-constant vectors, and

Bf (u) are N vector of functions such that
Af-Ap =06 1Bl @y) < My VBl gy any < Mo, (32)

where §j; are the Kronecker delta symbols defined by 6;; = 1 and d;, = 0 for j # k. Notice
that {T]'(MI,O) jl\i’ll, u' = (uy,...,un_1,0) € Vy, forms a basis of the tangent space of ' N BL.

Let gfj(u) = 1/ (u) - Tf(u), G!(u) an N x N matrix whose (i,j) th component is gf']-(u),

g'(u) = \/detG'(u)), and g?(u) the (i, j) th component of (G*)~1, respectively. G (u’,0)
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is a first fundamental matrix of the tangent space of I' N BY. By (32) there exist functions
§'(u), g{’](u) and g}j(u) such that

gij(u) =&+ &(w), g'w) =148 (), g/(u)=0d;+g/(u),
1085, 8" 8D Iy < CM1, (1V(85, 85 &) g, vy < Covy- (33)
Here, the constant C)y, is a generic constant depending on M,. We may assume that
0<M; <1< M,

We now define an extension of n to RV satisfying (7). Let @ij(u) = oDt (u)/ ouj with
o' = (®f,...,®) ", and let N (1) be N x (N — 1) functions defined by setting

Y11 -+ P1N-1
N () = (=1)7N det Yi-11 .-+ Pi-1,N-1
Pi+11 -+ Pi+1,N-1
¢N1 .-+ PNN-1

fori=1=1,...,N—1 Weset N/ = (NV/,...,N{)T, then

<Nf,y> =0 fork=1,...,N—1,
duy
because
P11 - PLN-1 Pk N ey
O=det| : -~ A e I S s
$N1 .- PNN-1 PNk =t
fork=1,...,N—1. Leta’ = N*/|N!|, and then
<#',7f(u)> =0 forj=1...N—Tandu RN,
i‘o (@) =n onI'nB. (34)

Moreover, by (32) || VA‘|| HLRN) < Cim, for some constant Cpy, depending on M,. Let
n
=1

then @ satisfies the properties given in (7).
Next, we give a representation formula for n;. Since I'; N B! is represented by
x = ®'(u,0) + Hy (@' (u/,0), t)n(® (u',0)) for (u/,0) € Vo, setting H = H, (D (u),t),

we define 7/ = (Tﬁ(u)/ e /TtZNq)T by

) = o (@) + 8 (). )
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Notice that {Tf}(u’ ,0)} ]Z\L ! forms a basis of the tangent space I'; locally. To obtain a formula
of fi;, we set if = a(@! + Z]-I\;l T]-Zb ), and we choose a and b; in such a way that il =1
and < A}, 7/ > = 0. From |a{|?> = 1, it follows that

1=a?(A"+ Y b7)) - ( +2bk'ck =a*(1+ Zg]k u)bjby),
j=1 k=1 j k=1

so that

(1+ Z g]k u)bjby) /2. (36)
jk=1

From < @i}, 7/ > = 0and (35), it follows that

o’ oH! oH/ oR’

0=( +Zkak r+H,fan + A Zg]kbk+a—+2bk<rk,a—>Hh,
k=1 Uj jk=1 Uj

where we have used the first formula in (34), and < @, 0n’/ou j > = 0which follows

from |af|? = 1. Setting L’ = < aﬁé/au]-, T,f >, we have
V'A, = —(G' +L'A))b

where we have set b = (by,...,by-1)" and V'H} = (0H//0uy,...,0H, /dun_1)". We
now introduce a symbol O which denotes a generic term of the form:

0% =a(u, V'H,)V'H;, @ V'Hj

with some matrix a’(u, K') which is defined on RN x Uj and satisfies the conditions:

5) =
a1, 9 L) | < Cogy | V2H
\Vaa' (u, V' Hy)| < Ca, (IV3H |+ [VEHLP),
|9’ (u, V'H})| < Ca, | V350:HS),
V! (e, VB < Coy (9206E]] + 921300

provided that (14) holds with some small number § > 0, where we have set V,, =
(0/0uy,...,0/9uy), Vka = (0%a/ou® | |a| < k), and K’ = (ko,ky,..., kn_1) € uj =
{K' € RN | [K'| < 6}. Choosing ¢ > 0 small enough in (14) and using (33) with small Mj,
we see that (G’ + L'H})~! = (I+ (G*)"1L’H/)~1(G") ! exists, and then

b=—(1+ (G 'L'Hy)(G")'V'A;.
Therefore, we have
ff = (1+ < G'(I+ (G")'L'Hy) " 1(G") 'V'Hj, 1+ (G") 'L'Ay) (G") 'V'H) >) /2
x (2= < 14+ (GH7 LA~ 1(GH VAL, 7 >) (37)
=i~ < (G")'V'H},# > +0%

Since _
oH, N 9o oH,

= o ®!,
duj = au] E
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setting
< G 'VrHy, T > Z ' < (GHIWVH], ' > o(") 7,
by (37) we see that there exists a matrix of functions, Vn (y, K), defined on RN % U such that
n; =n— < G 'VrH,, 7> +Va(-,VH,) VH,® VH, onT (38)
and Vj (y, K) satisfies the following conditions: supp Va(y, K) C Ur for any K € Uy, and

[Vall L@y xuy) < Camy,

5)
[VVa(y, VH;)| < C|V?Hyl
Na's (y,VH )| < C(IVPHy| + [V2Hy ),
9:Va(y, VH,)| < C|VorH,],
VOV (y, VHy)| < C(|V20:Hy| + | V2 Hy ||V Hy)

provided that (14) holds with some small § > 0.
We next represent Ar,. Let Gt = (gijt) be the first fundamental form, and set g =

V/detG; and G; ! = (g/). Then, Ay, is given by setting

1N=! o ij Of
Ar,f = o Z:; P (18 au]) on Vj. (39)
Since < ﬁf,aﬁe/au]- > =0and < aq)é/auj,ﬁ > = < T] ,A > =0,in view of (35),
setting
oi! oi! oi! on’
- bl el ¢ = = =
NS ST TS T T PSS G
we have o
, oH, oH,

¢ .
8hj= <TTy> =g+ ahH, + LA+ <

aui ! TM]
Notice that (xf]- and ‘Bf] are all bounded C? functions. The function f is bounded C2. It
means that f is a C? function and f and its derivatives up to order 2 are all bounded. Let
gl = \/det(gt, j) and (G/)™! (g?g) and then by (14) with small § > 0 and (33), we have
the representation formulas:
1 ~ i ji ~
= S+ + 0}, g =g/ + () H] + O,

gt =g + 6w H], + 03, o

LNt

where v§(u), v{ (), and 'yfj(u) are some bounded C? functions defined on RN. In view of

(39), setting
Az] ’)/z]( )Hﬁ + OZ’
VAl = Ni(i(vf-(u)ﬁh) + 202+ LAy +a02) (40)
S = \ou; Y ou; Qv
+ (v () Ff + 03)(3ig" + 3i (v (w) Fif) +9,00) )

we have
Ar, = Ar +Ar, onTNBY, (41)
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where Ar, is an operator defined by setting
82 8 u',0 _
(=1 ij=1 Uuj
We finally derive a formula for the curvature. Recall that H(T')n; = Ar,x for x € T,
For x € Iy, x is represented by x = ®*(u',0) + Hj (u',0,t)a’(u’,0) locally. By (41) and (42),

we have

< H(Ft)nt,n > = < A]‘(y—f—th) n >

¢ 0
+ZC[(Z <V Az]a (®£+H€ g)n >+Z <V A]a (CP€+H )n£>)
(=1 i,j=1

onT. Since Ary = Hj,(I')n for y € T and

s gl Pnt
< Arn,n >= < —,n" >
T Z;é Z ou;ou;
= ij=1 ]
> anf on’ _
__Z€€ -, —>=—-<G 1Vrn,Vrn>,
E)u- Ju;
(=1 ij= l ! ]
as follows from < on’/ au;, al > =0, we have

< Ar(y+ Hyn),n >= Hy(T) + ArH,— < G~ 'Vrn, Vrn > Hj,

Moreover, by (42) and (40), we have

< Vaj aua; LA > = < au?;uj o8> i+ O
< V3 afa (Fa > = vl T < vgg.%,ﬁf - B
i < G > B < A 2
vgf ai (Aa’), n’ vﬁf %IZ][
Combination of these formulas gives
< Hy,(Ty)ng,n > = Hy(T) + ArHy, +a(y)Hy, + Vs(y, VH,)VH, ® V2H,, (43)

where a(y) is a bounded C! function, and Vs = V;(y, K) are some matrices of functions
defined on RN x Uy such that

supp Vs(y,K) C Ur forany K € Uy, szlp) ||V5(',7Hh)||Lm(Q) < Cmy,,
te(0,T

IVVs(y, VHy)| < Cagy V2 Hi(y,1)|, 196 Vs(y, VH)| < Cany [VO:H (y, 1) (44)
Under the assumption that (14) holds with some small constant § > 0.

2.4. Derivation of Transmission Conditions and Kinematic Condition

At first, we consider the kinematic condition: Vr, = v - n;. Note that v, = v_ onT}.

Since 5 S
X h
Vl"t:g'ntzﬁn'ntr
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it follows from (38) that

oth+ <Vrh Luy > —uy -n=<u; — %n,Vn(-,VHh)VHh ® VH), > . (45)

Here, we introduce the symbol

n N-1 . l
< Vrih Luy >= Z(,’é( Y g}/(ah;icp” <t uy od >>.
=1 ij=1 Uuj

If we move < Vrh L uy > to the right-hand side in proving the local well-posedness
by using a standard fixed point argument, we have to assume the smallness of the initial
velocity field uy as well as the smallness of the initial height /y. However, this is not
satisfactory. We have to treat at least the large initial velocity case for the local well-
posedness. To avoid the smallness assumption of the initial velocity field, we use an

idea due to Padula and Solonnikov [4]. Let ug € Bf,,(pl ~1/p) (Q)) be an initial velocity field
and uj = up|n,. We know that [[ug]] = 0 on T, which follows from the compatibility

conditions. Let ﬁg be an extension of ua“ to RN such that ﬁar = uar in Q4 and

ot +
180 [ g20-1m ey < Cllg llpa-1rm - (46)
Let
1
u = §/0 To(s)ay ds,

where {Ty(s) }s>0 is a C? analytic semigroup generated by —A + A with large Ag in RY,
that is

To(s)f = F 1 [e =167 +20) £(g)] ().

