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Abstract: The convergence rate in the famous Rényi theorem is studied by means of the Stein
method refinement. Namely, it is demonstrated that the new estimate of the convergence rate of the
normalized geometric sums to exponential law involving the ideal probability metric of the second
order is sharp. Some recent results concerning the convergence rates in Kolmogorov and Kantorovich
metrics are extended as well. In contrast to many previous works, there are no assumptions that
the summands of geometric sums are positive and have the same distribution. For the first time,
an analogue of the Rényi theorem is established for the model of exchangeable random variables.
Also within this model, a sharp estimate of convergence rate to a specified mixture of distributions is
provided. The convergence rate of the appropriately normalized random sums of random summands
to the generalized gamma distribution is estimated. Here, the number of summands follows the
generalized negative binomial law. The sharp estimates of the proximity of random sums of random
summands distributions to the limit law are established for independent summands and for the model
of exchangeable ones. The inverse to the equilibrium transformation of the probability measures is
introduced, and in this way a new approximation of the Pareto distributions by exponential laws
is proposed. The integral probability metrics and the techniques of integration with respect to sign
measures are essentially employed.

Keywords: probability metrics; Stein method; geometric sums; generalization of the Rényi theorem;
generalized transformation of equilibrium for probability measures and its inverse; generalized
gamma distribution
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1. Introduction

The theory of sums of random variables belongs to the core of modern probability
theory. The fundamental contribution to the formation of the classical core was made by
A. de Moivre, J. Bernoulli, P.-S. Laplace, D. Poisson, P.L. Chebyshev, A.A. Markov, A.M.
Lyapunov, E. Borel, S.N. Bernstein, P. Lévy, J. Lindeberg, H. Cramér, A.N. Kolmogorov,
A.Ya. Khinchin, B.V. Gnedenko, J.L. Doob, W. Feller, Yu.V. Prokhorov, A.A. Borovkov,
Yu.V. Linnik, I.A. Ibragimov, A. Rényi, P. Erdös, M. Csörgö, P. Révész, C. Stein, P. Hall, V.V.
Petrov, V.M. Zolotarev, J. Jacod and A.N. Shiryaev among others. The first steps led to limit
theorems for appropriately normalized partial sums of sequences of independent random
variables. Besides the laws of large numbers, special attention was paid to emergence of
Gaussian and Poisson limit laws. Note that despite many efforts to find necessary and
sufficient conditions for the validity of the central limit theorem (the term was proposed
by G. Pólya for a class of limit theorems describing weak convergence of distributions of
normalized sums of random variables to the Gaussian law), this problem was completely
resolved for independent summands only in the second part of the 20th century in the
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works by V.M. Zolotarev and V.I. Rotar. Also in the last century, the beautiful theory
of infinitely divisible and stable laws was constructed. New developments of infinite
divisibility along with classical theory can be found in [1]. For exposition of the theory of
stable distributions and their applications, we refer to [2], see also references therein.

Parallel to partial sums of a sequence of random variables (and vectors), other sig-
nificant schemes have appeared, for instance, the arrays of random variables. Moreover,
in physics, biology and other domains, researchers found that it was essential to study
the sums of random variables when the number of summands was random. Thus, the
random sums with random summands became an important object of investigation. One
can mention the branching processes which stem from the 19th century population models
by I.J. Bienaymé, F. Galton and H.W. Watson that are still intensively being developed,
see, e.g., [3]. In the theory of risk, it is worth recalling the celebrated Cramér–Lundberg
model for dynamics of the capital of an insurance company, see, e.g., Ch. 6 in [4]. Various
examples of models described by random sums are considered in Ch. 1 of [5], including
(see Example 1.2.1) the relationship between certain random sums analysis and the famous
Pollaczek–Khinchin formula in queuing theory. A vast literature deals with the so-called
geometric sums. There, one studies the sum of independent identically distributed random
variables, and the summation index follows the geometric distribution, being indepen-
dent with summands. Such random sums can model many real world phenomena, e.g.,
in queuing, insurance and reliability, see the Section “Origin of Geometric Sums” in the
Introduction of [6]. Furthermore, a multitude of important stochastic models described by
systems of dependent random variables occurred to meet diverse applications, see, e.g., [7].
In particular, the general theory of stochastic processes and random fields arose in the last
century (for introduction to random fields, see, e.g., [8]).

An intriguing problem of estimating the convergence rate to a limit law was addressed
by A.C. Berry and C.-G. Esseen. Their papers initiated the study of proximity for distri-
bution functions of the normalized partial sums of independent random variables to the
distribution function of a standard Gaussian law in the framework of the classical theory of
random sums.

