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Abstract: The rapid progress in biological experimental technologies has generated a huge amount of
experimental data to investigate complex regulatory mechanisms. Various mathematical models have
been proposed to simulate the dynamic properties of molecular processes using the experimental
data. However, it is still difficult to estimate unknown parameters in mathematical models for the
dynamics in different cells due to the high demand for computing power. In this work, we propose a
population statistical inference algorithm to improve the computing efficiency. In the first step, this
algorithm clusters single cells into a number of groups based on the distances between each pair of
cells. In each cluster, we then infer the parameters of the mathematical model for the first cell. We
propose an adaptive approach that uses the inferred parameter values of the first cell to formulate
the prior distribution and acceptance criteria of the following cells. Three regulatory network models
were used to examine the efficiency and effectiveness of the designed algorithm. The computational
results show that the new method reduces the computational time significantly and provides an
effective algorithm to infer the parameters of regulatory networks in a large number of cells.

Keywords: population model; parameter inference; heterogeneity; regulatory network

MSC: 62F15; 62P10

1. Introduction

The fast progress in biological experimental technologies in recent years has generated
a huge amount of experimental data to investigate the molecular regulatory mechanisms
inside the cell [1–4]. Among them, single-cell technologies have been used to quantify
the expression profiles and protein activities in different single cells at the same time [5,6].
These quantitative and qualitative datasets provide rich information for studying the
heterogeneity of regulatory mechanisms in different cells and in different patients for
disease therapy. However, there are substantial challenges in illustrating the origin of
heterogeneity and to describe the propagation of heterogeneity in cellular processes [7,8].

Mathematical modeling is a powerful method to investigate the diverse dynamic obser-
vations in a large number of cells. For time-lapse data, the two-stage modeling method uses
a single mathematical model with different model parameter values to simulate the diverse
dynamics in single cells [9]. The heterogeneity of biological processes is demonstrated by
the distributions of the model parameters, which may be overestimated. To address this
issue, the global two-stage method uses a local measure for the distributions of the model
parameters [10]. Another widely used method is the mixed-effect model, which derives the
likelihood functions of the model parameters by employing the first-order conditional esti-
mation [11,12] or the stochastic approximation expectation–maximization algorithm [11]. In
addition, the maximum entropy method has been used to analyze the single-cell snapshot
data [13]. Furthermore, the likelihood function has been used to identify the variability in
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biological processes and the distributions of the model parameters [14,15]. More related
research studies can be found in the review articles published in recent years [16,17].

In this study, we discuss inference methods for estimating the unknown model param-
eters based on single-cell time-lapse data. Thus, we estimate a number of mathematical
models using the same model equations, but with different sets of model parameters. For the
inference of the unknown model parameters, the Bayesian statistical methods and opti-
mization algorithms are two major types of widely used methods [18–20]. In recent years,
machine learning methods have been used to estimate unknown model parameters [21].
Among these methods, the Bayesian inference methods are able to obtain the distributions
of the model parameters and also have the ability to analyze noisy datasets with better
accuracy. However, the classic Markov chain Monte Carlo (MCMC) method needs the
likelihood function to assess the accuracy of the model parameters, which are difficult to
apply to complex systems without explicit likelihood functions. To overcome this limitation,
the approximate Bayesian computation (ABC) algorithms have been proposed to measure
the accuracy of the model parameters by comparing the model simulations with experi-
mental data directly [22]. The first proposed ABC was the ABC rejection algorithm, which
needs a large computing time because this method has no learning step. More effective
algorithms have been designed to speed up the convergence rate, for example ABC-MCMC
and sequential Monte Carlo (SMC) ABC [23–25]. In recent year, more measures have been
designed to assess the accuracy of the model simulations [26]; the early rejection algorithms
have been developed to reduce the computing time [27].