Here, f denotes the Fourier transform of f and F~! the inverse Fourier transform. We
know that

I To(-)8g 11, (0,00, H2(RNY) T 19¢ To (-)ttg Il L, (0,009, (rN)) + HTO(')ﬁ(J)rHLw((o,oo),Bﬁf;*l/”(RN))

(47)

< CHugHB[z],(;fl/p(RN),

which yields that

- < Cllug || 20 ,

el 210 gy < Cllug 2o s
-1/
||‘1KHH,§(RN) < Cx p||u6r\|B§,(p1—1/n>(Q+)-

As a kinematic condition, we use the following equation:

oth+ < Vrh L u, > —u~n:d(u,Hh), (49)

where

d(u,Hh) = <VrH, Llu—u >+ <u-— aa#n,vn(vah)VHh & th > . (50)

Let £+ be an the extension map, which is acting on u+ € H,%(Qi) and satisfying the
properties: E+(ut) € Hg(Q), E+(ugr) =usr in Oy,

(035 (us))(x0) = lim dtu (x) (51)

xeQy
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for xg € T and a € N} with |a| < 1, and
€= (02 10 < Coglloson, 52)
for / = 0,1, 2. Note that
[[0zu]] = 0%€—(uy)[r — 03+ (u-)lr (53)
for |a| <1 onT. For the notational simplicity, we write
trjul = €_(uy) — E4(us). (54)
Then, we have
0y trlu]|r = [[0yu]] 55)
i) < i N gi = (¢
”tr[u]HHq(Q) = C(”u"r”Hq(Q) + flu ”Hq(())) CHuHHq(Q)
fori=0,1,2.
Next, we consider the interface conditions:
[(T(v,p) + Tm(Hy))ny]] = oH,(T1)ny  onTy. (56)
Let
Iid=d-<d,nf >n;, IIjd=d—<d,n>n (57)
The following lemma was given in Solonnikov [20].
Lemma 2. Ifn; - n # 0, then for arbitrary vector d, d = 0 is equivalent to
IIpI;d =0 and n-d=0. (58)

In view of Lemma 2, the interface condition (56) is equivalent to the following
two conditions:

oI {[v(D(u) + Vp(K)Vu)) + Tu(G)]In; =0, (59)
n - ([[v(D(u) + Vp(K)Vu) — ql + T (G)]In; — o Hy (T1)n;) = 0. (60)

Here and hereafter, Vp (K)Vu is the N x N matrix with (i, j) components Vp;;(K)Vu
(cf. (18)). Noting that ITITy = IIy, we see that the condition (59) takes the form

Ip[[vD(u)]n = b (u, G, Hj,) (61)
with

h}(u, G, Hy,) = Tp(My — IT;) [vD(u)]]n; 4 Ho[[vD(u)]](n — ny)
— oI [[vVp (K) Vu + Ty (G)]|n;.

(62)
On the other hand, by (43) we see that Equation (60) can be written in the form
n- [[vD(u) — qI]Jn — o(Arh + ah) = hyn(u, G, Hy,) + oVs(-, VH,)VH, @ V2H,,. (63)
with
hin(w, G, Hy) = (n-ng) " {n- [vD(w)]](n —ny) —n - [pVp(K)Vu + Ty (G)]Ine}. (64)

In particular, by setting

hi(u,G, Hy) = (h}(u,G, Hy), hin(u,G, Hy) + o Vs(-, VH,) VH, ® V?Hy,),
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in view of (18), (38), and (55), we obtain

hi(u, G, Hy) = Vi (-, VH,)VH;, ® Vtr[u] +a(y)tr[G] ® tr[G]

_ _ B (65)
+ Vi (-, VH,)VH, ® tr[G] ® tr[G] + V(-, VH;,)VH, @ V?Hj,

Here, a(y) is an N-vector of bounded C? functions, V} (-, K) (i = 1,2) are some
matrices of functions defined on RN x Uj and satisfying the conditions: || Vi || Leo(RN xUj) <

C, supp Vi (v, K) C Ur,
IVViL(y, VH)| < CIV2Hy(y, 1)l 19:Viy(y, VHy)| < CIVOrHy (y, ). (66)

provided that (14) holds with some small § > 0.
From (18), we see that the interface condition: [[x~'curlHj, + u(v® H, — H;, ®
v)]]n; = 0 takes the form

([« 'curl G]In = hy(u, G, Hy), (67)
where
hy(u, G, Hy,) = [[a tcurl G]](n — ny) — [[a 'V (K)Vu]]n; — [[#(u® G — G @ u)]]n;.

Here, Vc(K)Vu is the N x N matrix with (7,j) components V(;;(K)Vu, which are
given in (18). In particular, in view of (18), (38), and (55), we may write

hy(u, G, Hy,) = V3 (-, VH,)VH, ® Vtr[u](E—(us) + b(y)tr[u] ® tr[G]

Al o (68)

+ Vi (-, VH,)VH;, ® tr[u] ® tr[G].

Here, b(y) is an N-vector of C? functions, and Vil(-, K) (i = 3,4) are some matrices

of functions defined on RN x U satisfying the same conditions as those stated in (66)
provided that (14) holds with some small § > 0.

From (23), we see that the interface condition: [[udivH,]] = 0 can be written in
the form
[[ndiv G]] = h3(u, G, Hy), (69)
where

N
- d
hi(w, G, Hy) = —p ) Vojr(K) Ko —tr[ul;,

k=1 Yk

Voir (K) = Vojk(K)K are the symbols given in (17), and tr[u] = (tr[u]y, ..., tr[u]y).
Finally, the interface conditions: [[yH - ns]] = 0 and [[H— < H,n; > n;]] = 0 can be
written in the form
(G -n]] = ki(G, Hy), [[G— < G,n > n]] = ko(G, Hy), (70)
where
k(G Hy) =[G - (n—ny)]], ka(G, Hy) = [[< G,nt —n > ny]] +[[< G,n > (n; —n)]].
In particular, in view of (38) and (55), we obtain

(k1(G, Hy), k2(G, Hy)) = Vi(-, VH;,) VH; ® tr[G]. (71)

Here Vi(-, K) are matrices of functions defined on RN x U; and satisfying the same
conditions as stated in (66), provided that (14) holds with sufficiently small § > 0.
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2.5. Statement of the Local Well-Posedness Theorem

Summing up the results obtained in Sections 2.2-2.4, we see that Equation (6) is

transformed to the following equations:

oth+ < Vrh Lue > —n-u=d(u, Hy)

[[G n]] =k (G, Hy), [[G—<G,n>n] =k(G Hy)
ur =0, ny-GyL=0, (curlGyi)ny =0

where Hj, is a solution of Equation (8).

mdyu — DivT(u,q) = £f1(u, G, Hy),
divu = g(u, Hy) = divg(u, H,

[[u]] =0, [[T(u,q)n]] —c(Arkh+ah)n =hy(u, G, Hy),
10;G —a 'AG = f5(u, G, Hy)
[« tcurl G]n = hy(u,G,Hy), [[udivG]] = h3(u,G,Hy)

(u, G, h)|t=0 = (ug, Go, ho)

inQ x (0,7),

in Q) x (0,7),

onT x (0,T),

onT x (0,T),
inQx(0,T), (72
onI x (0,T),

onT x (0,T),

on Sy x (0,T),
nQxQxT,

The purpose of this paper is to prove the following local in time unique existence

theorem.

Theorem 1. Let 2 < p < oo, N < g < 00, 2/p+ N/q < land B > 0. Assume that
condition (5) holds. There exist a small number € and a small time T > 0 depending on B

such that if initial data hy € B3 Vr= 1/q(l") satisfy the smallness condition |[ho|| j3-1/p-1/4 < €,
q.p

and (ug,Go) € By (1 1/’g)(Q) satisfies ||(uo, Go)ll 21-1/p)
0

conditions:

[[(vD(ug) + Tp1(Go)n]}r =0,

()

< B and the compatibility

divug =0 inQ,
[[up]] =0 onT,

[{a~ curl Go + p(ug ® Go — Go @ ug)}n]] =0, [[udivGo]] =0 onT,  (73)
[[#Go-n]] =0, [[Go— < Gp,n>n]|]=0 onT,
upr =0, ng-Gor=0, (curlGoi)ny =0 onSy,

then Equation (72) admits unique solution u, q, G, and h with the following properties:

uc H}
q € Ly(

»((0,T), Lg()N) N Ly ((
(0,T), Hy (Q2) + Hy (Q)

7

0,T), Hj (™),

G € H)((0,T), Ly()N) N L, ((0, T), HA()N),
e HY)((0,T), W, I(T)N) nLy((0,T), W, /7(T)),

||HhHLOO ((0,T),HL(Q)) = < 0.

This solution satisfies the estimate:

(e, G L, ((0,7), 262 + 196 (w, Gl ((0,7), ()

+ ||hHL (OT)WS ]/‘7 + ||athHL (OT)WZ ]/’1 + ||athH

(oW < F(B)

Here, ¢ is a constant appearing in (14), and f(B) is a polynomial of B.

3. Linear Theory

Since the coupling of the velocity field and the magnetic field in (6) is semilinear, the
linearized equations are decoupled. Namely, we consider the two linearized equations: one
is the Stokes equations with transmission conditions on I' and nonslip conditions on S+,
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and another is the system of the heat equations with transmission conditions on I" and the
perfect wall conditions on S. We assume that I' is a compact hypersurface of C3 class and
that Sy are hypersurfaces of C? class.

3.1. Two-Phase Problem for the Stokes Equations

This subsection is devoted to presenting the Ly,-L,; maximal regularity for the two-
phase problem of the Stokes equations with transmission conditions given as follows:

moyu — DivT(u,q) = f in Q) x (0,7T),
divu =g =divg in Q) x (0,T),
oth+ <Vih Lwe>-n-u=d onT x (0,T), 74)
[[u]] =0, [[T(uw,q)n]] —c(ah+ Arh)n =h onT x (0,T),
ur =0, on S+ x (0,T),
(u,h)|t=0 = (ug, hp) in () xT.

Assumptions for Equation (74) are the following:

(a.1) aisabounded C! functions defined in Q).
(a.2) wy is a family of N-vector of functions defined on T for « € (0,1) and such that
(Wi ()] < my,  |wi(x) — wi(y)| < my|x —y|® forany x,y €T,

_ < -,
||WK||W,,2 1/7(1-) = mpk
Here, mq, my, b, and c are positive constants and r € (N, ).

Theorem 2. Let 1 < p < 00,1 < g <71, 2/p+1/q # 1,2, and T > 0. Assume that
the assumptions (a.1) and (a.2) are satisfied. Then, there exists a constant g > 0 such that

the following assertion holds: Let uy € B;/(,} —p )(Q) and hy € B;I;l/ Pl IT). Letf, g g

h = (W, hy), and d appearing in the right-hand side of Equation (74) be given functions satisfying
the following conditions:

f€L,((0,T),Ly(YN), e g e L,(R Hy(O)) NHy?(R,Ly()),
e Mg e HY(R,Ly(Q)Y), e "he L,(R Hy(Q)N)nH2(R,Ly(Q)N),
d € L,((0,T), W, /9(1))

for any vy > yg. Assume that ug, g, and h satisfy the following compatibility conditions:

divug = gli=o on Q), (75)
[[vD(ug)n]]r = he|—g onT provided2/p+1/q<1, (76)
[[ug]] =0 onT, wgr =0 onSy provided2/p+1/q<2, (77)

where dr = d— < d,n > n. Then, Equation (74) admits unique solutions u, q, and h with
u e Ly((0,T), Hy(O)N) N Hy((0,T), Ly()N), q € Lp((0,T), Hy(Q) + Hy (),
3-1 2-1
e Ly((0,T,W; (T)) nH((0,T), Wy /9(T))
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possessing the estimates:

9wl 0,1,y + lli, o1y, mz ) + 1900, w2170y I 0,0y w172y
< Ce’YKiCT{HUOHB;(;*UW)(Q) + K*CHhoHB%l/p—/q(r) + HfHL,,((O,T),Lq(Q))
+ e8I, e ey + e 8l ey ey + e Bl 1y 00

+ (1 + 71/2)(||377tg‘|H;/2(R,Lq(Q)) + HeirythHH}}/Z(R,Lq(Q))) + Hd”LP((O,T),H,%(Q))}
for any v > o with some constant C > 0 independent of .