To assess the proximity of distributions, we will employ various integral probability
metrics. Usually, for random variables Y, Z and a specified classH of functions h : R→ R,
one sets

dH(Y, Z) := sup
h∈H
|E[h(Y)]−E[h(Z)]| ∈ [0, ∞]. (1)

Clearly, dH(Y, Z) is a functional depending on law(Y) and law(Z), i.e., distributions
of Y and Z. A classH should be rich enough to guarantee that dH possesses the properties
of a metric (or semi-metric). The general theory of probability metrics is presented, e.g.,
in [9,10]. In terms of such metrics, one often compares the distribution of a random variable
Y under consideration with that of a target random variable Z. In Section 2, we recall the
definitions of the Kolmogorov and Kantorovich (alternatively called Wasserstein) distances
and Zolotarev ideal metrics corresponding to the adequate choice ofH, denoted below as
K,H1 andH2, respectively.

It should be emphasized that for sums of random variables, deep results were estab-
lished along with creation and development of different methods of analysis. One can
mention the method of characteristic functions due to the works of J.Fourier, P.-S.Laplace
and A.M.Lyapunov, the method of moments proposed by P.L.Chebyshev and developed
by A.A.Markov, the Lindeberg method of employing auxiliary Gaussian random vari-
ables and the Bernstein techniques of large and small boxes. In 1972, C.Stein in [11] (see
also [12]) introduced the new method to estimate the proximity of the distribution under
consideration to a normal law. Furthermore, this powerful method was developed in the
framework of classical limit theorems of the probability theory. We describe this method in
Section 2. Applying the Stein method along with other tools, one can establish in certain
cases the sharp estimates of closeness between a target distribution and other ones in
specified metrics (see, e.g., [13,14]). We recommend the books [15,16] and the paper [17]
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for basic ideas of the ingenious Stein method. The development of this techniques under
mild moment restrictions for summands is treated in [18,19]. We mention in passing that
there are deep generalizations of Stein techniques involving generators of certain Markov
processes; a compact exposition is provided, e.g., on p. 2 of [20].

In the theory of random sums of random summands, the limit theorems with ex-
ponential law as a target distribution play a role similar to the central limit theorem for
(nonrandom) sums of random variables. Here, one has to underline the principal role of the
Rényi classical theorem for geometric sums published in [21]. Recall this famous result. Let
X1, X2, . . . be a sequence of independent identically distributed (i.i.d.) random variables
such that µ := E[X1] 6= 0. Take a geometric random variable Np with parameter p ∈ (0, 1),
defined as follows:

P(Np = k) = p(1− p)k, k ∈ N∪ {0}. (2)

Assume that Np and (Xn)n∈N are independent. Set S0 := 0, Sn := X1 + . . . + Xn,
n ∈ N. Then,

Wp :=
SNp

E[SNp ]
D→ Z ∼ Exp(1) as p→ 0+, (3)

where D→ stands for convergence in distribution, and Z follows the exponential law Exp(λ)
with parameter λ = 1, E[SNp ] = µ(1− p)/p. In fact, instead of Np, A.Rényi considered
the shifted geometric random variable N(p) such that P(N(p) = k) = p(1− p)k−1, k ∈ N.
Clearly, Np has the same law as N(p) − 1. He supposed that i.i.d. random variables
X1, X2, . . . are non-negative, and N(p) and (Xn)n∈N are independent. Then, SN(p)/E[SN(p)]
converges in distribution to Z ∼ Exp(1) as p → 0+, where E[SN(p)] = µ/p. It was
explained in [22] that both statements are equivalent and the assumption of nonnegativity
of summands can be omitted.

Building on the previous investigations discussed below in this section, we study
different instances of quantifying the approximation of random sums by limit laws and
also extend the Stein method employment. The main goals of our paper are the following:
(1) to find sharp estimates (i.e., optimal ones which cannot be diminished) of proximity of
geometric sums of independent (in general non-identically distributed) random variables
to exponential law using the probability metric dH2 ; (2) to prove the new version of the
Rényi theorem when the summands are described by a model of exchangeable random
variables, establishing the due non-exponential limit law together with an optimal bound of
the convergence rate applying dH2 ; (3) to obtain the exact convergence rate of appropriately
normalized random sums of random summands to the generalized gamma distribution
when the number of summands follows the generalized negative binomial distribution
employing dH2 ; (4) to introduce the inverse transformation to an “equilibrium distribution
transformation”, give full description of its existence and demonstrate the advantage of
applying the Stein method combined with that inverse transform; and (5) to use such
approach in deriving the new approximation in the Kolmogorov metric dK of the Pareto
distribution by an exponential one, which is important in signal processing.