The ABC-SMC algorithm uses the adaptive transitional kernel functions to accelerate
the acceptance rate [24]. However, this may be difficult for the model solutions close to the
experimental data if the data are noisy. Thus, the selection of the tolerance threshold values
is critical for the successful applications of ABC-SMC. One option for selecting the threshold
values is to use the simulation errors of the accepted samples to construct the adaptive
tolerance threshold [23,28]. However, it is not easy to use these adaptive approaches to
estimate the model parameters using noisy data. For the application problems, a simple
approach is to choose the threshold values by manual adjustment. Since the single-cell
time-lapse datasets may include observations from a large number of single cells, it is not
practical to adjust the threshold values for each single cell.

We conducted initial computations to infer the parameters in a population of mod-
els [29]. This study used the existing ABC-SMC to infer the parameters of each model,
which requires a huge computing time. To address the identified challenges in our initial
study, we designed a new algorithm in this work to reduce the computational time of
ABC-SMC. The innovation of this study is dividing the dataset with many single cells into
a few clusters. Each cluster has a number of single cells whose expression profiles are close
to each other. After obtaining the estimates of the parameters for the first cell in each cluster,
we designed an adaptive method to use these estimates to construct the threshold values
for the other cells in the same cluster. Three test system models were used to evaluate the
efficiency of the proposed algorithm.

2. Materials and Methods
2.1. Mathematical Model

In this work, we studied the inference methods for estimating the unknown parameters
of the following system:

dxi
dt

= fi(x1, x2, . . . , xn, B1, B2, . . . , Bm), i = 1, 2, . . . , n, (1)

where (x1(t), . . . , xn(t))> are the system states at time t, (B1, . . . , Bm) are model parameters,
and functions ( f1, . . . , fn) describe the evolutions of the system state. If the value of Bi
(i = 1, . . . , m) is constant, System (1) is the traditional ordinary differential equations (ODEs).
Here, we studied the case that Bi are random variables following a joint distribution. Note
that, unlike stochastic differential equations, the value of Bi is not a sample of a stochastic
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process over time. To simulate the dynamics in single cells, it was assumed that the model
for each single cell has a particular value of parameter Bi, and the model of different single
cells has different values. These values are samples of the particular joint distribution.

In the inference study, we first generated a sample of parameters (b1, . . . , bm) from a
prior distribution π(θ). Since we did not have any information about the prior distribution,
it was assumed that this distribution is a uniform distribution over the interval [a, b]. The
values of a and b are selected in the inference steps. In addition, it was assumed that
random variables Bi are independent of each other. Once a sample (b1, . . . , bm) is obtained,
we used the differential equation system (1), in which random variable Bi is replaced by
sample bi, to simulate the molecular dynamics in single cells.

2.2. Approximation Bayesian Computation

This subsection briefly introduces the widely used ABC-SMC algorithm, which was
used in this work to infer the model parameters. We also discuss the issues in the applica-
tions of this algorithm, which is given below [30]. More detailed information regarding the
implementations of this algorithm can be found in [22].

The discrepancy between the simulation and experimental data is the mean-squared
relative error, calculated by

ρ(X, Y) =
1

mT

m

∑
i=1

T

∑
j=0

(
xij − yij

xij

)2

, (2)

where yij and xij are the experimental data and model simulation of the i-th variable xi at
time point tj, respectively.

One question in the application of ABC-SMC is the choice of the proper threshold
values ε1, . . . , εK. Although we may be able to manually select these values for the experi-
mental data in each single cell, it is time consuming to choose these values manually when
the cell number is large. Thus, we needed to design a technique to select the threshold
values effectively for a large number of cells.

2.3. ABC-SMC with Adaptive Tolerance Threshold

To improve the efficiency, a natural idea is to use the estimated parameters for the first
cell to construct the threshold values and prior distribution for the cell that is close to the
first cell. We can use particles in the last generation (i.e., the K-th generation in Algorithm 1)
to develop the prior distribution and use the corresponding discrepancies in Step 3.4 in
Algorithm 1 to design the tolerance threshold.