Remark 1. (1) Theorem 2 has been proved in Shibata and Saito [21]. The reason why we assume
that T is a compact in this paper is that the weak Neumann problem is uniquely solvable. Namely, if
we consider the weak Neumann problem:

(m~'Vu, V) = (£ V) forany ¢ € Hy(Q) (78)

where
Hy(Q) = {9 € Lyioc(Q) | Vo € Ly ()}, 4 '=4q/(9-1),

then for any £ € Lyo(Q)N, problem (78) admits a unique solution u € HL}(Q) satisfying the
estimate: ||Vul|p, o) < Cllf|l, () with some constant C > 0. If T is unbounded, then in general
we have to assume that the weak Neumann problem is uniquely solvable except for a few cases where
Tisflat, thatisT = {x = (x1,...,xn) € RN | x5y = 0}, or T is asymptotically flat.

3.2. Two-Phase Problem for the Linear Electromagnetic Field Equations

This subsection is devoted to presenting the L,-L; maximal regularity for the linear
electromagnetic field equations. The problem is formulated by the following equations:

poH —a 'AH=f inQx(0,T
[[a lcurl H]jn = h/, [[udivH]] =hy onT x (0,T),
[H- <H,n>n]]=k, [[uH-n]]=ky onT x (0,T), (79)
ny -Hiy =0, (curlHi)ny =0 onSy x(0,T),
H|;o=Hy inQ.

Theorem 3. Let 1 < p,q < o0, 2/p+1/q # 1,2, and T > 0. There exists a constant g

such that the following assertion holds: Let Hy € Bs,(plfl/p)(()) and let f, h = (h/,hy), and
k = (K/, ky) be given functions appearing in the right-hand side of Equation (79) and satisfying
the following conditions:

f€L,((0,T),Ly(YN), e "he L,(R Hy(QN)nHY2(R, Ly (Q)N),
e "k € Ly(R, HF (Q)N) N Hy(R, Ly(Q)N)

forany v > yg. Assume that £, h, and k satisfy the following compatibility conditions:

[« tcurl Hp)jn = h'|;—g, [[udivHo]] = hn|i=o onT, [[curlHpi)ne =0 onSs (80)

provided that 2/p+1/q < 1;

HHO_ < Ho,n > n]] = k/|t:0/ [["MH() : nﬂ = kN|t:0 onl, ny- H():t =0 onSy (81)



Mathematics 2022, 10, 4751

20 of 45

provided that 2/p + 1/q < 2. Then, problem (79) admits a unique solution H with
H e L,y((0,T), Hy ()N) N Hu((0,T), Ly(O)N)
possessing the estimate:

T
10eH 1, (0,7), vy T 1Bl (0,1, 1202y < C€” {||H0||B;<pl—1/n)(m + £l &L, (c2)

+ el e 1)) + ||€77th||H}1,/2(R,Lq(Q)) e Kl mpa)) Tl 0Kl (0}
for any v > o with some constant C > 0 independent of .

Remark 2. Theorem 3 was proved by Froloba and Shibata [11] under the assumption that () is a
uniformly C3 domain. Of course, if T is a compact hypersurface of C° class, then Q) is a uniform
C® domain.

4. Estimates of Nonlinear Terms

First of all, we give an iteration scheme to prove Theorem 1 by the Banach fixed point
theorem. For a given h satisfying (9), let Hj, be a unique solution of Equation (8) satisfying
(10) and (11). Let Ut be a space defined by

Ur = {(w,G,h) |(u,G) € Hy((0,T), Ly()*N) N L,((0, T), Hy (Q)*N),
he Ly((0,T),W, (1)) n HL((0,T), W, /(T)),

. (82)
(u, G, h)|t=0 = (ug, Go,hp) InQAxQxT,
Er(u,G,h) <L, ||Hh”L°o((0,T),Hg°(Q)) <4},
where we have set
_rl 1 2
1
Er(w) = 1wlle, om mz) + 10Wle,om L) we{wGlL (@3
201\ _
Er(t) = Wl o my g vncey) + 19N o my iz
For initial data ug, G, and h(, we assume that
oll 21701 ¢y < B, 1Goll a1y < B llhollgsvrp-iary < € (84)

Here, B is a given positive number. Since we mainly consider the case where ug and
Gy are large, we may assume that B > 1 in the following, and we shall choose L > 0 large
enough and € > 0 small enough eventually. So we may assume that0 < e < 1 < L. For
any given (u, G, h) € Uy, let (v, q, p) be a solution of the problem:

moyv — DivT(v,q) = f1(u,G,Hy,), inQx(0,T),
divv = g(u, Hy,) = div g(u, Hy) in Q) x (0,7T),
oip+ < Vrp Luc > —n-vy =d(u, Hy) onT x (0,T), (85)
(V)] =0, [[T(v,a)n]]— o(Arp +ap)n = hy(w G, Hy),  onTx (0,T),
vi=0 onSy x (0,T),
(v, 0)|t=0 = (uo, ho) in () x T.
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Let H be a solution of the problem:

uoH —a'AH = f,(u,G,H,)  inQx(0,T),
[[a tcurl H]]n = hy(u, G, Hy), [[udivH]] = h3(u, G, H) onT x (0,T),
0,T

[[WH -n]] = k(G,Hy), [[H- <H,n>n]| =k (G, Hy) onT x (0,T), (86)
ny -Hi =0, (curlHi)ny =0 on Sy x (0,T),
H|;—o = Go in Q).

Notice that to define H we use not only H;, but also H, unlike Padula and Solon-
nikov [4] to avoid their technical assumption that the velocity field is slightly more regular
than the magnetic field.

In this section, we shall demonstrate the estimates of the nonlinear terms appearing in
the right sides of Equations (85) and (86). Since (u, G, 1) € Ur, we have

Er(w,G,h) <L, (87)
IHnll o (0,1), 8 (00)) < 0 (88)

Below, we assume that 2 < p < oo, N < g < c0and 2/p+ N/q < 1. We use the
following inequalities which follow from Sobolev’s inequalities.

1Ly < CllA1
18Il < Cllf i ||8||H1
£l k20 < C(lIfHHg(o)llgl\H;(o) F A ey 181 202 (89)
178 ygp-ra ) < ClAyr17a e I8 gy
£ &llyz-17a 0y < CULFllyzvsn ) N8 lly-vra ey 1 lyga-va oy I8l ya-17a gy )

For any C¥ function, f(u), defined for |u| < o, we consider a composite function
f(u(x)), and then for N < g < oo, we have

IV (f()ow)ll ey < CICE ) e (L IVl @) ol ey [0l 13 2y
IV2(f o)l e < CIE S F e IV 0] gy ey 0l g3 ) + 103000 1 V0N 133 (90)
IVl gy ey U+ 11Vl ) 0l ey 0l )

provided that |u][; ) < 0. We use the following estimate of the time trace proved by a
real interpolation theorem

||W||L ((0 T) B (1 UP)(Q))
< C{||w0|| 20-1/p) ¢y F IWIlL, 01,2000 + 19wl (0,7) 1,20y} < C(B+L) (1)

forw € {u, G},

HhHLoo((O T),Bs;l/pil/q(l"))

< C{HhO”B;;l/P*l/‘I(r) + HhHLp((O,T),Wg’*l/‘I + ”a hH 2 1/‘1 )} < CL. (92)

Ly((0,T),
Then, we have

(0,1),W; (1))
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In what follows, we assume that 0 < e = T = x < 1and 1 < B, L. In particular,
e+ LTV?V <T+ LTV/? < 2LTPV/P' We assume that LT!/?' <1, and so by (93),

”h”Lm((O,T),qufl/q(r)) < LTl/P , ||hHLoo((0 <1 (94)

)W 1(r))
We first estimate f1(u, G, Hy). In view of (22), we may write

fl(u, G, Hh) = Vfl(.’ th)(th X (atu, V2u)

_ 95
+0:H, ® Vu+u® Vu+ V?H, ® Vu+ G @ VG), ®3)

where Vg, (y,K) is a matrix of bounded functions defined on Q) x {K € RN*1 | [K| < 6}.
Applying (11), (88), and (89), we have

18100, G )y ) < B3 17y | @, T2 )+ @311 |90

(T)
2 2
1l )+ 2 v g IV + IG g -

For a maximal regularity term f and a lower order term g, we have

18l o)) < 1,0 I8l La((01))-

Only for a lower order term g, we use the estimate

IgllL,0m) < TY?18l Lu(0,))-
Thus, using (11), we have
[f1(u, G, Hh)HLp((O,T),Lq(O)) = [Illf2(w, G, H)ll 1, (ex) I, (0,7))
< C{HhH Wbl/q(r))(||atu”Lp((o,T),Lq(Q)) + ||“||Lp((o,T),H§(Q)))
+T1/P(||a hHL (o)W, M ”uHLoo((O,T),H%(Q))
2 2
+ ||11H «((0,T), Hl + ||G|| ((0,T) Hl(Q)))} (96)
By (11), (87), (84), (91), and (92), we arrive at
1wl o), HI(Q) S C(B+L) forwe {uG},

19wl L, (01, Ly () T IWIlL, 01) m2(02)) S L forw € {u, G},

lohl, < CEr(w,G,h) < CL, 67

(0,1), W, 1(r))

19k o w1y + WML o =t

)Wy ()
Thus, by (94) and (97)
1£1(w, G, Hi) I (0,1),1, () < CATVP L2+ TVP(L + B)*}.
Since 1/p’ > 1/p as follows from1 < p' = p/(p—1) <2 < p < oo, we have
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We next estimate d(u, Hy) given in (50). We shall prove that

H 1/p'
It Bl o 1wy ryy < CHB+ LT, o
H o i
||d(u’ h)||Lp((O,T),W§71/q(F)) S CSL (B + L)TP (1+ ),

where s € (0,1 —2/p). Here and in the following, C; is a generic constant depending on s,
whose value may change from line to line.
In fact, by (11), (88), (89), and (90),

|d(u, Hh)HW;—l/q(r) < C{||h|\qu_1/q(r)||u+ — uellmya)
) .
+(1+ ||h||w§‘1/q(r))Hh“qufl/"(r)(HuHH%(m) + ”athHW;_l/q(r))}'

(e, )21y < CLIB g3 1 = ey, + [l = el

(100)
2
+ ”hHw;’””(r)(l + ||h||WqZ*1/li(r))”hHW;—l/q(r)(HuHH{}(QJr) + ||ath|\wg—1/q(r))
2
(g, + 1000z v I v
gy 1900yl v -
By (48), we have
Juy — uKHLOO((O,T),H%(QJr)) < C(HuHLm((O,T),qu(Q)) + HUOHB;(pkup)(Q)) (101)
< C(L+B),
and so by (94) and (97)
1 (a, Hp)| < C{TYPL(B+L) + (1 +TVPL)(TVV'L)*(B + L)}

Leo((0,T), W, (T))
< CTYV'L(B+L),

which shows the first inequality in (99).
To prove the second inequality in (99), we use the estimates:

lu— uK||Lp((o,T),H5(Q+)) < C(L+B),
s (102)
[u— uKHLm((O,T),H%(QJr)) < CsT¥+) (L + B).
Here, s is a fixed constant 0 < s < 1 —2/p. In fact, by (48) and (84)
e = udliza,) < CUaC, Ol + < /7B).

