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Abstract: For a simple graph with vertex set {v1, v2, . . . , vn} with degree sequence dvi of vertex
vi, i = 1, 2, . . . , n, the inverse sum indeg matrix (ISI-matrix) AISI(G) = (aij)n×n of G is defined by

aij =
dvi dvj

dvi+dvj
, if vi is adjacent to vj, and zero, otherwise. The multiset of eigenvalues of AISI(G) is

the ISI-spectrum of G and the sum of their absolute values is the ISI-energy of G. In this paper,
we modify the two results of (Li, Ye and Broersma, 2022), give the correct characterization of the
extremal graphs and thereby obtain better bounds than the already known results. Moreover, we also
discuss the QSPR analysis and carry the statistical modelling (linear, logarithmic and quadratic) of
the physicochemical properties of anticancer drugs with the ISI-index (energy).

Keywords: adjacency matrix; ISI-matrix; topological indices; correlation; anticancer drugs
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1. Introduction

Topological indices are the interesting attributes to analyse the physicochemical prop-
erties and the characteristics of chemical structures. There are certain important types of
topological indices (degree, distance, spectral, and others including their mixed invariants).
Here, we consider a degree-based topological index, the ISI-index, and its spectral invari-
ant, the ISI-energy, on anticancer drug molecular structures. Basically, a topological index is
generated by converting a molecular structure to a numeric value. Practically, the chemical
compounds are taken as a graph where the elements are vertices and the bonds connecting
them are edges. The anticancer drugs in this study are considered as chemical compounds,
and their underlying graphs are considered. These topological indices and their spectral
invariants are utilised in quantitative structure–property relationships (QSPR) studies to
determine the bioactivity of chemical compounds. Cancer is a very deadly disease and is a
rapid increase of abnormal/dead cells in the body. Carcinogens are the substances that are
the cause of cancer. A carcinogen is a chemical substance with certain molecules such as
tobacco smoke. It has the property of spreading to other parts of body. Some symptoms
of this deadly disease include lumps, abnormal bleeding, prolonger cough, weight loss,
anxiety, etc. Some causes of cancer are chewing tobacco, obesity, bad diet, laziness, large
intakes of alcohol. Cancer can be cured by several treatments such as surgery, radiotherapy,
chemotherapy, hormone therapy, targeted therapy and more. Anticancer drugs are drugs
which are used to treat cancer, including alkylates and metabolites. Chemical graph the-
ory is a discipline of mathematical chemistry that deals with the chemical graphs which
represent chemical systems. Chemical graph theory defines topological indices on graphs
and in particular the chemical structures of alkanes/anticancer drugs. In this work, sev-
eral chemical graph structures of drugs (see Figure 1) are taken and a QSPR analysis is
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carried out on various anticancer drug structures to determine their physical characteristics
and chemical reactions along with their ISI-index and ISI-energy (see definitions in the
following paragraph). For a similar type of analysis, see [1–6].

Figure 1. Molecular Structures of Certain Anticancer Drugs.

Let G = G(V, E) be a graph with vertex set V = {v1, v2, . . . , vn} and edge set E.
We consider only simple and undirected graphs, unless otherwise stated. The number of
elements in V is the order n and the number of elements in E is the size m of G. By u ∼ v,
we mean a vertex u is adjacent to a vertex v. We denote an edge by uv connecting two
vertices u and v. The neighbourhood (open neighbourhood) N(v) of v ∈ V is the set of
vertices adjacent to v. The degree dv of a vertex v is the number of elements in the set N(v).
A graph G is called r-regular, if dv = r for each v. We denote the complete graph by Kn, the
complete bipartite graph by Ka,b and the complete q partite graph by Kn1,n2,...,nq . We follow
the standard graph theory notation, and more graph theoretic notations can be found in [7].

The adjacency matrix A(G) of G is a square matrix of order n, with the (i, j)th entry
equal to 1, if vi ∼ vj, and 0, otherwise. Clearly, A(G) is a real symmetric matrix and its
multiset of eigenvalues is known as the spectrum of G. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the
eigenvalues of A(G), where the eigenvalue λ1 is called the spectral radius of G. More about
the adjacency matrix A(G) can be seen in [7,8].