However, this idea cannot be applied directly if the experimental data in two cells have
a large distance. For example, these two cells may belong to different cell types, or they
may be at different developmental stages. Mathematically, the observed dynamics may
show different trends. In addition, after obtaining the estimated parameters for a number
of cells, we need to select an optimal estimate to match the dynamics of the next cell.

To address these issues, two improvements of Algorithm 1 are proposed in this
work. First, we divided all observed cells into a number of clusters based on the distance
between each pair of cells. Since we needed to develop the initial information (i.e., the
prior distribution and threshold values) for the first cell in each cluster, the cluster number
should not be very small (i.e., the difference between cells in one cluster may be large) or
very large (i.e., computational inefficiency). In this study, the cluster number for the three
test systems was selected in the range between 10 and 15, depending on the variations of
the observations in the dataset.
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Algorithm 1 ABC-SMC algorithm.

1: Input information: experimental data X = {x0, x1, . . . , xT} at time point t =
[t0, t1, . . . , tT ]; prior distribution of parameters π(θ), tolerance threshold values
ε1, . . . , εK, where K is the number of generations.

2: The first generation k = 1
For particle j = 1, . . . , M

(1) Use the prior distribution to generate a sample θ∗ ∼ π(θ).
(2) Simulate the model with parameters θ∗ to obtain the simulation data X∗ ∼

Model(θ∗).
(3) Calculate the discrepancy between simulation data and experimental data

ρ(X, X∗).
(4) If ρ(X, X∗) > ε1, reject the sample. Otherwise, accept this sample as θj,1 = θ∗.
(5) Set the same weight to each particle as wj,1 = 1

M .
Set the variance of the particles in the first generation σ2

k = 2Var(θ1:M,1).
3: For generations k = 2, . . . , K

For particle j = 1, . . . , M:
(1) Based on the accepted samples in the previous generation, select a sample θ∗

using the weights of the previous generation w1:M,k−1.
(2) Generate a new sample θ∗∗ ∼ q(θ|θ∗, σk−1) using the proposed distribution.
(3) Simulate the model with parameter θ∗∗ to obtain the simulation data X∗∗ ∼

Model(θ∗∗).
(4) Calculate the discrepancy between the simulation data and experimental data

ρ(X, X∗∗).
(5) If ρ(X, X∗∗) > εk, reject the sample. Otherwise, accept this sample as θj,k = θ∗∗.

Calculate the new weights for the accepted samples in generation k:

(1) The new weight is wj,k =
π(θj,k)

∑M
i=1 wi,k−1q(θi,k|θj,k, σk−1)

.

The new variance is σ2
k = 2Var(θ1:M,k).

4: Output: the accepted samples in the K-th generation θ1:M,K and the corresponding
discrepancies ρ1:M,K.

We first used the mean values of all cells in each cluster to determine the centroid
of that cluster and then found the first cell that had the smallest distance to the cluster
centroid. Alternatively, we can use medoid clustering for grouping cells and determining
the first cell. In medoid clustering, we chose an actual data point as the centroid of a cluster.
This is different from the k-means clustering, which uses the mean values as the centroid
of a cluster. Based on the first cell, we ranked all the cells in this cluster based on their
distances to the first cell. We first used Algorithm 1 to infer the unknown parameters of the
first cell, which were then employed to determine the initial information of the second cell.
For the k-th cell (k > 2), we found a cell from the cells 1, 2, . . . , k− 1 that has the smallest
distance to the k-th cell and, then, used the estimated parameters of that cell to determine
the initial information of the k-th cell.

Except for the first cell, the prior distribution of each parameter θi was assumed to
follow the uniform distribution π(θ) ∼ U(Wmin, Wmax). Assume that the estimated values
of this parameter in the previous cell are θK,i in the final K-th generation. The boundaries
of the uniform distribution are

Wmin = k1 min{θ1:M,K}, Wmax = k1 max{θ1:M,K}, (3)

where parameter k1 is associated with the distance between these two cells. For the tolerance
threshold, using the M discrepancy values ρ1:M,K in the final generation of the previous
cell, we set the first tolerance threshold as

ε1 = k2 max{ρ1:M,K}, (4)
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where parameter k2 is associated with the distance between these two cells. For the
following generations, we used the discrepancy values of the previous generation to
determine the tolerance threshold adaptively. The major steps of the proposed method are
given in Algorithm 2.