Consequently, by (87) and (97), we have

[u— uKHL,,((O,T),H%(Q”) < C(L+TYPx~'/PB) < C(L+B),
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because we have taken x = T. This shows the first inequality in (102). For t € (0, T) by (47),
(84), and (87)

lu—uillr, ) < lu—uollr, )+ [lwo— uKHLq ()
T
< [ Bl o, dt+ / ITo(s)ag — wollz, (0, 45
< Tl/P L + — / / ||a TO ||Lq(0+) d?’) ds
<TYYL+CkPB < C(L+ B)Tl/r”.

By real interpolation,

s/(1+s) ”
Ly(Q)

1/(1+s)

Uy HW1+5(Q+)

1/(1+s)
By @)

[u =kl g1,y < Csllu— ul|

(14
< csnu—uKnLq(Qj}nu u

forany s € (0,1 —2/p)), which, combined with (48) and (91), yields the second inequality
in (102).
Applying (94), (97), and (102) to the second inequality in (100) yields

Hd(uth)” ((0 T) W2*1/’4(1—~))

< C{L(B + L)T"? + C,TPOH L(L + B)
+ LLTYP (L + B) + LLTY? + (L + B)LLt"/¥'}
< CTPU# [2(L + B),
which proves the second inequality in (99).

We now estimate g(u, Hy,), g(u, Hy,) and h; (u, G, Hy,) given in (27), and (65), respec-
tively. We have to extend them to the whole time line R. Let £+ be the extension maps given

in Section 2 (cf. (51) and (52)). For w € {u, G}, let Wy € Bél(; —1/p) (RN) be extensions of
woy to RN such that

Wor = Ex(wos) inQ), ||W0i||B§<;—1/p>(RN) < C||W0i||B£zl<;71/p>(Qi) < CB.

Let 79 be a large positive number appearing in Theorems 2 and 3, and we fix 77 in
such a way that 7 > 7. Let T, (t)wo+ be defined by setting

To(t)wos = e~ @1 Diwg, = F1 e (P21 P, ] (2)].
In particular, T, (0)wor = wox in Q4, T,(0)wor = Ex(woy) in O, and
€™ T () Wor Il 11 (0,000, 00y + €™ To ()WLl 0,000, 2(02)) < CB- (103)

We also construct a similar extension for H;,. Let W, P, and E be solutions of
the equations:

W + AW —DivT(W,P) =0, divW =0 inQ x (0,00)
HE+AME—W-n=0 onT x (0,0),
[[T(W,P)n]] —c(ArE)n =0, [[W]]=0 onT x (0,00)
Wi =0 onSy x (0,0),

(W,E)|—0 = (0,hp) inQ xT.
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For large Ag > 0, we know the unique existence of W, P, and & such that

W € Hy((0,00), Ly(Q)N) N Ly ((0,00), Hy ()N,
E € Hy((0,00), Wy~ /(1)) N Ly((0,00), Wy~ 1/1(T)),

and the following estimate:

Y1t . 1t . T1t
1™ Wil 0.0,y c0) T 1€ WL (00) 300y + 1™ WL 0,000 w2170 1)

Tt 11t
+ ||€ ! ‘_‘HH’l]((O, ) + ||e H”H;Q(O,

Yot
copmz /() T EN L (0 w2 o)

S CHhOHBi;l/pfl/q(r) S Ce

o0), W, (T))

holds. Let Tj,(t)hg = Hz(x,t), where Hg is a unique solution of (8) with h = E,. then by
(11) we have

||371tTh(')hOHH},((o,oo),Hg(Q)) + HewT(')holle((o,oo),Hg(o)) 104)
+ HewTh(')hOHLw((o,oo),Bs,;””(Q)) + He’htTh(')hOHH(}Q((O,oo),H,}(Q)) < Ce.

In what follows, a generic constant C depends on y; when we use (103) and (104), but
71 is eventually fixed in such a way that the estimates given in Theorems 2 and 3 hold, and
so we do not mention the dependence on ;.

For a function f(t) defined on (0, T), we define an extension er[f] of f by setting

0 fort <0,

erlf] = f(t) for0<t<T,
f@2T —t) forT <t < 2T,
0 fort > 2T.

Obviously, er[f] = f for t € (0,T) and er[f] vanishes for t ¢ (0,2T). Moreover, if

fli=0 = 0, then
0 fort <0,
o:f(t forO0<t<T,
drer[f] = f (1) (105)
—(0:f)(2T —t) forT <t < 2T,
0 fort > 2T.

If f € Ly((0,T), X) with some Banach space X and f|;—g = 0, then

ler[flllL,®x) < 2lfllL,(0mx) 1 <p<eo),
ler[fll,x) <2TPllfllLaom,x) (1< p <o)

Moreover, if f|;—o = 0, then ez [f](t) = fot dter|[f] ds, and so

ler[f]ll Lo @ x) < Z(ZT)l/p/”fHLp((O,T),X) (I<p<oo, p=p/(p-1)),

because er[f] vanishes for t ¢ (0,2T).
Let ¢ € C*®(R) equal one for t > —1 and zero for t < —2. Under these preparations,
for w € {u, G} and Hj,, we define the extensions & [w], & [tr[w]], and & [H;] by setting

Erlwi] = erfus — To(H)wo] + 9 (#) To ([t woz,
Extriw]] = er[tr[w] — Ty (t)tr[wol] + ¢ () To (|t|)tr[wol, (106)
E[Hy| = er[Hy, — Tpy(t)ho] + () T, ([t]) ho-
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Here, we have set trjwg] = Wo — Wo_. Notice that wi — T, (f)wor = 0 fort = 0,
tr[w] — Ty (t)tr[wy] for t = 0, and Hj, — Tj,(t)hy = 0 for t = 0. Obviously,

Slur] =uy, &ftr[w]] =trlw], &[Hp| =H, for0<t<T. (107)
By (97), (103), and (104), we have
lle™ " Ex[Wlllp, r 2 () + Nl O W]l (1, cry) < Cle 2 41),
e e < CAr"1B 4+ Cy(B + L)TV 01+ )
[ W 3 c2)) s( ) (108)
HgZ[Hh]HL p(RHF (O "' ||52[Hh]||H1 (R,H2(O) + [0 EZ[Hh]HL (RH}())) <C(e+L)<2CL,
I1E2[Hn] 1@, 12(0r) < Cle+ LTV < ZCLTl/P,

where w € {u, G, tr[u], tr[G]}. In fact, the first and third inequalites in (108) follow from
(103), (104), and (87). To prove the second inequality in (108), we observe that

t
ler[w — To()wollp, (@) < /O [9ser[w — To(£)woll| L, (¢ ds
< TV (0w, (0,11, 00) + I To(Wol 027 1,060
< TVP (L + B);

lerw = To(t)Wollly+s(y) < Cslller[w = To(B)wolll 21/ ) < Co(B+ L),

(o)
forany s € (0,1 —2/p). Thus, using the inequality:

/( 1+ 1/(1+
< Gollolly (g ol o

HUHHI Wi ()’

we have the second inequality in (108). By (104) and (94),

||1‘/J(t)Th(|t|)hOHLw(R,H;o(Q)) < Ce,
ller[Hy = Tu(t)hol | .y, 1,2y < CUMHRI 0,1y, m2(02)) + 1T R0l L (0,00), 12 (0)))
< C(e+TY"'L),

and so we have the last inequality in (108).

From (106), we see that || &2 [H] [l 1, (o) < CUIHall ) + ||ho|\8371/p71/q(1_)). Choosing
9.
¢ in (14) and € in Theorem 1 smaller, we may assume that
sup || E2[Hp) ||H},O(Q) <é. (109)
teR
In addition,
|E2lHnl gy < CLTY7, €2l ey < 1 (110)

To estimate H}/ 2(R, Lg(€2)) norm, we use the following lemma.
Lemma3. Let1 < p < occand N < q < co. Let

f € Leo(R, Hy (0)) N HL (R, Ly (©))), g € Hy*(R, Hy(€2)) N Ly(R, Hy (€2)).
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Then, we have

17821 )+ ||fg||Lp R )

< c<\|atf||Lm g 1 i) A1 g sy (18 2y + 18y )
Proof. To prove Lemma 3, we use the fact that
Hy/2(R, Ly(€) N Lyp(R, Hy/2(Q0)) = (Lp(R, Lg(€D)), Hy(R, Lg(€)) N Ly (R, Hy ()71
where (-, -)[; /2] denotes a complex interpolation functor of order 1/2. We have
£ 8N oy () 18, e 12 ()

< C(HaffHLw(R Ly(Q ||g||Lp R,H}(Q )t ||fHL°o R,H} (O ||gHH1 RLq(Q)))
< CUOA Ny (cr)) + Hf”LOQ(R H3 () )(||g||L,,((R,Hq1(Q)) 8l L, ()

Moreover,
||f8||L,, (R,Lg (€2 CHfHLp(R H(Q) )||8||Lp (R,Ly(2))"

Thus, by complex 1nterpolat10n, we have

HngHl/Z R,Lg(€2)) + ||fg||L (RHVZ('))
< CUOS N Ly (cr)) + 111 RHl(Q)))

<13 g e <Hg||HmRL< gl 22

Moreover, we have

HngLp R,H}(QY)) < CHf”Loo R,H} () ||g||Lp R,H}(Q)"

Thus, combining these two inequalities gives the required estimate, which completes
the proof of Lemma 3. [

Lemma4. Let1 < p,q < 0. Then,
Hy (R, Lg(€2) N Ly(R, H7 (Q)) C Hy2(R, Hy (Q)))
and
”uHH},/Z(R,H,}(Q)) C([[u HL (R,HZ(O) i Hat”HL (R,L (Q)))
Proof. For a proof, see Shibata [10] (Proposition 1). O