The energy [9] of G is defined by

E(G) =
n

∑
i=1
|λi|.

The energy is intensively studied in both mathematics and theoretical chemistry, since
it is the trace norm of real symmetric matrices in linear algebra and the total π-electron
energy of a molecule in mathematical chemistry, see [10,11]. For more information about
the energy of G, including recent developments, see [12–14].

The inverse sum indeg index (shortly ISI-index) [15] is a topological index defined as

ISI(G) = ∑
uv∈E(G)

dudv

du + dv
.

The ISI-index is a well-studied topological index and it has many applications in quantita-
tive structure–activity or structure–property relationships (QSAR/QSPR) [1,3,4,16].

The inverse sum indeg matrix (ISI-matrix) of a graph G, introduced by Zangi, Ghor-
bani and Eslampour [17], is a square matrix of order n, and it is defined by

AISI(G) = (aij)n =


dvi dvj

dvi+dvj
if vi ∼ vj

0 otherwise.
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The ISI-matrix is real and symmetric, and its eigenvalues can be indexed from the largest
to the smallest as

τ1 ≥ τ2 ≥ · · · ≥ τn.

The multiset of all eigenvalues of ISI-matrix of G is known as the ISI-spectrum of G, and
the largest eigenvalue τ1 is called the ISI-spectral radius of G. If an eigenvalue τ of ISI-
matrix occurs with algebraic multiplicity k ≥ 2, then we represent it by τ[k]. The ISI-energy
of G is defined by

EISI(G) =
n

∑
i=1
|τi|.

Zangi et al. [17] gave basic properties of the ISI-matrix including the bounds for the
ISI-energy of graphs. Hafeez and Rashid [18] obtained the ISI-spectrum and ISI-energy of
special graphs. They also gave some bounds on the ISI-energy of graphs. Bharali et al. [19]
gave some bounds on the ISI-energy and introduced the ISI Estrada index of G. Havare [1]
obtained the ISI index and ISI-energy of the molecular graphs of hyaluronic acid–paclitaxel
conjugates. For other properties of the ISI-index, ISI-matrix, ISI Laplacian (signless) matrix
and other recent results, see [20–22].

In Section 2, we modify the two results of [21], characterize the correct extremal graphs
and thereby obtain better results than the already known results. In Section 3, we carry
a statistical analysis of various anticancer drugs, give their correlation coefficients with
the ISI-index and the ISI-energy along with their applications in quantitative structure–
property relationship. We end the article with a conclusion.

2. Inverse Sum Indeg Energy of Graphs

We start with some already known results, which are used in the sequel.

Lemma 1 ([23]). Let G be a connected graph of order n ≥ 2. Then, G has exactly two distinct
ISI-eigenvalues if and only if G is a complete graph.

Lemma 2 ([23]). Let G be a bipartite graph. Then, G has three distinct ISI-eigenvalues if and only
if G is a complete bipartite graph.

The following observation states that G has a symmetric ISI-spectrum towards the
origin if G is bipartite.

Remark 1. Clearly, the ISI-matrix of the bipartite graph G can be written as

ISI(G) =

(
0 B

BT 0

)
.

If τ is an eigenvalue of ISI(G) with associated eigenvector X = (x1, x2)
T , then it is clear that

ISI(G)X = τX. Moreover, it is easy to see that ISI(G)X′ = −τX′, where X′ = (x1,−x2)
T .

This implies that the ISI-eigenvalues of a bipartite graph are symmetric about the origin.

Let σi, i = 1, 2, . . . , n be the singular values of the n× n matrix M. The Frobenius norm
of M is defined by

‖M‖2
F = σ2

1 + σ2
2 + · · ·+ σ2

n .

The sum of the squares of the eigenvalues (Frobenius norm of a real symmetric matrix)
of the ISI-matrix (Theorem 5, [17]) is

‖AISI(G)‖2
F =

n

∑
i=1

τ2
i = 2 ∑

vivj∈E(G)

(
dvi dvj

dvi + dvj

)2

= 2R = Tr(A2
ISI(G)), (1)
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where R = ∑
vivj∈E(G)

(
dvi dvj

dvi+dvj

)2
, and Tr is the trace of the the matrix.