Algorithm 2 ABC-PMC with adaptive tolerance threshold (ABC-CPMC).

1: Initiation: observation data X = {X1, X2, . . . , XN} of N cells.
2: Cluster these N cells into C clusters, and find the centroid of each cluster. Each cluster

has Ni cells (i = 1, . . . , C).
3: For clusters i = 1, . . . , C:

(1) Based on the centroid X∗i of this cluster, find the first cell of this cluster by
minj ρ(Xij − X∗i ) (j = 1, . . . , Ni). Denote the data of the first cell as Xi1.

(2) Rank all Ni cells in the i-th cluster as Xi1, Xi2, . . . , XiNi based on their distances from
the first cell.

(3) For the first cell Xi1, use Algorithm 1 and prior θ∗ ∼ π(θ) to infer the model
parameters. Denote the inferred parameter as θi1

1:M,K.
(4) For the second cell Xi2, construct the prior as θ∗ ∼ U(a, b) using Formula (3). The

tolerance threshold ε1 is determined by using Formula (4).
(5) Use Algorithm 1 to estimate the parameters θi2

1:M,K of the second cell.
(6) For cells k = 3, . . . , Ni:

(a) Find a cell from the cells 1, 2, . . . , k− 1 that has the smallest distance to the
k-th cell in these k− 1 cells. Denote the particles in the final generation of this
cell as θ

i(k−1)∗
1:M,K .

(b) Construct the prior as θ∗ ∼ U(a, b) using Formula (3). The tolerance threshold
ε1 is determined by using Formula (4).

(c) Use Algorithm 1 to estimate the parameters θik
1:M,K of the k-th cell.

Note that we can also use the proposed technique in Algorithm 2 for ranking cells in a
cluster in Steps 3.1 and 3.2 to rank all clusters based on the centroid of each cluster. In this
way, the prior distribution of the first cell in a cluster may be obtained by the estimated
parameters of the neighboring cluster.

3. Results and Discussion
3.1. Gene Network with One Steady State

We first considered a mathematical model for studying the dynamics of a single
gene [31]. This gene has a positive regulation of itself, and this regulation is described by a
Michaelis–Menten function. The produced mRNA (x) from the first equation below will
synthesize the proteins (y) in the second equation. The model is given by

dx
dt

=
ay

1 + y
− k1x,

dy
dt

= bx− k2y,
(5)

where a and k1 are the synthesis rate and degradation rate of the mRNA and b and k2 are
the synthesis rate and degradation rate of the protein, respectively. These four rates are
assumed to follow the Gaussian distributions, namely a and b ∼ N(2, 1), as well as k1 and
k2 ∼ N(1, 0.52). We used a fixed initial condition: (x0, y0) = (2, 3).

We tested this system by using 500 simulations [29]. In this study, we extended the
simulation number to 1000, shown in Figure 1. Since a Gaussian distribution may generate
samples with a wide range of values, we restricted the samples values of a and b in the
interval (1, 3) and those of k1 and k2 in the interval (0.5, 1.5). In addition, simulations with
large outliers (i.e., x > 3.5 or y > 7) were removed.



Mathematics 2022, 10, 4748 6 of 15

0 5 10 15 20

Time

0

1

2

3

4

x
(t

)

(A)

0 5 10 15 20

Time

0

2

4

6

8

y
(t

)

(B)

0 2 4 6 8

Range

0

100

200

300

F
re

q
u
e
n
c
y

(C)

x

y

0 2 4 6 8

Range

0

100

200

300

F
re

q
u
e
n
c
y

(D)

x

y

Figure 1. The 1000 generated simulations for the expression of one single gene (5). (A) Concentrations
of mRNA x. (B) Concentrations of protein y. (C) mRNA distributions and protein concentrations at
t = 5. (D) mRNA distributions and protein concentrations at t = 20.