We now estimate h; (u, G, Hy,). In view of (65), we define an extension of hy (u, G, Hy,)
to the whole time interval R by setting hy(u, G, H),) = A + A% + A3 with

A% = a()& [#[G]] @ &[tr[G]] + VR (-, VEHL) VE[H,]) ® &[t[G]] ® &[#([G]], (111)

Al = Vi (-, V&[H])VE[H,] @ VE [tr[u]],
1]
A% = Vi (-, VE[H)) VE[H,] ® V2E[Hy).
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Obviously, hy(u, G, H,) = hy(u, G, H,) for t € (0, T). To estimate A!, for notational
simplicity we set V! = V1 (., V&[H,])VE[Hy]. By (108) and (109),
phcty h h hl- BY

”afV HLOO R,Ly(€))) < CHa gZ[Hh]”L (R,H}(O)) = <CL,
HV ”Loo(lRHl( S Cng[Hh}HL (R,H2(0Y)) < CLTl/V

and so, we have

OV oty + IV e )2 IV 2 ) < CLTY @, (112)

Thus, by (108) and (112) and Lemmas 3 and 4, we have

||€_7tA1HH1/2 R,L (Q + ||€_7tA1||L R,Hl(ﬂ))

< CLTY @) ([le 7'V & [tr[u] oy e VElL g, (119

”Hl/2 R,L,(
<T@ L2 1B 4 L).
Since

||€_7t7252[Hh}HH1/2 < lle™" & Hul | iy 12 c2)) < Cle e 4 L);

R,Ly((2))
le™ " V2E [Hylll, i) < Cle™ " EHyl |l g 1300 < Cle 2rmle 4+ )

as follows from (87), the third formula of (104) and (106), employing the same argument as
in proving (113), we have

)+ lle™ A’ I, 11 (c2)) < CTV @) L(2r-1)e 4 L), (114)

||e_7tA3||H’1]/2 R,Lg(

We now estimate A2. For this purpose, we use the following esitmate which follows
from complex interpolation theory:

113722 000 = O Iy I e (115)
Let
A? = &[tr[G]] @ &1[tr[G]], A3 = VA(-, VE[H,))VE[H,] @ A3
We further divide A2 A%l + A >+ A%l + A%z, where

A =M eA, A=AeA, M=AbA, Ah=A43A,
Ay = () To([t)tr[Gol, Az = er[tr[G] — Ty (t)tr[Go]].

Using (89), we obtain

le™" Al 2,1y 2y < Clle™ Al RumHAllleRHl(o» (i=01),

le™ " A,y ) < CUAL ) 142 Lo 2
A g ) 142 by e 2, ) (116)
lle= A%ZHL RL () < C||A1||Lm RHL(O) ||~A2HL (R,Ly ()

e~ ABall g 10y < Cll Aol s, ))nAanw(R,H;(Q)) (i=0,1)

where we have set H) = L, and used the fact that [e~7'4;| < |43|, which follows from
Ay =0fort ¢ (0,2T).
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By (55), (87), (97), (103), and (105), we have
le™ Al r 1, ey < Ce 20, Al gy < €8 AL g a2 () < CB
2l Ly ey < C(LA+B); (1Al 1)) < C(L+B); (117)

A2l L, (&L, 02)) < CTV?(||tr[G Wewiom), Ly + TGl (0,1),L,(c2))
< C(L+B)TY?.

Notice that A%Z and A%l have the same estimate. In view of (115), combining estimates
in (116) and (117), we have

—t 42
||€ ’YtA1||H;/2(R/Lq(Q))

< C(e2r=1)B% 4 (B(L + B))?(B(L+ B)T"/P)V/2 4 (B + L)?>T'/ () (118)

< C(2rM)B2 4 (L + B)?TY(20)),

In addition, by (89)

e 431, gy < CUe™ Al g Mg g

+2H~Al”Lw]RH1(Q [ Azll, (RH} (O p + A2l (R,H ))”AZHLOO(]R,H}(O))}'
By (87), (97), (103), and (105), we have
||€ ’YA]HL RHl( )) < CE (7771)3'

||./42||L (RH} () < Tl/pHAZHLm ((0,27),H}(€2))

(119)
Tl/p(HtrGHLw ((0,T),H} (2 )t | To () tr[Go) HLOO((O,T),H,}(Q))
< CTYP(L+B).
Using (117) and (119), we obtain
le™ " ARl i ey < C(e2=1B2 4 (L + B)2TY/P). (120)

Moreover, by Lemma 3 and (112), we arrive at

lle” A%HHl/z RL,() T 14311, o (R HI(€)

<CLT“2P><||A ||H1/2RL PV P
which, combined with (118) and (120), yields

e A2z e 1 ey + e A2 ey
< C(Armp2y (L + B)2TY@P) 4 LTV @) (2(-1)B2 4 (L 4 B)2TV/(20)))  (121)
< C(2rMB? 4 L(B* + L2)TV/(20)),

where we use the assumption LT/ 2 <1,
Combining (113), (114), and (121) yields

”ﬁl(u/ G, Hh) HH;,/Z(]R,L[,(O)) + ||ﬁ1 (u/ G, Hh) ||Lp(]R,H‘}(Q))

(122)
< C(e2r"M)B2 4 L(L% + B2 4 2(v-1) BT/ (21)),

where we have used the facts: 1/(2p) < 1/(2p'), ee?(7=1) < Be2(r=11),and L < L2
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We finally consider g¢(u, Hy) and g(u, Hy,). In view of (28), we set

§(u, Hy) = G1(VE&[H])VE[H,] @ VE [u],

501, Hy) = Ga(VE[H,)) VEH,] © [ul. (129

Obviously,
§(u, Hy) = g(u, Hy), g(u Hy) =g(u H,) forte (0,T)

and div g(u, H,) = §(u, Hy,) as follows from (25)-(27). Employing the same argument as
that in proving (113), we have

||87’Ytg~(u, Hh) HH},/Z(R,L,,(O)) + Heirytg(u, Hh) HLP(R,H%(Q)) < CTl/(Zp’)L(L + ez(’Y*’h)B>‘ (124)
By (109), we have
19:8(w, Hi) I, 1y < CLNVEAH N gy ey 1906 [0l 2y + 19V EHR] Il o0y | E2[9T ] ey }-
Thus, using (89), (91), (92), (94), (103)—(105), and (109), we have

le™" a8 (w, Hi)llL, (= L, (02))
< CUHnl Lo 0,1, H2(02)) + 1T ()P0l Ly 0,00, H2(02)))
x ([lorall L, (o1),1, () + lle” " To( - D0l 11 (2,00, ()
+ (Tl/pHatHhHLw ((0,1),H} () T ||atTh(‘)h0||Lp((o,oo),Hg,(Q))) (125)
< (lull L o), m3c2)) + ||€ MTo(| - D0l ((~2,00) 11 (1))
< C{e+ LTYVP) (L4 2 ~1)B) + (TYPL + ¢)(L + 27~ 1)B)}
< CL(L+2—1)B)TV/P,

We now apply Theorem 2 to Equation (85) and use the estimate in Theorem 2 with
¥ = 1. Then, assuming that 1 < B < L, noting that s/(p'(1+5s)) < 1/(2p) < 1/(2p’)
and using (98), (99), and (122), we arrive at

Er(v) + IVallL,o,1),L,) +EZ(0)

s (126)
< COA+2)enT VB2 4 T V/Pe 4 3TV},

Here and in the following s € (0,1 —2/p) and 7 are fixed, and so we do not take care
of the dependence of constants on s and 7.
By the third equation of (48), (85), and (99), we have

< C{(e+ T“P E%(p))B + B+ ET(V) - L(L + B)Tl/r’ )}
< C{B+ EL(v) + E3(0) + L(L + B)T'/"'},

where we used the facts that eB < B and T/ PB <71V P < 1. In combination with (126),
it gives us

SC[(1+7%/2)6’)‘1T Up{Bz+T_l/p€+L3Tpl(l+s)}+B+L(L+B)T1/p,].
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Noting that 0 < T =€ < 1and T~1/Pe = T1=1/? < 1 < B2, we have

EL(v) + E2(0) + |9l < My(B? + L3T707) (127)

Leo((0,T),W; /(1))

for some positive constant M; depending on s and 1 provided that 0 < T <1, e =x =T,
TVPL<1l,andL>B>1.

We now estimate H by using Theorem 3 with the constant 7; given above. Let
f>(u, G, Hy,) be a nonlinear term given in (29). Recalling the formula in (31) and employing
the same argument as that in proving (98), we have

1£2(w, G, Hy)llp, (0,11, (cryy < CT"/P(L+B)™. (128)

We next consider hy(u, G, Hy,) and h3(u, G, Hy,) given in (67) and in (69), respectively.
Let hy(u, G, Hy) and /13(u, G, Hy,) be their extension to R with respect to ¢ defined by setting

ha(w, G, Hy) = Vi (-VE[H])VE[H,] @ VE[tr[u]] + b(y) & [tr[u] @ & [t(G])

+ Vi (-, VEHY])VE[Hy] @ & tr[u]] @ & [tr[G]]; (129)

igl [trlu]];.

N
h3(w, G, Hy) = p ) VOjk(ng[Hh])ng[Hh]ayk

k=1
Employing the same argument as in proving (113), we have
— t T 7
e (Rata, G, Hy), s (0, G, i) 2
+ le™(ha(u, G, Hy), hi3(w, G, Hy,)) ”Lp(RrH%(Q)) (130)
< CcTV@) (2B 4 L).