The invariant R = ∑
vivj∈E(G)

(
dvi dvj

dvi+dvj

)2
is an important parameter related to the ISI-

matrix and is repeatedly used in our results. We establish sharp bounds for it.

Proposition 1. Let G be a connected graph of order n ≥ 2 with maximum degree ∆ and minimum
degree δ. Then, the following holds:

(i)
mδ2

4
≤ R ≤ m∆2

4
,

with equality if and only if G is regular.
(ii)

R ≤
nτ2

1
2(n− 1)

,

with the equality holding if and only if G ∼= Kn.
(iii) Let G be a bipartite graph with p ≥ 1 positive ISI-eigenvalues. Then,

R ≥ pτ2
1 ,

with the equality holding if and only if G is a complete bipartite graph.

Proof. By the definition of R and Lemma 2.2 [20], for any edge uv ∈ E(G), δ
2 ≤

dudv
du+dv

≤ ∆
2 ,

with the equality holding if and only if G is regular. Now, part (i) follows.
(ii). Applying the Cauchy–Schwarz inequality to the vector (τ2, τ3, . . . , τn), we have

τ2
1 = 2R−

n

∑
i=2

τ2
i ≤ 2R− 1

n− 1

(
n

∑
i=2

τi

)2

= 2R− 1
n− 1

τ2
1 , (2)

with the equality holding in (2) if and only if τ2 = τ3 = · · · = τn.
Thus, from the above, it follows that

R ≤
nτ2

1
2(n− 1)

. (3)

Suppose the equality holds in (3). Then, the equality holds in (2), which is possible if
and only if τ2 = τ3 = · · · = τn, that is, G has two distinct ISI-eigenvalues. By Lemma 1, G
is a complete graph.

(iii). Using τ2
1 + τ2

2 + · · ·+ τ2
n = 2R, the property that G has p positive ISI-eigenvalues

and noting that G has a symmetric ISI-spectrum towards the origin (Remark 1), we have

2
(

τ2
1 + τ2

2 + · · ·+ τ2
p

)
= 2R,

which implies that R ≥ pτ2
1 , with the equality holding if and only p = 1. By Lemma 2, G is

a complete bipartite graph.

The following two results on the ISI-energy of graphs in terms of the size m, the
smallest degree δ and the smallest eigenvalue τn were given by Li, Ye and Broersma [21],
(see Theorems 12 and 14).

Theorem 1 ([21], Theorem 12). Let G be a connected graph of order n > 1 with m edges and
minimum degree δ. Then,

EISI ≥ δ
√

m,
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and the equality holds if and only if G ∼= K n
2 , n

2
.

Theorem 2 ([21], Theorem 14). Let G be a connected graph of order n > 1 with m edges and
minimum degree δ. Then,

EISI ≥ |τn|+
√

mδ2 − 3τ2
n ,

and the equality holds if and only if G ∼= K n
2 , n

2
.

We restate Theorems 1 and 2 in terms of the invariant R and characterize the correct
extremal graphs.

Theorem 3. Let G be a connected graph of order n ≥ 2. Then,

EISI ≥ 2
√

R,

with the equality holding if and only if G is the complete bipartite graph.

Theorem 4. Let G be a connected graph of order n ≥ 2 and τn be the smallest ISI-eigenvalue. Then,

EISI ≥ |τn|+
√

4R− 3τ2
n .

The equality holds if and only if G is either a complete bipartite or a complete tripartite graph.

We illustrate the above four theorems with the help of the following examples.

Ex.1 For G ∼= K3,5, the ISI-spectrum of G is {7.26184, 0[6],−7.26184} and EISI(G) =

14.5237. Theorem 1 gives EISI(G) ≥ 3
√

15 = 11.619, Theorem 2 gives EISI(G) ≥
|− 7.26184|+

√
15(3)2 − 3(−7.26184)2 = 7.26184+

√
−23.20296, which is imaginary,

while Theorem 3 gives EISI(G) = 2
√
(7.26184)2 = 14.5237 and Theorem 4 gives

EISI(G) = | − 7.26184|+
√

4(7.26184)2 − 3(−7.26184)2 = 14.5237.
Ex.2 For G ∼= K9,8, the ISI-spectrum of G is {35.93774, 0[15],−35.9377} and EISI(G) =