We first divided the 1000 generated simulations in Figure 1 into 15 clusters using the
command kmeans.m in MATLAB. The number of cluster was selected to avoid mixing the
cells in different groups. The minimal distance from cells outside a cluster to the centroid
of that cluster is larger than the maximal distance from cells inside the cluster to their
centroid. For each simulation, we averaged the values of x and y over the 21 observation
time points (i.e., t = 0, 1, . . . , 20) and, then, drew the scatter plot of these 1000 simulations
in Figure 2A. This shows that the simulations of the same cluster have small distances
to each other. All the clusters are connected, and Clusters 3 and 5 are located at the two
ends of the spectrum. Note that this figure gives a two-dimensional representation of the
21-dimensional data. The mixture of the points in the figure does not mean these points
mix in the two-dimensional space.
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Figure 2. The clustering diagrams of the generated simulation data. (A) The 15 clusters of the
simulations for the first test model (5). (B) The 12 clusters of the simulations for the second test
system (6).

When inferring the unknown parameters, the prior distribution was assumed to be
a uniform distribution π(θ) ∼ U(Wmin, Wmax) for each parameter for the first cell in each
cluster. The values of Wmin and Wmax are (1, 1, 0.5, 0.5) and (3, 3, 1.5, 1.5) for (a, b, k1, k2),
respectively. The tolerance threshold values εi (i = 1, . . . , 10) were selected manually as
small as possible for the first cell.
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Figure 3 provides the simulated frequencies of the estimated parameters and those of
the exact parameters of Model (5). The simulated distributions have very good accuracy
with respect to the exact ones. However, the variances of the inferred distributions are
larger than those of the exact ones because the prior distributions were assumed to be the
uniform distributions. The simulated frequencies can be used as the posterior distributions
for further analysis.
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Figure 3. Simulated distributions of the parameters of Model (5). (A) Parameter a. (B) Parameter
b. (C) Parameter k1. (D) Parameter k2 (orange bar: distributions of simulated parameters, blue bar:
distributions of exact parameters).

3.2. Genetic Toggle Switch Showing Bistability

The second test system is the genetic toggle switch model for the expression of the
two genes [31,32]. The repressor genes λCI (u) and LacR (v) negatively regulate the other
gene. The mathematical model is given by

du
dt

= α1 +
β1

1 + v3 −
(

1 +
s

1 + s

)
u,

dv
dt

= α2 +
β2

1 + u3 − v,
(6)

where α1 and α2 are the rate constants of the basal synthesis of the two genes and β1 and
β2 are the rate constants to realize the negative regulations from the other gene, and s is
used to realize genetic switching regulated by protein RecA.

We tested this model (6) by using 500 simulations [29]. In this study, we extended the
simulation number to 1000, shown in Figure 1. The fixed initial condition was (u0, v0) =
(4.1341, 0.2558). The system parameters were assumed to obey Gaussian distributions,
namely α1, α2 ∼ N(0.2, 0.012), β1, β2 ∼ N(4, 0.52), and s ∼ N(2.135, 0.12). This model
shows two steady states, but each simulation has only one of these two stable states. The
distributions of the steady states at t = 50 obtained by different model parameters are
given in Figure 4C,D.
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Figure 4. The 1000 generated simulations of Model (6). (A) Simulations of gene λCI. (B) Simulations
of gene LacR. (C) Distribution of the steady state of λCI at t = 50. (D) Distribution of the steady state
of LacR at t = 50.