We finally consider k; (G, Hy) and k»(G, Hy) given in (70). In view of (127), choosing
L so large that M; B% < L/2 and T so small that M; L3 Ts/ (' (1+s)) < L/2,we have

EZ(p) + llaspll,_ <L (131)

(01w, (1))
In particular, we have

|E2[Hplly g, 120y < Cle+LTVP). (132)

Thus, choosing € = T sufficiently small, we may also assume that

sup [|&2[Hp] (-, 1) [l g1, () < 02, (133)
teR
and that /
||52[HPH|LOO(R,H3(Q)) < LTV, ||52[Hp]||LDQ(R,H%(Q)) <L (134)

In view of (71), we define the extensions of k1 (G, Hy) and ko (G, H,) by setting
(k1(G, Hp), k2(G, Hp)) = Vi (-, VE&[Hp])VE[H,| @ & [tr[G]]. (135)

Obviously, (k1 (G, Hp),f(z(G, Hy)) = (ki(G, Hp), k2(G, Hp)) for t € (0,T). By (90)
and (133), we have

||(kl(G/Hp)/R2(G/HP)HH2 -
< C{IVE[H] (o H&[tr[ Ml ey + 1V EAH gy ey I VETE G iy )
+ IV E[H (ery (1 + IV ELLHp] 53 IV E2[Ho] 13 e | €117 [G T g1 ey }-
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By (104), (108), (131), and (134), we have

‘|€77t(1~(1 (G, Hp),f(z(G, Hp)) HL,,(R,Hg(Q)

< c{( +€)(RTTB 4 (L + B)T70)

ol 3-1/g
Ly((0,7), W, 7(r)) (136)

+ L2TVP (L + 2(-1)B)}

< {2 Bl o) + I2(L+ 201 B) T

Wy )

By (103), (104), (108), (131), and (132), we have

le™" 3¢ (k1(G, Hp), k2 (G, Hp)) 1, 1,6
< C{l[0¢&2[Hy] ||LP(R,H%(Q)) le™ & [#r[G]] HLW(R,H;(Q))
&[]l & 200 le™" aea[tr[GI L, = 1, ()
< C{(TVPL+ €)@ B+ (L+ BTV ) + (e + TVP L) (L + 20 1)B)}
< C(TVP + TVP)L(L 4 ~1)B) < CL(L + (-1 B)TV/?. (137)

Applying the estimate in Theorem 3 with v = y; to Equation (86) and using (128),
(130), (136), and (137), we have

E%’(H) < CerhT{B(l + ||P||Lp((0/T)’W3*1/q(r))) + LZ(L + B)Tp’(1+s) }r

which, combined with (126), yields

E} E? ) - EL(H

T(V) + T(P) + || tPHLP((O’T)’qu 1/17(1-)) + T( )
< My (B2 + L3TP09) + CenT(B(1+ MyB2 + MyL3TP0)) + L2(L + B)T7079) (138)
< MB? 4 CeM B(1 + M;B?) + {M; L3 + Ce""M; L3 + L*(L + B)}T701+9),

provided that0 < e =T =x < 1,L > 1,and B > 1. Choosing L > 0 so large that
L/2 > M;B?>+ Ce"B(1+ M;B?) and T > 0 so small that L/2 > {M;L3 + Ce" M;L3 +

L2(L + B)}Tp’<f+s>, and setting L = f(B) = 2(M;B? + Ce"B(1 + M;B?)), we see that
Er(v,H,p) < L. If we define a map ® by ®(u,G,h) = (v,H,p), then, & maps Ur

into itself.
5. Estimates of the Difference of Nonlinear Terms and Completion of the Proof of
Theorem 1

Let (u;, G;, h;) € Ut (i = 1,2). In this section, we shall estimate Ep(v; — vy, H] —
Hjy, p1 — p2) with (v;, H;, p;) = ®(u;, Gj, h;) (i = 1,2), and then we shall prove that ® is a
contraction map on Ut with a suitable choice of € > 0. For notational simplicity, we set

V=vi—v,, H=H;—-Hy, pf=p1—p2
F1 = f1(u1, Gy, Hy,) — f1(u2, Go, Hy,), 9= g(u1, Hy,) — g(uz, Hy,),

G = g(wy, Hy,) — g(ua, Hy,), D = d(uy, Hy, ) — d(uz, Hy, ),
Hy =hy(uy, Gy, Hy ) —hi(uz, Go, Hy,), F2 = f2(u1, Gy, Hy,) — f2(uz, Go, Hy,),
Hy = hy(u1, Gy, Hy,) —ho(ug, Go, Hy,), Hz =hs(w, Gy, Hy,) — ha(uz, Go, Hy,),
K= kl(Gl,le) — kl(Gz,sz), Ko = kz(Gl,le) — kz(G2,Hp2).
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Then, ¥ and p satisfy the following equations with some pressure term Q :

mdyv — DivT(¥,Q) = Fi, in () x (0,T),
dive=g=divGg inQx(0,7T),
o+ < Vrp Lue>-—n-v, =D onT x (0,T), (139)
[¥]] =0, [[T(¥,Q)n]] —o(Arp +ap)n = Hy, onI x (0,T),
vie =0 onSy x (0,7T),
(¥,0)|t=0 = (0,0)  inQxT.
In addition, H satisfies the following equations:
wH-a'AH=F  inQx(0,T),
[« lcurlH]Jn = Hy [[udivH]]=H3 onT x(0,T),
[pH-n]]=K;, [[HA-<Hn>n]]=K, onIx(0,T), (140)
ny-Hy =0, (curlHi)ng =0 on S+ x (0,T),
H|;—o =0 in O).

We have to estimate the nonlinear terms appearing in the right side of equations (139)
and (140). We start with estimating F7. As was written in (95), we write

f1(u, G, Hy) = Vg, (VHy)f3(u, G, Hy),
where
f3(u,G, H;) = VH;, ® (0yu, V?u) + 9;H, ® Vu+ u® Vu + V?H, ® Vu+ G @ VG.
Consequently, we can write F; as follows:

F1 = (Vg (VHy,) — Vg, (VHy,))f3(ur, G, Hy,))
+ V¢, (VHy,) (f3(u1, G, Hy, ) — f3(u2, Go, Hy,));
f3(u1, G1, Hy,) — f3(u2, Go, Hy,)
= V(Hy, — Hy,) ® (9ruy, V?uy) + VHy, ® (3¢ (w1 — uz), V(11 — ua))
+0¢(Hy, — Hp,) ® Vuy +0iHy, ® V(u; — uy)
+ (w1 —up) ® Vg + u ® V(uy — wp) + VZ(Hy, — Hp,) ® Vuy + V2Hy, @ V(w3 — up)
+(G1 —G2) ®VG; + G ® V(G — Gy).

Since we may write
_ —_ 1 —_ _ _
Vf1 (thl) - Vf1 (VH”lz) = /0 (dKVfl)(Vth + GV(th - th)) dGV(th - th)’ (141)

where dy Vy, f is the derivative of V¢, (K) with respect to K, noting that H;,, — Hj,, = 0 for
t = 0 and using (94) and (88), we have

IVE (VH,) = VE(THi) oy < TP 1060 = ol o ez (142)

Since f3(u, G, Hy,) satisfies the estimate (98), replacing &, u, and G with hy, u;, and Gy,
we have

3 (w1, G, Hi, )1, (01),1, 0y < CLTYP(L+B)? + (e + TV L)L} < CTV7(L + B)™. (143)
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By (11) and (89), we have
1£3(u1, Gy, Hy, ) — f3(u2, Go, Hiy )|, (0y)
< {1 — hZHqu*”"(r) 1@rur, V2ur) ()
P2l 2170y (19 (wr = uz), V2 (ur — ) ()
110 = h2)llygiva ) VUl ) + 192l ypoarm ) [V (1 = w2) 1 )
1w, w2) [y e 101 = w2l gy ey + 11 = Bzl o o Ly )
- 2llyy21va g 1t = w2l ey + 1061, Go)ll gy e IG1 = G2)ll gy ey -

Since

— 1/p' —
||hl thLoo((O,T),qu*l/q(l") S T ||at(hl hz)||LP((0’T),W§’1/'7(F))/ (144)

noting that u; —up = 0and G; — Gy = 0att = 0, by (91), (94), and (97), we have
1£3(w1, Gu, H,) = £3(w2, Go, Hi )l 0,7, (02))
1/p' _ 1/p' 1l o
< C{T Hat(hl hz)|‘LP((O,T),W,1271M(F))L+LT ET(ul 112)
+ Tl/P(Hat(l’l] — hz)”LOO((O,T),W;AM(F))(B + L) + LE%(ul — uz) + (B + L)E%w(lll — uz))
1/p' _ _ )
+T (”at(hl hz)HLP((O,T),WL?’]/"(F))L+ L||ll1 u2||Lp((O,T),H,§(Q)))
+T"P(B+ L)EZ(G1 — Gy),
which, combined with (142) and (143), leads to

1F 1L, 0,1, (1) < CT/P(L+ B)Er(us — w2, G1 — Ga, hy — o). (145)
Here, we have used the estimate:
TVP'TVP(L + B)? < 2(TVP'L)TYP(L + B) < 2T"/?(L + B),

which follows from B < L and T/ P <1.
We next consider the difference D. In view of (50), we write

D = <Vr(Hh1—Hh2)lu1—uK>~|—<Vth2Lul—u2>

d - - -

+ <u —up— E(th — th)n,Vn(~, VHl)VHl ® VH; >
0 ~ _ - - -

+ <up— 5 Hyn, (Va(, VHy,) = Va(,, VHy,)) ® VHy, >

0 - - -
+ <upy — thzn,Vn(-,Vth)Vth & V(th — th) >,

where we have set Vy (-, K)K = Vj, (-, K). We have

HDHLOO((O,T),W;*IM(I‘)) < C(L + B)Tl/p/ET(lu —uy, Gy — Gy, by — hz); (146)

1Pl o1y 179(py) < CL(L+B)T7 00 Er(ug — g, Gy = Go, I — o). (147)
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In fact, noting that the difference: Vy (-, Vth) — Va(,, VHhZ) has the similar formula
to that in (141), by (11), (88), (89), and (90), we have

||DHW‘;71/‘4(1")

< Clli = hallyovrm g 1o = vl gy e, + M2llyz-a g o = wall gy a, )
2

+ (o = w2l gy e,y + 19 = h2) lyg1ra ) )1+ ||h1||W5—1/q(r))Hh1||W571/q(r)

(o2l e,y + 192l ygrvsa o )+l gy + 2l )

X th - thW;*l/Q(r) ||hl||W’72*1/Q(r)

+ (lu2llgy . ) + N19ek2llygrasm )X+ M2ll oy 2l y2-a gy 1 = Pall oo gy -

Thus, by (91), (94), (102), and (144), we have

”DHLW((O,T),W;*”"(U)
< C{TVP E2(hy — hp) TP0%) (L + B) + LTV Ek (u1 — up)
+ LTV P (E%(ul — uz) + ||at(h1 — hz)||Loo((0,T),W;71/q(r)))

+ (L+B)TY" (e + LTVV\E3(hy — hy)},

which leads to the inequality in (146), because TV < 1asfollows from 0 < T < 1.
By (11), (88), (89), and (90), we obtain
IPllyz-rapy < Cllim = Rallyaaa gy lon = uellgg e, + i = Rallya- gy o = vellpa,)
+ ||h2||W;71/q(r)HU1 - u2||H,}(Q+) + ||h2||W;71/q(r)Hu1 - UZHH,%(Q”
(= w4 10 = )z YL+ Dl i

+ ([ = wllgyq,) + 190 = h2)ll v )

)

X (Wl gy Wl oz gy - Pl sz gy (14 ||h1||W5—1/q(r))||h1||§qufl/q(r)
+([allig(a,) + 19h2lly217m )X+ allya- gy + 12l y2-1rm )
<M = hall a1l g,

+ (lvallpy ) + N0h2llygrvvm )l = hallysara gy 1l ya-va
il = hallyzaz gy 1 llysva gy + Akallyg-va gy + allysava )

< (Ut Mallyyzava gy + k2l ygz-vsm e = Ballyz-va gy Il y-vrm ) 3
+ (2l g, ) + 1902l ygz-17a ) )+ 1hally2ara o Mall 217 gy = Ballyyoava
+ (2l o) + 19h2llyg1ra )

X Ahallyys-170(gy 11 = 2ll yaara oy + 2llyyzava gy 11 = 2llyyaara o

llPallyys17 ) (U lR2llyy2ar 0 )2l vy 1 = Ballyyoarm ) 3
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Since