The main idea is to apply the Stein method and deduce (Lemma 2) new estimates of
the solution of Stein’s equation (corresponding to an exponential law Exp(λ) as a target
distribution) when a function h appearing in its right-hand side belongs to a classH2. This
entails the established sharp estimates. The integral probability metrics and the techniques
of integration with respect to sign measures are essentially employed. It should be stressed
that we consider random summands which take, in general, positive and negative values
and in certain cases need not have the same law.

Now, we briefly comment on the relevance of the five groups of the paper results
mentioned above. Some upper bounds for convergence rates in Equation (3) were obtained
previously by different tools (the renewal techniques and the memoryless property of
the geometric distribution), and the estimates were not sharp. We refer to the results by
A.D. Soloviev, V.V. Kalashnikov and S.Y. Vsekhsvyatskii, M. Brown, V.M. Kruglov and
V.Yu. Korolev, where the authors either used the Kolmogorov distance or proved specified
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nonuniform estimates for differences of the corresponding distribution functions. For
instance, in [23] the following estimate was proved

sup
x∈R
|P(Wp ≤ x)− P(Z ≤ x)| ≤ p

E[X2
1 ]

µ2 max
{

1,
1

2(1− p)

}
,

where Z ∼ Exp(1). Moreover, this estimate is asymptotically exact when p→ 0+. Some
improvements are in [24] under certain (hazard rate) assumptions. E.V. Sugakova obtained
a version of the Rényi theorem for independent, in general, not identically distributed
random variables. We also mention contributions by V.V. Kalashnikov, E.F. Peköz, A. Röllin,
N. Ross and T.L. Hung which gave the estimates in terms of the Zolotarev ideal metrics.
We do not reproduce all these results here since they can be viewed on pages 3 and 4 of [22]
with references where they were published.

In Corollary 3.6 of [25] for nondegenerate i.i.d. positive random variables X1, X2, . . .
with mean µ and finite second moment, it was proved that

ζ2(pS(p), Z(1/µ)) ≤ p(E[X2
1 ] + 2µ2),

where S(p) := ∑
N(p)
j=1 Xj, ζ2 is the Zolotarev ideal metric of order two, Z(λ) ∼ Exp(λ),

λ > 0. In [22], the estimates for proximity of geometric sums distributions to Z ∼ Exp(1)
were provided in the Kantorovich and ζ2 metrics. A substantial contribution of the authors
of [22] is the study of random summands X1, X2, . . . that need not be positive (see also [26]).
The general estimate for deviation of Wp from Z ∼ Exp(1) in the ideal metric of order s
was proved in [27]. We do not assume that Wp is constructed by means of i.i.d. random
variables and, moreover, demonstrate that our estimate (for summands taking real values)
involving the metric dH2 is sharp.

The exchangeable random variables form an important class having various appli-
cations in statistics and combinatorics, see, e.g., [28]. As far as we know, the model of
exchangeable random variables is studied in the context of random sums for the first time
here. It is interesting that instead of the exponential limit law we indicate explicit expression
of the new limit law. In addition, we establish the sharp estimate of proximity of random
sums distributions to this law using dH2 .

A natural generalization of the Rényi theorem is to study the summation index follow-
ing non-geometrical distribution. In this way, the upper bound of the convergence rate of
random sums of random summands to generalized gamma distribution was proved in [29].
Theorem 3.1 in [30] contains the estimates in the Kolmogorov and Kantorovich distances
for approximations of non-negative random variable law by specified (nongeneralized)
gamma distribution. The proof relies on Stein’s identity for gamma distribution established
in H.M.Luk’s PhD thesis (see the reference in [30]). New estimates of the solutions of the
gamma Stein equation are given in [31]. We derive the sharp estimate for approximation of
random sums by generalized gamma law using the Zolotarev metric of order two. In a quite
recent paper [32] the author established deep results concerning further generalizations
of the Rényi theorem. Namely, Theorem 1 of [32] demonstrates how one can provide the
upper bounds of the convergence rate of specified random sums to a more general law than
an exponential one using the estimates in the Rényi theorem. This approach is appealing
since the author employs the ideal metric of order s > 0. However, the sharpness of these
estimates was not examined.