71.8753. Theorem 1 gives

EISI(G) ≥ 8
√

72 = 67.8823,

Theorem 2 gives EISI(G) ≥ |35.93774|+
√

72(8)2 − 3(35.93774)2 = 63.0199, Theorem 3
gives EISI(G) = 2

√
(35.93774)2 = 71.8753 and Theorem 4 gives EISI(G) = | −

35.937744|+
√

4(35.93774)2 − 3(−35.937744)2 = 71.87537.
Ex.3 For G ∼= K4,4,4, the ISI-spectrum of G is {32, 0[9], (−16)[2]} and EISI(G) = 64. The-

orem 1 gives EISI(G) ≥ 8
√

48 = 55.4256, Theorem 2 gives EISI(G) ≥ | − 32| +√
48(8)2 − 3(−16)2 = 64, while R = 768 Theorem 3 gives EISI(G) = 2

√
768 =

55.4256 and Theorem 4 gives EISI(G) = | − 16|+
√

4(768)− 3(−16)2 = 64.
Ex.4 For G ∼= CS5,3, the ISI-spectrum of G is {20.2893, 0[2], (−3.5)[4],−6.28925} and

EISI(G) = 40.5785. Theorem 1 gives EISI(G) ≥ 5
√

25 = 25, Theorem 2 gives
EISI(G) ≥ | − 6.28925|+

√
25(5)2 − 3(−6.28925)2 = 28.791, with R = 250.104, Theo-

rem 3 gives EISI(G) = 2
√

250.104 = 31.6294 and Theorem 4 gives

EISI(G) = | − 6.28925|+
√

4(31.6294)− 3(−6.28925)2 = 35.9836.

Ex.5 The graph obtained from Kω and the path Pl by adding an edge between any vertex of
Kω and one end vertex of Pl is denoted by PKω,l . It is known as a path complete graph or
kite graph. The pineapple graph P(ω, n−ω) is a graph obtained from Kω by attaching
n−ω pendent vertices at any vertex of Kω. For G ∼= PK3,9, the ISI-spectrum of G is
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{
2.55192, 1.87374,1.5389, 1.07415, 0.559209, 0.069339,−0.413158,−0.939312,−1,

− 1.43693,−1.81746,−2.06039
}

,

and EISI(G) = 15.3345. Theorem 1 gives EISI(G) ≥ 1
√

12 = 3.4641, Theorem 2 gives
EISI(G) ≥ | − 2.06039|+

√
12(1)2 − 3(−2.06039)2 = 2.06039 +

√
−0.73562, which is

imaginary. Moreover, R = 12.7645, Theorem 3 gives EISI(G) = 2
√

12.7645 = 7.14547
and Theorem 4 gives

EISI(G) = | − 2.06039|+
√

4(12.7645)− 3(−2.06039)2 = 8.25088.

From Ex. 1 and 2, any complete bipartite graph is extremal for Theorem 3 while the
equality holds in Theorem 1, if and only if G is a regular bipartite graph. Moreover, from
Ex. 4 and 5, Theorem 3 gives a better bound than Theorem 1. For regular graphs both bounds
coincide. Form the above examples, and for irregular graphs, the bound of Theorem 3 is finer
than that of Theorem 1. These were the two main reasons for introducing Theorem 3.

From Ex. 3, the equality holds for regular tripartite graphs for Theorem 2 and from
Ex. 1 and 2, all bipartite graphs are extremal for Theorem 4, thereby giving large classes
of graphs attaining the bound. Further, the lower bound of Theorem 4 is better than the
lower bound given by Theorem 2. Moreover, from Ex. 1 and 5, the bound of Theorem 2 is
imaginary. These were the reason for Theorem 4.

Next, we prove Theorems 3 and 4. For the sake of completeness, we write complete
proofs and correct errors in the summation notation of Theorems 12 and 14 in [21].

Proof of Theorem 3. Since the trace of AISI(G) is zero and from Equation (1), we have

0 =

(
n

∑
i=1

τi

)2

=
n

∑
i=1

τ2
i + 2 ∑

1≤i<j≤n
τiτj.