We first divided the 1000 generated simulations in Figure 1 into 12 clusters using
kmeans.m in MATLAB. Similar to the first test system, the number of cluster was selected to
avoid mixing the cells in different groups. For each simulation, we averaged the values
of u and v over the 101 observation time points (i.e., t = 0, 1, 2, . . . , 100) and, then, drew
the scatter plot of these 1000 simulations in Figure 2B. The two separate groups of clusters
are clearly shown, which indicates the two stable steady states of the system. This result
suggests the importance of clustering. When a population of cells has different cell types,
the cellular dynamics may be distinct in different cell types. Figure 2B clearly gives the
characterization of the bistability property of the gene network. We can use different initial
information to estimate the unknown parameters for the cells in these two groups.

Based on the clusters shown in Figure 2B, we next inferred the model parameters
for each cell using our proposed algorithm. For the first cell of each cluster, the toler-
ance threshold values of 10 generations were set as ε = {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.002,
0.001, 0.0005, 0.0002} initially.

Figure 5 provides the simulated frequencies of estimated parameters and those of the
exact parameters of Model (6). Figure 5B–D show that the simulated distributions have
very good accuracy with respect to the exact ones for β1, α2 and β2. However, Figure 5A
suggests that the accuracy of the estimates for parameter s is not as good as those of the
other three parameters. The reason for this low accuracy may be that parameter s is not
zero only in a short time period. The simulated frequencies can be used as the posterior
distributions for further analysis.
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Figure 5. Simulated distributions of the parameters of Model (6). (A) Parameter s. (B) Parameter
β1. (C) Parameter α2. (D) Parameter β2 (orange bar: distributions of simulated parameters, blue bar:
distributions of exact parameter).

3.3. MAP Kinase Pathway for Efficiency Test

We tested the accuracy of our proposed algorithm by using two small-scale models of
genetic regulations. The key question is whether the new method can achieve substantial
improvement of the efficiency over the existing methods. To answer this question, we next
considered the mathematical model of the MAP kinase pathway, which is one of the most
prominent components of the pathways that control cell proliferation, differentiation, and
apoptosis. Based on the observation data in single cells, this work studied a subnetwork of
the MAP kinase pathway using the activated Raf protein as the input [14]. The activated
Raf protein, denoted as pRaf, activates MEK proteins by phosphorylation, leading to
double-phosphorylated MEK (ppMEK). The activated MEK protein then activates the ERK
proteins by phosphorylation, leading to single-phosphorylated ERK (pERK) and double-
phosphorylated ERK (ppERK). Meanwhile, the phosphatases MEK-P’ase (MEKP) and ERK-
P’ase (ERKP) can deactivate ppMEK and ppERK, respectively [33,34]. The detailed process
of the kinase activations consists of seven sets of biochemical reactions [35], which are given
below. The detailed model of the ODEs is provided in the Supplementary Materials.

R1: pRaf + MEK
a1−−⇀↽−−
d1

pRaf – MEK
k1−−→ pRaf + ppMEK,

R2: ppMEK + MEKP
a2−−⇀↽−−
d2

ppMEK – MEKP
k2−−→ pMEK + MEKP,

R3: pMEK + MEKP
a3−−⇀↽−−
d3

pMEK – MEKP
k3−−→ MEK + MEKP,

R4: ppMEK + ERK
a4−−⇀↽−−
d4

ppMEK – ERK
k4−−→ ppMEK + pERK,

R5: ppMEK + pERK
a5−−⇀↽−−
d5

ppMEK – pERK
k5−−→ ppMEK + ppERK,

R6: ppERK + ERKP
a6−−⇀↽−−
d6

ppERK – ERKP
k6−−→ pERK + ERKP,

R7: pERK + ERKP
a7−−⇀↽−−
d7

pERK – ERKP
k7−−→ ERK + ERKP.