Note that in [33] the important “equilibrium transformation of distributions” was pro-
posed and employed along with the Stein techniques. We will consider this transformation
Xe for a random variable X in Section 7 and also tackle other useful transformations. In the
present paper, the inverse to the “equilibrium distribution transformation” is introduced.
We completely describe the possibility to construct such transformation and provide an
explicit formula for the corresponding density. The idea to apply such inverse transforma-
tion whenever it exists is based on the result [33] demonstrating that one can obtain a more
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precise estimate for proximity in the Kantorovich metric between Xe and Z than between
X and Z, where Z ∼ Exp(1) and E[X] = 1, E[X2] < ∞. We extend this result. Moreover,
we prove that in this way one can obtain a new estimate of approximation of the Pareto
distribution by an exponential one. It is shown that our new estimate is advantageous
for a wide range of parameters of the Pareto distribution. Let Xe ∼ Pareto(α, β), i.e., the
distribution function of Xe is

Fe(x) = 1−
(

β

x + β

)α

, x ≥ 0, α > 0, β > 0.

We show that the preimage X ∼ Pareto(α + 1, β). Thus, for any α > 2, β > 0, one
has dK(Xe, Z) ≤ 1/(α − 1), where Z ∼ Exp(α/β) and dK stands for the Kolmogorov
distance. This bound is more precise than the previous ones applied in signal processing,
see, e.g., [34].

This paper is organized as follows. After the Introduction, the auxiliary results are
provided in Section 2. Here we include the material important for understanding the main
results. We recall the concept of probability metrics, consider the Kolmogorov and the
Kantorovich distances and examine the Zolotarev ideal metrics. We describe the basic
ideas of Stein’s method, especially for the exponential target distribution. In this section,
we formulate a simple but useful Lemma 1 concerning the essential supremum of the
Lipschitz function, an important Lemma 2 giving the solution of the Stein equation for
different functional classes. We explain the essential role of the generalized equilibrium
transformation proposed in [22] which permits study of the summands taking both positive
and negative values. We formulate Lemma 3 to be able to solve an integral equation
involving the generalized equilibrium transformation when E[X] 6= 0 and E[X2] < ∞.
The proofs of auxiliary lemmas are placed in Appendix A. Section 3 is devoted to an
approximation of the normalized geometric sums Wp by an exponential law. Here, the
sharp convergence rate is found (see Theorem 1) by means of the probability metric dH2 . The
proof is based on the Lebesgue–Stieltjes integration techniques, the formula of integration
by parts for functions of bounded variations, Lemma 2, various limit theorems for integrals
and the important result of [22] concerning the estimates involving the Kantorovich distance.
In Section 4, for the first time an analog of the Rényi theorem is proved for a model of
exchangeable random variables proposed in [35]. We demonstrate (Theorem 2) that, in
contrast to Rényi’s theorem, the limit distribution for random sums under consideration
is a specified mixture of two explicitly indicated laws. Moreover, the sharp convergence
rate to this limit law is obtained (Theorem 3) by means of dH2 . In Section 5, the distance
between the generalized gamma law and the suitably normalized sum of independent
random variables is estimated when the number of summands has the generalized negative
binomial distribution. Theorem 4 demonstrates that this estimate is sharp. For the proof, we
employ various truncation techniques, the transformations of parameters of initial random
variables, the monotone convergence theorem and explicit formula for the generalized
gamma distribution moments of order δ > 0, obtained in [27]. Section 6 provides the
pioneering study of the same problem in the framework of exchangeable random variables
and also gives the sharp estimate for the dH2 metric (Theorem 5). In Section 7, we introduce
the inverse to the equilibrium transformation of the probability measures. Lemma 6
contains a full description of situations when a unique preimage X of a random variable
Xe exists and gives an explicit formula for distribution of X. This approach permits us
to obtain the new estimates of closeness of probability measures in the Kolmogorov and
Kantorovich metrics (Theorem 6). In particular, due to Theorem 6 and Lemmas 2, 6, it
becomes possible to find a useful estimate of proximity of the Pareto law to the exponential
one (Example 2). Section 8 containing the conclusions and indications for further research
work is followed by Appendix A and the list of references.
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2. Auxiliary Results

Let K := {h : hz(x) = I{x ≤ z}, x, z ∈ R}, where I{A} := 1 if A holds and zero
otherwise. The choice H = K in Equation (1) corresponds to the Kolmogorov distance.
Note that h above is a function in x, whereas z is the index parameterizing the class.

A function h : R→ R is called the Lipschitz one if

Lip(h) := sup
x,u∈R; x 6=u

|h(x)− h(u)|
|x− u| < ∞. (4)

Then,
|h(x)− h(u)| ≤ C|x− u|, x, u ∈ R, (5)

and in light of Equation (4), Lip(h) is the smallest possible constant C appearing in Equation (5).
We write Lip(C), where C ∈ [0, ∞) for a collection of the Lipschitz functions having Lip(h) ≤ C.
For s > 0 set m = m(s) := ds− 1e ∈ N∪ {0} (where, for a ∈ R, dae stands for the minimal
integer number which is equal or greater than a). Introduce a class of functions

Hs := {h : R→ R, |h(m)(x)− h(m)(u)| ≤ |x− u|s−m, x, u ∈ R}, s > 0.