[y _u2||H1(Q+)

< G TP () 15 [0 (ug — uz)HS/ 1357)) Lq(0+))\|u1 - u2||B§,(F}—1/p)(Q+) (148)
< C TV E (ug — uy),
by (94), (97), and (102), we obtain
HDHL ,((0,7), W 1(r))

< C[TP0+) ) '(L+ B)[[l = hal|, Ly ((01), W24 (r))

+ TV 0¢ (= ), (OTIWE 1i(py) (B+ L)

N ) EX(u; —up) + LT”’” lug — UZHL,,((O,T),Hg(m))

+ (Il = w2l 01,1202,y + 10:(h1 = 1r2) ”Lp(<o,T),W§’W(F)>>LTW,

+ (EX(uy —up) + [|9s(hy — ha)ll, Le((OT) W1 1/q(r)))L2T1/7’/

+LT1/p'||at(h1 —hz)H (L-|—B){||h1 —h2||L LT/ 7

Ly((0,1),W; /(1)) 0,1), W, (r))

+ TV 31 — o) L} + LTV ([0 (1n — ho)|

Ly((0,7),W; /(1))
1/p' _

Ly((0,7), W, (r))

+ (L+ B)(LTYV |9y (1 — ) 1L, o m w2 r)

i LTl/P/||8t(h1—h2)H Lp((0,T),W, 21/q(r)))]

)W, (r))

which yields (147).
We next conider H;. In view of (111), we set

Hi=Hi+a(y) 12 +H +Hi
with

Hi = (Vi(-, VE[Hy]) — Vi (-, VE[H,])) © VE [tr[w]]
+ Vi(-, VE[HL])VE([Hy,| @ V(& tr[ui]] — & [tr[ua]]),

Hi = (&[1r[G1]] — &[tr[Gal]) @ & [tr[Ga])
+ &1[tr[Ga]] @ (&1[tr[G1]] — & [tr[Ga])),

H3 = (Va(-, VE[Hw]) — Vi(, VE([H,))) ® & [tr[G1]] @ & [#r[G1]]
+ Vil Véx|Hi,])VErlHyy) @ M3,

Hi = (Vs(-, VE[H,]) — Vs(-, VE[Hy,))) ® V2E[Hy,]
+ Vi (-, VE([H, ) VE[Hy,) © V(& [Hy, | — E[Hy,)),

where we have set
Vi, K)=V.(, KK, Vi(,K)=Vi(-KK, Vi,K)=Vs KK
We see that 71 is defined for t € R and H; = H; for t € (0, T). Writing
Vi (-, VE[Hy]) = Vi (-, VE[Hy,))
1

= (dx Vi) (-, VE[Hy,] + 0V (&2[Hy, | — E2[Hy,))) 0V (E2[Hy, ] — E[Hy,)).
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Since & [Hy, ] — &([Hy,| = er[Hy,, — Hy,], by (11), (89), (108), (110), and (144), we have

le™ "3 (Vh (-, VEH,]) = Vh(, VEIHL) L .y )

< CLU0VE[Hp o r Lg(02)) 19V E2[Hm @ Ly ) 1 = T2l o7 1 W2 ()

+ (V€0 gy + 1V E il g I3 = 2l o)y ()
< CLTYV (J|3y(y — h2)||L,,((o,T),w§*”‘7(r)) + (|0 (h hz)||Lw((O,T),W;—1/q(r))}-
By (110) and (144), we deduce
e (Vi (., VE[Hy, D) = Vi (. VEIHD) 1, 2,11 ()
< COA+IVEHL L 1)) T IVEIHRI L (r, 1)) VelHn = Hi)ll Ly 13 ()
< CTYP a1 =), (o) w21 (150)
By Lemma 4 and (108), we have
IVEaltriwllll g 1y T IVELE L, @ )
< C([|& [tr[uﬂ]lle(R,Hg(o» + o ltrfaal]ll, v, )
<C(B+1L).
Thus, setting
Hi' = (Vi(-, VE[H]) = Vi(, VEI[H),])) ® VE [tru]],
by Lemma 3 we have
|\€77t7{%1|’H;}/2(R,Lq(Q)) + |‘677tH%1||Lp((R,H,}(Q)) (151

< CL(B+L)TYP ([|0s(h1 — o) | + [0 (i

Ly((0,7), W, (r)) — )l Leo((0,T), W~ ”f’(r»)

Noticing that & [tr[uy]] — & [tr[ug]] = er[tr[ui] — tr[uy]], by (55) and Lemma 4, we
have

le "'V (&1triw]] — Exftr[uz]]) W2,y T lle” "V (Eltrlwl] = &t L g 1)
<C(|\“1—U2HL ((0,7),H2(€2) +||at(“1_“2 HLP OT)Lq(Q)))

Thus, setting Hi12 = Vh('/ ng[th})vgz[th] & V(gl [tr[ul]] - & [t?‘[UQH), by (112)
and Lemma 3, we have

”eil‘ﬂ‘l’HuHHl/2 R,Ly(Q)) + ||677t’H%2||LP R,H} ()
< LTV @) (||lu; — w2, 1), m2c)) + 19 (W = W)l 0,m) L c2)))r
which, combined with (151), yields that

le” H1||H1/2 RLy( +||e /H%HLP(R,H;(Q))

(152)
< CL(B+ L)TWZP JEr(u; —up, Gy — Gy, by — hy).
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We next consider #3. Since & [tr[G1]] — &[tr[Gy]] = er[tr[G1] — tr[G,]], we have

e~ " (& [tr[G1]] — & [tr[GZH)||H;11(R,Lq(Q)) <C[G1— GZHH}J((O'T)’L"(Q));
He—'yt<51 [fT[Gl]] — 51 [t?’[GZH) ”LP(R,Lq(Q))
< CTY7(|G1 = Gallp, (o) 20wy + 10H(G1 = Ga) (0,1 1,62

_ 153
e~ (&1[t7]Ga) —sl[tr[czn>||Lw<Ml<m> (159
< CTWHS) (||G1 — GZ”LP((O,T),Hg(Q)) + ||at(G1 - G2)||Lp((0,T),Lq(O)))'
On the other hand, we have

11 [tr(Gilll iy, () < C(L+ B);
11 [trGillll, Ly (c2)) < C(L+B); (154)

11 [tr[Gillll L. (b1 2y < C(L+ B)

fori = 1,2, and therefore by (115), we have

le™" Hil 2 1, ey < C(L+ B)TY 2PIEL(G; — Gy). (155)

By (89), (91), and (154), we deduce

lle™ "M, @) < C(L+B)IG1 = Gallp, (o,1), 1 ()
< C(L+B)TYP([19:(G1 — G2)lp ((0,1),1,(c2)) + IG1 = GallL, (1), m2(00))

which, combined with (155), yields
Since
1E[trGa]] @ & ltr(Gallll yrra g 1, @y T €11 IGAI] @ EltrGallll, g cr)) < €L+ B)?,
by setting
Hi' = (VR(-, VE[HL]) = Vi (, VE[HL,])E [t(Gi]] ® & t[Gi]],
and using Lemma 3, (149), and (150), we have

e

(R,Ly(€D)) (157)
< CL(L+ B)ZTl/P’(Hat(hl - h2)||Lp((O,T),W;71/q(r)) + ||9¢(hy — h2)||L (0. Wi l/q(r)))
By (11), (110), (108), and (144), we arrive at
He_’yt/H:ﬂHL RHl( )) < C(l + Hsz[th]HLm ]RHl "’ ||752[Hh1]||L00 ]RHl(Q)))
x || Ver[Hy, — th]”L ((0,7),Hy (2 HE[tr[Gl]}HZ (R,H} ()

< C(L+ B)*TV? |9, (hy — o) I, o m) w27 r)y

which, combined with (157), yields that
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—ytq31 31
le™ " H g2,y ey €7 M2 iy )

158
< CL(L+ B) T“” ([19¢ (1 — ha2) || -

+|0¢(h1 — ha)|

Ly((0,7), W (r)) L. ((0,1), Wy~ “q(r»)

Setting H3? = V2 (-, V& [Hy,|)VE [Hy,] ® H2, by Lemma 3, (112), and (156), we have

le™ " H7? HHl/z )t lle” YUY Iz, e 2 () < CL(L A+ B)T'?E1(G1 - Ga),

R,Lg(

where we have used 1/p + 1/p’ = 1. Combined with (158), it yields
™ #4321 ey + 1l ™ M,y < CLL+B) 2TVVEN (G — Ga).  (159)

Since

Hvzé’l [th] HHI/Z Q) + ||v251 [th] HL (]R,HE, (9)))

< C([[h | )t [l

HY((0,T), W2 9T ,((0,7), W, 1(r))
AT (ol iy 0,000, 12(02)) T ||Th( Vol L, (0,000, 13 (03))
< C(L+e) <2CL;
e E ] = &2l ]) gz e 1 o) + ™" VAETH ] = E DIl g co)

< C(th - hz”H},((O,T),qu_l/”’(r)) + ||h1 - hzHLP((O,T),W;_l/q(F)))/

by Lemma 3, (112), (149), and (150), we have

lle” H1||H1/2 RLy( +||e %%HLP(R,HL%(Q))

< cr2Tv/ @ >(E%(h1 —hy) + ||0¢ (1 — hZ)||Lw((o,n,w;*”"(r)))’

which, combined with (152), (156), and (159), yields

le” H1HH1/2 RL () T le™7 ﬁlHLP(R,H,}(O))

(160)
< CL(B+1L) T1/< PEr(u; —up, Gy — Go, Iy — hp),

where we have used the fact that1/p < 1/ p’ .
We now consider g and G. In view of (123), we set

§ = G1(V&[HL ) VE[Hy,] © VE[w] — G1(VE[Hy,|)VE[Hy,] © VE [uy],
G = Go(VE&[Hy, )V E[Hp, ] @ Erlur] — Go(VE[Hy, ) VE[Hy,] © &r[uy].

Then, § and G are defined fort € Rand g =§,G = G for t € (0, T). Employing the
same argument as in proving (152), we have

Cvta Cba
e QHH;/Z(R,L[](Q)) + e EHLV(R,qu(Q))

, (161)
< CL(B + L)Tl/(zp )ET(ul —up, Gy — Gy, hy — hz)

To estimate G, we write G = G; + G, with

G1 = (G2(V&[Hy,[) — G2[VE[Hy,))) ® &w],

Gy = Go(V&([Hy,])VE[Hy,] @ (€1[u1] — &2[wy]),

where we have set Q}(K) = QQ(K)K To estimate 9;G;, we write
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0:G1 = /Ol(dk@)(vgz[th] + 0V (&E[Hp, | — E2[Hy, )] 4OV (E2[Hp, | — E2[Hy,]) @ 011 [ud]
+ (/()1(ng2)(752 [Hp,] + 0V (E2[Hy, | — £2[Hy,,))] 40V 01 (E2[Hy, ] — 52[Hh2])) ® & [w]

+ ( /Ol(dﬁg}) (VE[Hp,] + 0V (E2[Hy, ] — E[Hp,))]0: (1 — 0)VE[Hy,] + 0V E[Hy, ]) de)
@ V(&[Hy,] — &[Hy,]) ® & [uy].