Thus, it follows that
n

∑
i=1

τ2
i = −2 ∑

1≤i<j≤n
τiτj = 2R. Moreover, from the definition of the

ISI-energy and the above information, we have

(
EISI(G)

)2
=

n

∑
i=1

τ2
i + 2 ∑

1≤i<j≤n
|τi||τj|

≥
n

∑
i=1

τ2
i + 2

∣∣∣∣∣ ∑
1≤i<j≤n

τiτj

∣∣∣∣∣ (4)

= 2
n

∑
i=1

τ2
i = 4R.

Therefore, we obtain
EISI(G) ≥ 2

√
R. (5)

If G ∼= Ka,b, a + b = n, then the ISI-spectrum (see, [18] Theorem 8) of Ka,b is

{ (ab) 3
2

n
, 0[n−2],

(ab) 3
2

n

}
.

Clearly, 2R =

(
(ab)

3
2

n

)2

+

(
− (ab)

3
2

n

)2

and it implies that
√

R = (ab)
3
2

n . Thus, EISI(Ka,b) =

2 (ab)
3
2

n = 2
√

R and the equality holds in (5) for G ∼= Ka,b.
Conversely, if the equality holds in (5), then the equality holds in (4), that is
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∑
1≤i<j≤n

|τi||τj| =
∣∣∣∣∣ ∑
1≤i<j≤n

τiτj

∣∣∣∣∣. (6)

Since G is connected, by the Perron–Frobenius theorem τ1 > 0, and we have the following
cases:

Case 1. Clearly, τ1 6= 0 and τ2 = τ3 = · · · = τn = 0 satisfies (6), but this cannot happen,
since the trace of AISI(G) is zero.
Case 2. The second option is that the ISI-spectrum {τ1, 0, 0, . . . , 0︸ ︷︷ ︸

n−2

,−τn} satisfies (6). By

Lemma 2, {τ1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
n−2

,−τn} is the ISI-spectrum of the complete bipartite graph.

Case 3. If the ISI-spectrum of G is {τ1, 0, 0, . . . , 0,−τn−1,−τn}, then (6) implies that

τ1τn−1 + τ1τn + τn−1τn = | − τ1τn−1 − τ1τn + τn−1τn|,

which cannot happen if τ1 6= τn−1 6= τn. However, if τ1 6= τn−1 = τn, then τ1 = −2τn
and from the above we get τn = 0, which cannot happen, since G is a connected graph.
Similarly, for graphs having more than three nonzero ISI-eigenvalues, (6) cannot hold
unless zero is an ISI-eigenvalue of G with multiplicity n− 2. Thus, the equality holds in
(6) and hence in (5), if and only if G ∼= Ka,b.

Proof of Theorem 4. For the sake of completeness and to modify notation errors in the
proof of Theorem 2 (Theorem 14 [21]), we rewrite the proof and correct its equality cases.

Since the sum of the ISI-eigenvalues of G is zero, we have

τ2
n =

(
n−1

∑
i=1

τi

)2

=
n−1

∑
i=1

τ2
i + 2 ∑

1≤i<j≤n−1
τi · τj,

and (
n−1

∑
i=1
|τi|
)2

=
n−1

∑
i=1

τ2
i + 2 ∑

1≤i<j≤n−1
|τi| · |τj|.

Moreover, by noting that τ2
1 + τ2

2 + · · ·+ τ2
n−1 + τ2

n ≥ 2τ2
n always holds with equality if

and only if G ∼= Ka,b, we have

(
EMS(G)− |τn|

)2
=

(
n−1

∑
i=1
|τi|
)2

=
n−1

∑
i=1

τ2
i + 2 ∑

1≤i<j≤n−1
|τi| · |τj|

≥
n−1

∑
i=1

τ2
i +

∣∣∣∣∣2 ∑
1≤i<j≤n−1

τi · τj

∣∣∣∣∣ (7)

=
n−1

∑
i=1

τ2
i +

∣∣∣∣∣τ2
n −

n−1

∑
i=1

τ2
i

∣∣∣∣∣ = n−1

∑
i=1

τ2
i +

∣∣∣∣∣2τ2
n −

n

∑
i=1

τ2
i

∣∣∣∣∣
= 2

n

∑
i=1

τ2
i − 3τ2

n = 4R− 3τ2
n .