As usual, h(0)(x) = h(x), x ∈ R. We write dHs for a metric defined according to
Equation (1) with H = Hs. V.M. Zolotarev and many other researchers defined an ideal
metric ζs of order s > 0 involving only bounded functions fromHs. We will use collections
H1 andH2 without assumption that functions h are bounded on R. This is the reason why
we write dHs instead of ζs. Thus, we employ

H1 := {Lip(1)}, H2 := {h : h′ ∈ Lip(1)}.

Note that in definitions ofH2 we deal with h ∈ C(1), where the space C(1)(R) consists
of functions h : R → R such that h′(x) exists for all x ∈ R, and h′ is continuous on R
(evidently the Lipschitz function is continuous). One calls dH1 the Kantorovich metric
(the term Wasserstein metric appears in the literature as well). One also uses the bounded
Kantorovich metric when the class H1 contains all the bounded functions from Lip(1).
The metric ζs was introduced in [36] and called an ideal metric in light of its important
properties. The properties of ζs metrics, where s > 0, are collected in Sec. 2 of [32]. We
mention in passing that various functionals are ubiquitous in assessing the proximity of
distributions. In this regard, we refer, e.g., to [37,38].

To apply the Stein method, we begin with fixing the target random variable Z (or its
distribution) and describe a class H to estimate dH(Y, Z) for a random variable Y under
consideration. Then, the problem is to indicate an operator T (with specified domain of
definition) so that the Stein equation

Tf (x) = h(x)−E[h(Z)] (6)

has a solution fh(x), x ∈ R, for each function h ∈ H. After that, one can substitute Y
instead of x in Equation (6) and take the expectation of both sides, assuming that all these
expectations are finite. As a result, one comes to the relation

E[Tfh(Y)] = E[h(Y)]−E[h(Z)]. (7)

It is not a priori clear why the estimation of the left-hand side of Equation (7) is
more adequate than the estimation of |E[h(Y)]− E[h(Z)]| for h ∈ H. However, in many
situations, justifying the method this occurs. The choice of T depends on the distribution of
Z. Note that in certain cases (e.g., when Z follows the Poisson law) one considers functions
f defined on a subset of R. We emphasize that the construction of operator T is a nontrivial
problem, see, e.g., [33,39–41].
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The basic idea in this way is the following. For many probability distributions (Gaus-
sian, Laplace, Exponential, etc.), one can find an operator T characterizing the law of a
target variable Z. In other words, for a rather large class of functions f , E[Tf (Y)] = 0 if and
only if law(Y) = law(Z) (i.e., the laws of Y and Z coincide). Thus, if |E[Tfh(Y)]| is small
enough for a suitable class of functions h, this leads to the assertion that the law of Y is
close (in a sense) to the law of Z. One has to verify that this kind of “continuity” takes place.
Clearly, if for any h ∈ H, whereH defines the integral probability metric in Equation (1),
one can find a solution fh of Equation (6), then the relation E[Tfh(Y)] = 0 for all fh, h ∈ H,
yields dH(Y, Z) = 0 and, consequently, law(Y) = law(Z).

Further, we assume that Z ∼ Exp(λ), i.e., Z has exponential distribution with parame-
ter λ > 0. In this case (see, e.g., Sec. 5 in [17]), one uses the operator

T f (x) := f ′(x)− λ f (x) + λ f (0), x ∈ R, λ > 0, (8)

and writes the Stein Equation (6) as follows

f ′(x)− λ f (x) + λ f (0) = h(x)−E[h(Z)], x ∈ R. (9)

It should be stipulated that E[h(Z)] ∈ R for a test function h ∈ H, and there exists a
differentiable solution f of Equation (9). Therefore, if one can find such solution f , then