By (11), (89), (108), (109), and (144), we have

le™" 3Gl (g1, c2))
< C{llln =kl o W2 V() l0s&r[will L, (L, )
+ Tl/pHat(hl —h) ”Lw((o,T),wa*”"(r)) [[€1[w1] ||Lw((o,T),H,}(Q))

- TVP (3,6 Hy | + i il -1y

Leo(RW, /1(I))
x ||y — thL (O WA )Hgl[uﬂHLOO((O,T),H,}(Q))
< (TP 0u(n = o)l w1 (L + B)
+ TL|[9¢(hy — h2)”L(oT 21/q(r))(L+B)
L+B)}

+ 119¢ (1

+ VP3¢ (hy — hZ)||Lw((o,T),Wq1’”q(F))(

< CTYP(L+ B)([|:(h — ha)|, (162)

Lp((0T),W;~"(r)) ~ M2l om wi ey
where we have used T'/7'L < 1. Since & [u1] — &[uz] = er[u; — uy), writing

0:Gy = Go(VE&[Hy,)) VE[Hy,] @ rer[uy — wa] + G2 (VE[Hy,|) Vr&a[Hy,]) @ er[ug — up]
+ (dkG2) (VE[Hy, )0tV E[Hy, | @ VE[Hy,| @ erlus — ug],

by (108)—(110) and (148)
le™"0:Gall (1, ()
< CLTY? [10¢ (1 — “2)||L,, ((0,7),Ly(c)) T ||at52[Hh2]|| Ly(RW2Y1(r )Hul - uZHLw((O,T),Lq(Q))
< C{LTl/p ||at(ll1 - ug)HL ((0,T), Lq( )) + Tp HS LET(u1 — uz)}

which, combined with (162), yields that

le™" 3Gl (m 1, (cr) < C(L+ B)T7 0+ Ep(uy — up, Gy — G, by — hy). (163)
Applying Theorem 2 to Equation (139) and using (145), (147), (160), (161), and (163),
we have
ET(Vl — Vz) + E%(pl — PZ) S C(l + ’)/%/2)671 L3T7",(;+5) ET(u1 — Uup, G1 — Gz, h] — hz), (164)

provided that LT'/? <1,0< T=x=e <1,andL > B > 1.
Moreover, by the third equation of (139), and (146), we have

||at(Pl_P2)|| ((OT) 1 1/ﬂ(r))
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< C(Bllp1 — P2|| o (0,T),W21(r)) +[[v1 — "2||Loo ((0,T),H}(OY))
+ TP (L + B)Er(u1 — up, G1 — Gy, by — )
< C(BTl/p’Hat(Pl - PZ)H L, ((0.T),W, 2 Vary) + vy — V2HLOQ((0,T),H;(Q))

+TYP(L+ B)Er(u; —u, Gy — G2,h1 —hy)),
which, combined with (164) and BTV <1, yields that

E%"(Vl _V2)+E%(p1 _P2)+ Hat(Pl _PZ)H Leo((0,T), W, 1 1/‘1(1~))
<C((1+ 71/2)671L3TP (%) + (L + B)TY?)Er(u; — wp, G1 — Go, ly — hp) (165
< MyL>T7079 Ep(u; — w3, Gy — G,y — ha),
with some constant M, depending ons € (0,1 —2/p)and y; > 0, provided that LT*/?' <1,

1<B<Land0<T=x=€e<1.
Now, we consider H = H; — H,. We first consider F>. In view of (31), we may write

f2(u,G, Hy) = Vi(VH,)fs(u, G, Hp),
where
f4(u,G, Hy) = VG ®9;H, + VH, ® V’G + V?’H,® VG + Vu® G + u® VG,

where V#(K) is some matrix of smooth functions of K for |K| < 4. Then, employing the
same argument as in proving (145), we have

P21, 01,1, (1) < CT/P(L+ B)Er(us — w2, G1 — Go, hy — o), (166)

provided that TV/P'L <1,1<B<L,and0 < T=e =« < 1.
Concerning H, and Hsz, in view of (129), we define H, and #Hj3 by setting
Hy = By + b(y) By + B3 with

&Hp,]) = Vi (-, VE[Hp,))) © VE [tr[ui]]
Z[sz])Vg [Hp,] @ V(&1 tr[w1]] — & [tr[un]]);
w]] — & [tr[u H) ® & [tr[Ga]] + & tr[uz]] @ (& [tr[Ga]] — &i[tr[Ga]]);
Vﬁ( / [le]) Vi (-, VEI[Hp,)))Ex[tr[u]] @ & [tr[Gy]]
Vi (-,

and

Hy=—p Y (Voi(VE[H,,]) — VOjk(ng[hpz]))*aa Erltr[ug]];
k=1 Yk
N

— Y. Voi(VE&I[H,]) VE[Hp, | 5— )

=t By (&[tr[m]]; — & trlua]]p).
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Obviously, H; is defined for t € R, and H; = H; fort € (0, T) fori = 3,4. Employing
the same argument as in proving (152) and (160), we have

‘|377t7'~[3“H;1,/2(R,Lq(Q)) + Hewt%HLn(RrHﬂl(o))

< CL(B+ L)TY®Er(u —up, Gy — Go,ly — ha); (167)
He_”ﬁzHH,}/z(R,Lq(O)) + e Hall 1, 1y )

< CL(B+ L)* TV P Er(uy —up, Gy — Gy, 1y — ),

provided that TP <1,0 <e=T <1,1<L,and 1 < B.
We finally consider K1 and 5. As was mentioned in (109), we may assume that

sup | &[Ho ) <6 (i=1,2).
teR

In view of (135), we set K = K1 + K, with

bay

1= (Vi(V&[H,]) = Vi(VE[H,)) @ & tr[Gi])
2 = V(- VE[Hp, ) VE([H,,] ® (&1]t[G1]] - &[t[Ga]]),

bay

where we have set V; (-, K) = Vi (-, K)K. Obviously, K is defined for + € R and
K = (K1, K3) for t € (0,T). To estimate K1, we write

Vi, VE&[Hy]) = Vi (-, VE[Hy,))
1 ~ = = =
= | @V (, VEalHy] + 09 (ExlHp,] — Ex[Hpy])) d0Ver[Hy, — Hy,
and then, by (90), we have
1Kl 20
< C{IE G en) 1 Ver [y — Hi iy ey
€GN 3 0 | Ve [Hn — Hi] o
+ (||V€2[HP1]||H%(Q) + ||vg2[HP2]||H%(Q))(1 + ||v52{Hp1]||Ht}(Q) + ”vE’,Z[HPz]HH%(Q))
x || Ver[Hp, — sz]||\H,}(Q)||51[tr[G1H||H,}(Q)}-
Noting that er[H,, — H,,) vanishes for t ¢ (0,2T), we have
||v(HP1 - HPZ)HLW(R,H,}(Q) < CTl/p ||at(Pl - pz)||Lp((O,T),W4271/q(T))'
Thus, by (108) and (134),
e . 1/ 2(7=71) _
e~ Rl gz < TV L+ ETIBR1 o1 = p2)l, oy w2 1y
2(r=m) T )| 0y —
+ (BE M+ (L + B)TV 1+ ))HPl PZHLP((O,T),W?U[/(F))
1/p
< C(HTMB+ L(L+ B)TV05)E} (01 — p2).
Using (89), we have

1Kzl 2 0y
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< C{IIVEHo] |1y ller[tr(Ga] = #r(Gallll gy ey
+ 1V E(Hpy [l g3 oy llerltr[G1] = tr(Gall 2
+ 11V E2(Hoa) 112100y (1 + IV €21l 73 0 )1V E2 (a1 ller (£ (G = #7(Gall gy )

Employing the same argument as in (153), we have
||t1’[G1] - tr[GZ]HLm((o,T),H%(Q)) < CT'(+s) E%"(Gl - GZ)/
for some s € (0,1 —2/p), and so we have
le™" Kall, (m 12 (cry) < C{LT 7T 09 ENGy — Ga) + LTVP |Gy — GallL, (1), 200}
< CLTV EX(G; — Gy).
By (89) and (90), we have

19Kl )
< {110V Ea[Hp, 1, (ery + 196V E2[Hoy 1)) | Ver[Hpy = Hoalll g ey 1 €a[t7(G)) 3
+||atveT[Hp1_sz]||Lq(O)“€1[ r[G 1“HH,}(Q)
+IVer[Ho, = Ho,Jl| gy ey 1961 [E(Gall o
196Kl 0y < CLIIOV EHp, ]Il (e va2[HP2”‘H1 ller(trGa] = tr[Ga]ll gy ey
+ 101V E[He |1, @y ler[tr[Ga] = #[Galll 3 )
+ | VE[Hp, || gy ey 19eer [t(Ga] = tr[Gallll ., ey

Thus, we have

le™ ™R I, Ly (cy) + lle™ 0Kl i,y c2))
< C{TL|3:(p1 — pz) e, om w2173y (B+1L)
+ Tl/PHat(Pl - PZ) ||Loo((O,T),Wq171/q(r)) (B + L)

+ T 101 =0l oy (B 1)+ VTP B (G = G2)

JEp
< CTYP(L+ B)(Ef(p1 — p2) + E3(G1 — G2)),
where we have set E% (o1 — p2) = E}(p1 — p2) + [:(p1 = 2)l,_ 1) 114 - Putting
these inequalities together, we arrive at
”e_'YtK;HL (RH2(02)) T le™* at’CHLP (R,Ly(2))

< C(e W*”)B+L<L+B)T W)Ez (01— p2) (168)

1

l s
7pt

min(

+C(L+B)TT

=

El(Gl Ga).
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Applying Theorem 3 to Equations (140) and using (166), (167), and (168), we obtain

lle= " (H; — Hp) L, (0,7), 2 (00) T le™" 0 (H1 = H2)ll (0,11, ()
< CeM{(B+ L(L+ B)T715)E2 (py — pa) (169)
+L(B+L)*TY @M Er(u; —up, Gy — Gy, by — hy) ).

Combining (165) and (169) yields that
Er(vi —vo, Hy —Hyp,p1 — p2) < N7(L, B)Er(u1 —up, Gy — Go, iy — h)
with
Nr(L,B) = (Ce" (B + L(L + B)T70) ) + 1)MpL3T#05 4 CeVL(B + L)2TV (29)),

Thus, choosing T so small that Nr7(L,B) < 1/2, we see that @ is a contraction map
from Uy into itself, and so there is a unique fixed point (u,G,h) € Ur of the map ®.
This (u, G, h) solves Equation (72) uniquely and possessing the properties mentioned in
Theorem 1. This completes the proof of Theorem 1.

6. Concluding Remark

(1) A future work will be to show a global well-posedness for the system (2).
(2) The maximal regularity of some other models of MHD (cf. [22,23]) can be considered.
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