Thus, we get

EISI(G) ≥ |τn|+
√

4R− 3τ2
n . (8)

The equality holds in (8) if and only if the equality holds in (7), that is

2 ∑
1≤i<j≤n−1

|τi| · |τj| =
∣∣∣∣∣2 ∑

1≤i<j≤n−1
τi · τj

∣∣∣∣∣. (9)

Since G is connected, we consider the following possibilities:
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The first possibility that satisfies (9) is that τ1 > 0 and τ2 = τ3 = · · · = τn−1 = 0. It

follows that τ1 = −τn, since
n

∑
i=1

τi = 0. That is, the ISI-spectrum of G is symmetric towards

the origin, so G is bipartite and by Lemma 2, G is the complete bipartite graph.

Conversely, EISI(Ka,b) = 2τ1 = |τn| +
√

4τ2
1 − 3τ2

n , since τ1 = |τn|, so the equality
holds if and only if G ∼= Ka,b.

The second possibility that satisfies (9) is that τ1 > 0, τ2 = · · · = τn−2 = 0, and
−τn−1 6= 0. In this case,

2τ1τn−1 = 2 ∑
1≤i<j≤n−1

|τi| · |τj| =
∣∣∣∣∣2 ∑

1≤i<j≤n−1
τi · τj

∣∣∣∣∣ = |2τ1(−τn−1)| = 2τ1τn−1.

Thus, the ISI-spectrum of G is{
τ1, 0, 0, . . . , 0, 0︸ ︷︷ ︸

n−3

,−τn−1,−τn

}
. (10)

Next, we show that (10) is the ISI-spectrum of the complete tripartite graph. Let

{u1, u2, . . . , ua−1, ua, v1, v2, . . . , vb−1, vb, w1, w2, . . . , wc−1, wc},

be the vertex labelling of the complete tripartite graph G ∼= Ka,b,c, (a + b + c = n). With
this labelling, dui = b + c = n − a, dvj = a + c = n − b, and dwk = a + b = n − c, for
i = 1, 2, . . . , a j = 1, 2, . . . , b and k = 1, 2, . . . , c. The ISI-matrix of G is

AISI(G) =


0a

du1 dv1
du1+dv1

Ja×b
du1 dw3

du1+dw2
Ja×c

du1 dv1
du1+dv1

Jb×a 0b
dv1 dw1

dv1+dw1
Jb×c

du1 dw1
du1+dw1

Jc×a
dv1 dw1

dv1+dw1
Jc 0c×c

, (11)

where 0 is the zero matrix and J is the matrix of all ones. For i = 2, 3 . . . , a, J = 2, 3, . . . , b
and k = 2, 3, . . . , c, consider the following vectors

Xi−1 =
(
− 1, xi2, xi3, . . . , xia, 0, 0, . . . , 0, 0︸ ︷︷ ︸

n−a

)
where xil =

{
1 if i = l
0 otherwise

,

Yi−1 =
(

0, 0, . . . , 0, 0︸ ︷︷ ︸
a

,−1, yj2, xj3, . . . , xjb, 0, 0, . . . , 0, 0︸ ︷︷ ︸
c

)
where yil =

{
1 if j = l
0 otherwise

,

Zi−1 =
(

0, 0, . . . , 0, 0︸ ︷︷ ︸
n−c

,−1, zk2, zk3, . . . , zkc

)
where zil =

{
1 if k = l
0 otherwise

.

Clearly,

AISI(G)X1 =
(

0, 0, . . . , 0︸ ︷︷ ︸
a

,
du1 dv1

du1 + dv1

− du1 dv1

du1 + dv1

, . . . ,
du1 dv1

du1 + dv1

− du1 dv1

du1 + dv1︸ ︷︷ ︸
b

,

du1 dw3

du1 + dw2

− du1 dw3

du1 + dw2

, . . . ,
du1 dw3

du1 + dw2

− du1 dw3

du1 + dw2︸ ︷︷ ︸
c

)
= 0X1.