E[ f ′(Y)]− λE[ f (Y)] + λ f (0) = E[h(Y)]−E[h(Z)] (10)

under the hypothesis that all these expectations are finite. If f : R → R is absolutely
continuous, then (see, e.g., Theorem 13.18 of [42]) for almost all x ∈ R with respect to
the Lebesgue measure, there exists f ′(x). Moreover, one can find an integrable (on each
interval) function g : R→ R, x ∈ R, to guarantee, for each x, u ∈ R, that

f (x) = f (u) +
∫ x

u
g(v)dv, (11)

where g(v) = f ′(v) for almost all v ∈ R. Thus, (Tf )(x) is defined for such f according
to Equation (8) for almost all x ∈ R. In general, for an arbitrary random variable Y, one
cannot write E[(Tf )(Y)] since the value of expectation depends on the choice of a version
of (Tf )(x), x ∈ R. Really, let B ∈ B(R) be such that m(B) = 0, where m stands for the
Lebesgue measure. Assume that Y takes values in B. Then, it is clear that E[(Tf )(Y)] de-
pends on the choice of a function (Tf )(x) version defined on R. However, if the distribution
PY of a random variable Y has a density with respect to m, then E[(Tf )(Y)] will be the same
for any version of Tf (with respect to the Lebesgue measure). In certain cases, the Stein
operator is applied to smoothed functions (see, e.g., [33,43]). Otherwise, Equation (6) does
not hold at each point of R (see, e.g., Lemma 2.2 in [16]), and complementary efforts are
needed. For our study, it is convenient to employ in Equation (8) for T in the capacity of
f ′(x), x ∈ R, the right derivative. In many cases, for a real-valued function f defined on a
fixed set D ⊂ R one considers supx∈D | f (x)| as "essential supremum". Recall that a function
f̃ is a version of f (and vice versa) if the measure (here the Lebesgue measure) of points x
such that f̃ (x) 6= f (x) is zero. The notation ‖ f ‖∞ means that one takes inf f̃ supx∈D | f̃ (x)|,
where f̃ belongs to the class of all versions of f . Clearly, ‖ f ‖∞ will be the same if we change
f on a subset of D having a measure which is equal to zero. Thus, we write ‖ f ′‖∞ instead
of ‖g‖∞ appearing in Equation (11). The following simple observation is useful. Its proof is
provided in Appendix A.

Lemma 1. A function h is the Lipschitz function on R with Lip(h) = C < ∞ if and only if h is
absolutely continuous and (its essential supremum) ‖h′‖∞ = C < ∞.
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Remark 1. Note that 0 ≤ h(x) ≤ 1, x ∈ R, for any h ∈ K. If, for some positive constant C,
h ∈ Lip(C), then Equation (5) yields that |h(x)| ≤ C|x|+ |h(0)|. If h′ is a Lipschitz function
(with Lip(h′) = C), then h′′(x) exists for almost all x ∈ R and an application of Lemma 1 gives

|h′(x)− h′(0)| =
∣∣∣∣∫ x

0
h′′(u)du

∣∣∣∣ ≤ C|x|, x ∈ R.

Consequently, |h′(x)| ≤ A|x|+ B for some positive A, B (one can take A = C, B = |h′(0)|) and
any x ∈ R. As h′(x) is continuous on each interval, it follows that |h(x)| ≤ ax2 + b|x|+ c for some
positive a, b, c and all x ∈ R (a = C/2, b = |h′(0)|, c = |h(0)|). Therefore, |h(x)| ≤ A0x2 + B0
for some positive A0, B0 and each x ∈ R.

Lemma 2. For any λ > 0 and each h ∈ K ∪H1 ∪H2, the equation

f ′(x)− λ f (x) = h(x), x ∈ R, (12)

has a solution
fh(x) = −eλx

∫ ∞

x
h(u)e−λudu, x ∈ R, (13)

where fh(0) = −E[h(Z)]/λ. If h ∈ K, then for all x ∈ R there exists f ′h(x) and ‖ f ′h‖∞ ≤ 1.
If h ∈ H1 ∪H2, then f ′h is defined on R and ‖ f ′h‖∞ ≤ ‖h′‖∞/λ. For h ∈ H2, a function f ′′h is
defined on R and ‖ f ′′h ‖∞ ≤ min{2‖h′‖∞, ‖h′′‖∞/λ}.

The right-hand side of Equation (13) is well defined for each x ∈ R in light of Remark 1.
Lemma 4.1 of [33] contains for λ = 1 some statements of Lemma 1. We will use the above
estimates for any λ > 0. Estimates for h ∈ H2 were not considered in [33]. The proof of
Lemma 2 is given in Appendix A.

The following concept was introduced in [33].

Definition 1 ([33]). Let X be a non-negative random variable with finite E[X] > 0. One says that
a random variable Xe has distribution of equilibrium with respect to X if for any Lipschitz function
f : R→ R,

E[ f (X)]− f (0) = E[X]E[ f ′(Xe)]. (14)

Note that Definition 1 deals separately with distributions of X and Xe. One says that
Xe is the result of the equilibrium transformation applied to X. The same terminology is
used for transition from law(X) to law(Xe). For the sake of completeness, we explain in
Appendix A (Comments to Definition 1) why one can take the law of Xe having a density
with respect to the Lebesgue measure

pe(x) =

{
1

E[X]
P(X > x), x ≥ 0,

0, x < 0,
(15)

to guarantee the validity of Equation (14).