The initial protein concentrations were [MEK] = 1.4, [ERK] = 0.96, [MEKP] = 0.7,
and [ERKP] = 0.48 [36,37], and the concentrations of the other proteins were zero. As the
signal input, the value of pRaf transmitted into the ODE solver in MATLAB used a linear
interpolation based on the experimental data used in [36]. The MEK activities and ERK
activities were measured from Figure 2 in a recent single-cell study [14]. The experimental
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data in [14] provide measured values only at seven time points in [0, 20]. In addition, the
measured values are the number of protein molecules, rather than the concentration, in the
previous studies. To consolidate different experimental data, we used the kinase activities
at 5 min to normalize the data at other time points. Cubic spline interpolation was used to
estimate the missing experimental data by using the measured kinase activities.

In the first step, we estimated one set of the model parameters using the average
MEK and ERK activities from the single cells [14]. We used ABC-PMC (Algorithm 1) to
infer the 21 model parameters. Figure 6 gives the average MER and ERK activities and
the simulation using the estimated model parameters. The inferred network dynamics is
very consistent with the experimental data. Table 1 gives the inferred parameter values
and corresponding standard deviation based on the 100 particles of the last generation in
Algorithm 1.
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Figure 6. Comparison of experimental data and simulation using the estimated model parameters for
the MAP kinase pathway. (A) ppMEK. (B) ppERK (solid-line: simulation, dash-dot-line: experimental
data).

Table 1. Estimated model parameters for the MAP kinase pathway. Estimated value: the estimated
value for each parameter. STD: standard deviation of the 100 estimates in the final generation.
[Wmin, Wmax]: prior distribution of each parameter.

Kinetic rates a1 a2 a3 a4 a5 a6 a7

Estimated value 66.0452 0.9584 0.0121 15.3943 35.7607 5.7297 5.0556
STD 13.7871 0.6568 0.0031 0.3849 0.9216 0.1316 2.0026
Wmin 20 0 0 10 25 1 0
Wmax 120 5 0.05 20 50 10 15

Kinetic rates d1 d2 d3 d4 d5 d6 d7

Estimated value 0.1176 60.4114 35.3809 36.2956 16.3216 44.2443 2.4649
STD 0.08 3.2385 1.2341 2.0504 0.6656 1.5363 0.0958
Wmin 0 30 25 25 10 30 1
Wmax 0.5 80 50 50 25 60 5

Kinetic rates k1 k2 k3 k4 k5 k6 k7

Estimated value 25.248 12.1591 5.3689 59.3748 29.3347 28.6955 27.5407
STD 0.7066 0.4916 0.4452 3.551 1.6659 1.2889 0.553
Wmin 20 5 1 40 20 20 20
Wmax 50 20 10 80 50 50 50

Based on the inferred model parameters, we next generated simulations using the per-
turbed model parameters. It was assumed that each model parameter follows a Gaussian
distribution whose mean and standard deviation are the values shown in Supplementary
Table S1. After generating a sample of the model parameters, we obtained a simulation of
the system and, then, examined whether the simulation was within the observed range of
kinase activities [14]. If a simulation was well beyond the observation range, it was dis-
carded. In this way, we generated 1000 simulations, which were treated as the observation
data for inferring the model parameters in the following step.
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Since the model has 15 variables, it is not easy to reduce the dimension of the system.
We used Ward’s linkage method [38] to conduct hierarchical clustering of these 1000
simulations. All simulations were divided into 12 clusters. Figure 7 gives the simulated
ppMEK and ppERK activities in three clusters. It shows that the differences of the kinase
activities in each cluster are small. However, the variations between different clusters are
not small.
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Figure 7. Simulations of ppMEK and ppERK in 3 clusters out of the total of 12 clusters. (A,B)
Simulations of Cluster 4, which has 87 simulations. (C,D) Simulations of Cluster 6, which has
113 simulations. (E,F) Simulations of Cluster 11, which has 139 simulations.