Similarly, X2, . . . , Xa−1, Y1, Y2, . . . , Yb−1 and Z1, Z2, . . . , Zc−1 are the eigenvectors corre-
sponding to the eigenvalue zero. Thus, zero is the ISI-eigenvalue of G with multiplicity
n − 3. The remaining three ISI-eigenvalues of G are the eigenvalues of the following
equitable quotient matrix (see, Section 2.3 [8])
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AQ =


0 b

du1 dv1
du1+dv1

c
du1 dw1

du1+dw1

a
du1 dv1

du1+dv1
0 c

dv1 dw1
dv1+dw1

a
du1 dw1

du1+dw1
b

dv1 dw1
dv1+dw1

0

. (12)

The determinant of Matrix (12) is

2abc(a + b)2(a + c)2(b + c)2

(2a + b + c)(a + 2b + c)(a + b + 2c)
> 0,

and it has one positive eigenvalue τ1 (Perron–Frobenius theorem) and two negative eigen-
values τn−1, τn, since it has a positive determinant and Tr(AQ) = 0. Conversely, EISI(G) =
τ1 + | − τn−1| + | − τn| = τ1 + τn−1 + τn and with τ1 = τn−1 + τn, Equation (8) gives

EISI(G) = |τn|+
√

2(τ2
1 + τ2

n−1 + τ2
n)− 3τ2

n = τn +
√
(τn + 2τn−1)2 = τ1 + τn−1 + τn =

EISI(G). Thus, the equality holds if and only if G is the complete tripartite graph.

3. Regressions Models and Applications to Anticancer Drugs

We carried out a statistical study to compare the correlation of physicochemical prop-
erties and the ISI-index (energy) with the chemical structures of anticancer drugs. For the
regression models, we considered the most used: linear, logarithmic and quadratic. The
picture below displays the molecular structures of various anticancer drugs. Their graph
structures can be similarly considered (taking atoms as vertices).

The regression model (linear, logarithmic and quadratic) were

P = a + b(ISI/EISI), P = a ln((ISI/EISI)) + b, P = (ISI/EISI)
2 + a(ISI/EISI) + b,

where a, b are constants, and P is the physical property of an anticancer drug. Now, the
different linear models’ rounded equations for the ISI-index and the ISI-energy against
physical property of anticancer drug were as follows:

BP = 12.225ISI + 199.18 BP = 10.963EISI + 193.25 Mp = 4.0977ISI + 88.944

MP = 3.7228EISI + 85.585 E = 1.5276ISI + 41.632 E = 1.3656EISI + 41.12

MR = 2.2757ISI + 23.916 MR = 2.0834EISI + 21.351

The scattering of anticancer drugs against their physical properties with the ISI-index and
the ISI-energy via the linear regression model are given in Figure 2.

Figure 2. Linear Regression for Physical Property with the ISI-index and EISI of Anticancer Drugs.
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The different logarithmic model rounded equations for the ISI-index and the ISI-
energy against the physical property of anticancer drug were as follows:

BP = 329.26ln(ISI)− 527.09, BP = 340.56ln(EISI)− 609.11, MP = 114.52ln(ISI)− 166.94

MP = 119.36ln(EISI)− 198.38, E = 40.05ln(ISI)− 45.442, E = 41.45ln(EISI)− 55.445

MR = 60.872ln(ISI)− 109.88, MR = 64.041ln(EISI)− 128.78

The scattering of anticancer drugs with their physical properties against the ISI-index
and the ISI-energy via the logarithmic regression model are given in Figure 3.

Figure 3. Logarithmic Regression for Physical Property with the ISI-index and EISI of Anticancer
Drugs.

The different quadratic model rounded equations for the ISI-index and the ISI-energy
against physical property of anticancer drug were as follows:

BP = −0.1409(ISI)2 + 20.746ISI + 88.239, BP = −0.1285E2
ISI + 19.757EISI + 62.688

MP = −0.1681(ISI)2 + 14.311ISI − 41.582, MP = −0.1428E2
ISI + 13.534EISI − 57.478

E = 0.0044(ISI)2 + 1.2623ISI + 45.087, E = 0.0015E2
ISI + 1.2624EISI + 42.653

MR = −0.0206(ISI)2 + 3.5246ISI + 7.6566, MR = −0.0132E2
ISI + 2.9881EISI + 7.9192

The graphical representation of anticancer drugs with their physical properties against
the ISI-index and the ISI-energy in the quadratic regression model are given in Figure 4.

The following table (Table 1) gives the physical entities along with the ISI-index and the
ISI-energy. The BP, MP, E and MR were taken from [5]. The ISI-index and the ISI-energy
of these anticancer drugs were calculated by Wolfram Mathematica.