Remark 2. For a non-negative random variable X with finite E[X] > 0, one can construct a
random variable Xe having a density (15). Accordingly, we then have a random vector (X, Xe) with
specified marginal distributions. However, the joint law of X and Xe is not fixed and can be chosen
in appropriate way. If X1, X2, . . . is a sequence of independent random variables, we will assume
that a sequence (Xn, Xe

n)n∈N consists of independent vectors, and these vectors are independent
with all considered random variables which are independent with (Xn)n∈N.

In the recent paper [22], a generalization of the equilibrium transformation of distribu-
tions was proposed without assuming that random variable X is non-negative.
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Definition 2 ([22]). Let X be a random variable having a distribution function F(x) := P(X ≤
x), x ∈ R. Assume the existence of finite E[X] 6= 0. An equilibrium distribution function
corresponding to X (or F(x)) is introduced by way of

Fe(x) :=

−
1

E[X]

∫ x
−∞ F(u)du, x ≤ 0,

−E[X− ]
E[X]

+ 1
E[X]

∫ x
0 (1− F(u))du, x > 0,

(16)

where X− := XI{X < 0}. This function can be written as Fe(x)=
∫ x
−∞ pe(u)du, where

pe(x) =

{
− 1

E[X]
F(x), x ≤ 0,

1
E[X]

(1− F(x)), x > 0,
(17)

thus, pe is a density (with respect to the Lebesgue measure) of a signed measure Qe corresponding to
Fe. In other words, Equation (17) demonstrates the Jordan decomposition (see, e.g., Sec. 29 of [44])
of Qe.

Clearly, for a non-negative random variable, the functions defined in Equation (15)
and Equation (16) coincide. For a nonpositive random variable, the function Fe appearing
in Equation (16) is a distribution function of a probability measure. In general, when X
can take positive and negative values, the function introduced in Equation (16) is not a
distribution function. We will call Fe the generalized equilibrium distribution function. Note
that |pe(x)| ≤ 1

|E[X]| . Thus, Fe is the Lipschitz function and consequently continuous
(Fe(x) is well defined for each x ∈ R since E[X] is finite and nonzero). Moreover, Fe is
absolutely continuous being the Lipschitz function. Each absolutely continuous function
has bounded variation. If G is a function of bounded variation, then G = G1 − G2, where
G1 and G2 are nondecreasing functions (see, e.g., [42], Theorem 12.18). One can employ
the canonical choice G1(x) := Varx

0(G), where Varb
a(G) means the variation of G on [a, b],

−∞ < a ≤ b < ∞ (if a > b then Varb
a(G) := −Vara

b(G)). If G is right-continuous (on R),
then evidently G1 and G2 are also right-continuous. Thus, for a right-continuous G having
bounded variation, a nondecreasing function Gi in its representation corresponds to a
σ-finite measure Qi on B(R), i = 1, 2. More precisely, there exists a unique σ-finite measure
Qi on B(R) such that, for each finite interval (a, b], Qi((a, b]) = Gi(b) − Gi(a), i = 1, 2.
Recall that one writes for the Lebesgue–Stieltjes integral with respect to a function G∫

R
f (u)dG(u) :=

∫
R

f (u)dG1(u)−
∫
R

f (u)dG2(u), (18)

whenever the integrals in the right-hand side exist (with values in [−∞, ∞]), and the cases
∞−∞ or −∞ + ∞ are excluded. The integral

∫
R f (u)dGi(u) means the integration with

respect to measure Qi, i = 1, 2. The signed measure Q corresponding to G is Q1 − Q2.
Thus,

∫
R f (u)dG(u) means the integration with respect to signed measure Q. Note that if

G = U1 −U2 where Ui is right-continuous and nondecreasing (i = 1, 2), then∫
R

f (u)dG1(u)−
∫
R

f (u)dG2(u) =
∫
R

f (u)dU1(u)−
∫
R

f (u)dU2(u). (19)

The left-hand side and the right-hand side of Equation (19) make sense simultaneously,
and if so, are equal to each other. Indeed, for any finite interval (a, b] (a ≤ b), one has
G1(b)− G1(a)− (G2(b)− G2(a)) = U1(b)−U1(a)− (U2(b)−U2(a)). Thus, the signed
measures corresponding to G1 − G2 and U1 −U2 coincide on B(R). We mention in passing
that one can also employ the Jordan decomposition of a signed measure.