Using the simulations in the 12 clusters, we used the proposed algorithm to infer
the distributions of the model parameters in the final step. To obtain a reasonable prior
distribution for each parameter, we studied the sensitivity of that parameter by using the
derivatives of the solution with respect to it. We used the package using the iterative ap-
proximations based on the directional derivatives [39]. The sensitivity analysis results given
in Supplementary Figure S1 suggest that a part of the parameters (e.g., k3) had a weak
influence on the system dynamics. Note that the derivatives of ppMEK and ppERK are
almost negative with respect to a small neighborhood of parameters such as d1 = 0.1176.
The negative perturbation reaches the maximum, which suggests that we can reduce the
simulation when it is larger by adjusting the value of d1. On the other hand, it is convenient
to adjust the parameters such that the model solutions do not exceed the reasonable range
at each time point. It was assumed that the prior distribution of the parameters follows
π(θ) ∼ U(Wmin, Wmax). The values of Wmin and Wmax are shown in Table 1.

Figure 8 gives the distributions for two sets of inferred model parameters (ai, di, ki).
Compared with the generated model parameters, the inferred parameters have a relatively
larger range of values. The means of the inferred parameters are consistent with those of
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the generated parameters. However, the variance of the inferred parameters is larger than
those of the true parameters.
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Figure 8. Comparison of the distributions of the estimated parameters and true parameters. (A) a2.
(B) a5. (C) d2. (D) d5. (E) k2. (F) k5 (blue bar: true parameters; orange bar: estimated parameters).

Finally, we calculated the speedup of the proposed algorithm, which is the key ad-
vantage of the new method. We used five clusters to measure the computational time to
infer the model parameters. The speedup is defined as the ratio of the computational time
of ABC-PMC (Algorithm 1) to that of our proposed algorithm (Algorithm 2). Figure 9
shows that the speedup for these five clusters is around 100, which suggests that our new
algorithm achieved a substantial improvement over the existing inference methods.
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Figure 9. Speedup of the proposed new algorithm over the existing algorithm (horizontal line:
average value).
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4. Conclusions

This study designed a novel method for estimating the unknown parameters in a large
number of models based on the experimental single-cell data. We clustered single cells into
a number of groups based on the distances between each pair of cells. We used simulations
to select the initial information (i.e., prior distribution and tolerance threshold) to estimate
the unknown parameter for the model of the first cell in each cluster. The inference results
from the first step were used to develop the initial information for the following cell. This
method was repeated to estimate the parameters of the other cells in one cluster. Three
network models were used to evaluate the efficiency and accuracy of this new algorithm. In
particular, the genetic toggle switch model was used to show the function of clustering, and
the MAP kinase pathway model was employed to demonstrate the computing efficiency.
The inference results of these three models clearly suggest that the new method speeds up
the computation substantially, and it can be used as a powerful method to estimate the
unknown parameters of large-scale network models.

This work shows a common weakness of the inference algorithms, namely a small
simulation error does not mean that the generated sample has good accuracy with re-
spect to the exact parameter. This phenomenon can be observed in the third test system
model. One of the potential reasons may be that, when the number of model parameters
is large, different samples with a variety of values may realize similar simulations with
good accuracy.

In this work, we used the tolerance threshold as the key criterion to accept or reject
particles. However, for the third example, when the error threshold was small enough,
namely the generated solution and observation data almost coincided, it was still difficult
to obtain accurate estimated parameters. The possible reason may be that, for a model
with a large number of parameters, we may obtain similar simulations by using quite
different sets of model parameters. Another issue is how to select the tolerance threshold to
optimize and balance the accuracy and efficiency of the inference algorithm. Furthermore,
the designed algorithm is an adaptive process to cluster cells and infer the models for cells
in the same cluster. This technique may be applied to other inference methods. All of these
issues will be interesting topics for further research.

Supplementary Materials: The following Supporting Information can be downloaded at: https://
www.mdpi.com/article/10.3390/math10244748/s1, Mathematical model: The mathematical model
of the MAP kinase signaling pathway; Figure S1: Comparison of experimental data and simulation
using the estimated model parameters for the MAP kinase pathway; Figure S2: Sensitivity analysis
for the 21 model parameters in the model of the MAP kinase pathway; Table S1: Estimated model
parameters for the MAP kinase pathway.
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