The following tables displays the correlation coefficient of the physicochemical prop-
erties of the anticancer drugs with the ISI-index and the ISI-energy.

From Table 2, it can be seen that the ISI-index showed a higher significant correlation
when compared with other physicochemical properties, while the ISI-energy showed a
better significant correlation than that of the ISI-index when compared with other physico-
chemical properties.

From Table 3, the coefficient of determination (R2) was again better for the molar
refraction MR; however, R2 was higher for the ISI-energy than for the ISI-index for the
molar refraction of the anticancer drugs.
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Figure 4. Logarithmic Regression for Physical Property with the ISI-index and EISI of Anticancer
Drugs.

Table 1. Various Anticancer Drugs with their Physicochemical Properties and the ISI-Index (Energy)
of their Chemical Structures.

Drugs BP MP E MR ISI(G) EISI(G)

Amathaspiramide E 572.7 209.72 90.3 89.4 28.5119 31.6741
Aminopterin 782.27 344.45 114 37.85 43.6952

Aspidostomide E 798.8 116.2 116 34.9667 38.8268
Carmustine 309.6 120.99 63.8 46.6 10.85 13.4524

Caulibugulone E 373 129.46 62 52.2 17.1667 20.0501
Convolutamide A 629.9 97.9 130.1 35.1786 40.7735
Convolutamine F 387.7 128.67 63.7 73.8 16.3833 18.7833

Convolutamydine A 504.9 199.2 81.6 68.2 20.7119 22.2929
Daunorubicin 770 208.5 117.6 130 50.2976 55.4943

Deguelin 560.1 213.39 84.3 105.1 39.65 44.5048
Melatonin 512.8 182.51 78.4 67.6 19.9667 23.3733

Minocycline 803.3 326.3 122.5 116 43.3929 46.805
Perfragilin A 431.5 187.62 68.7 63.6 20.9167 23.4653

Podophyllotoxin 597.9 235.86 93.6 104.3 41 46.3479
Pterocellin B 521.6 199.88 79.5 87.4 31.8667 36.6356
Raloxifene 728.2 289.58 110.1 136.6 43.85 51.0142

Tambjamine K 391.7 64.1 76.6 21.9667 25.7574

Table 2. Correlation Coefficients of Anticancer Drugs with the ISI-Index (Energy) of their Chemical
Structures.

Invariant BP MP E MR

ISI(G) 0.875742866 0.751128121 0.870072771 0.927336169
EISI(G) 0.865394398 0.752558075 0.853707593 0.935499557

From Tables 2 and 3 along with the pictures, it can be concluded that the correlations
of all the physicochemical properties of anticancer drugs with the ISI-index (energy) were
highly significant. Further, the study implied that these anticancer drugs may be considered
for designing new drugs using the ISI-index (energy) and other related topological indices.
As the regression analysis showed a high correlation of the ISI-index (energy) for these
drugs, their combination may be considered for novel drugs.
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Table 3. R2 of Anticancer Drugs with the ISI-Index (Energy) of their Chemical Structures.

Linear regression

Invariant BP MP E MR

ISI(G) 0.7669 0.7489 0.757 0.86

EISI(G) 0.7489 0.5663 0.7288 0.8752

Logarithmic regression

Invariant BP MP E MR

ISI(G) 0.7672 0.6064 0.7141 0.8484

EISI(G) 0.7553 0.6066 0.6994 0.8642

Quadratic regression

Invariant BP MP E MR

ISI(G) 0.777 0.6497 0.7576 0.867

EISI(G) 0.7599 0.6454 0.7289 0.8789

4. Conclusions

This study showed that the physicochemical properties of anticancer drugs can be
treated by certain topological indices such as the ISI-index and the ISI-energy in this
report. We observed that the physical and chemical properties of anticancer drugs were well
correlated with such topological indices. Moreover, this work implied that these anticancer
drugs may be utilized for further study by pharmacists and chemists in designing new
drugs, using the concept of these topological indices. The more correlated drugs may have
a better impact on the treatment of cancer. For a better treatment of cancer, a future study
may be carried out by interdisciplinary researchers as a joint venture.
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