For Fe introduced in Equation (16), the analog of Equation (15) has the form

E[ f (X)]− f (0) = E[X]
∫
R

f ′(x)dFe(x). (20)



Mathematics 2022, 10, 4747 10 of 37

Taking into account Equation (17), one can rewrite Equation (20) equivalently as follows

E[ f (X)]− f (0) =
∫
(−∞,0]

f ′(x)(−F(x))dx +
∫
(0,∞)

f ′(x)(1− F(x))dx. (21)

The right-hand side of the latter relation does not depend on the choice of a version of f ′.
Due to Theorem 1(d) of [22], Equation (20) is valid for any Lipschitz function f . Evidently,
an arbitrary function f ∈ H2 need not be the Lipschitz one and vice versa.

Lemma 3. Let X be a random variable such that E[X2] < ∞ and E[X] 6= 0. Then, Equation (20)
is satisfied for all f ∈ H2.

The proof is provided in Appendix A.

3. Limit Theorem for Geometric Sums of Independent Random Variables

Consider Np ∼ Geom(p), see Equation (2). In other words, Np has a geometric distri-
bution with parameter p. Let X1, X2, . . . be a sequence of independent random variables
such that E[Xk] = µ, where µ ∈ R, µ 6= 0, k ∈ N. Assume that Np and (Xn)n∈N are
independent. Consider a normalized geometric sum

Wp :=
p

µ(1− p)

Np

∑
k=1

Xk, (22)

introduced in Equation (3). Since Np can take zero value, set, as usual, ∑0
k=1 Xk := 0. One

can see that Wp can be viewed as a random sum Sp := ∑
Np
k=1 Xk normalized by E[X]E[Np].

Lemma 4. Let X1, X2, . . . and Np, where p ∈ (0, 1), be random variables described above in this
Section. Then, the following relations hold:

E[Wp] = 1, E|Wp| ≤
supk∈N E|Xk|

|µ| ,

E[W2
p ] =

p
µ2(1− p)

E[X2
Np+1] + 2. (23)

Proof. Recall that

E[Np] =
∞

∑
k=1

kp(1− p)k−1 =
1− p

p
, (24)

E[N2
p ] =

∞

∑
k=1

k2 p(1− p)k−1 =
(1− p)(2− p)

p2 . (25)

Thus, one has

E[Wp] =
p

µ(1− p)

∞

∑
k=1

kµP(Np = k) =
p

1− p
E[Np] = 1.

Clearly, E|Xk| < ∞ since E[Xk] is finite (k ∈ N). Therefore

E|Wp| ≤
p

|µ|(1− p)

∞

∑
k=1

kE|Xk|P(Np = k) ≤
supk∈N E|Xk|

|µ| .

Set νk := E[X2
k ], k ∈ N. One has

E[S2
p] =

∞

∑
k=1

P(Np = k)E
(

k

∑
i=1

Xi

)2

=
∞

∑
k=1

p(1− p)k

(
k

∑
i=1

νi + k(k− 1)µ2

)
. (26)
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According to Equations (24) and (25) one derives the formula

∞

∑
k=1

p(1− p)k
(

k(k− 1)µ2
)
= µ2

(
(1− p)(2− p)

p2 − 1− p
p

)
= 2

(
µ(1− p)

p

)2

. (27)

Convergence of the series ∑∞
k=1 p(1− p)k ∑k

i=1 νi having non-negative terms holds simulta-
neously with the validity of inequality E[W2

p ] < ∞. Changing the order of summation, we
obtain

∞

∑
k=1

p(1− p)k
k

∑
i=1

νi =
∞

∑
i=1

(1− p)iνi =

(
1− p

p

)
E[X2

Np+1].

The latter formula and Equations (26), (27) yield

E[W2
p ] =

(
p

µ(1− p)

)2
E[S2

p] =

(
p

µ(1− p)

)2
((

1− p
p

)
E[X2

Np+1] + 2
(

µ(1− p)
p

)2
)

=
p

µ2(1− p)
E[X2

Np+1] + 2.

Equation (23) is established.

The proof of Theorem 3.1 in [45] shows for non-negative i.i.d. random variables
X1, X2, . . . (when µ = 1, see Formula (3.15) in [45]) that the equilibrium transformation of
Wp distribution has the following form:

We
p =

p
µ(1− p)

( Np

∑
k=1

Xk + Xe
Np+1

)
= Wp +

p
µ(1− p)

Xe
Np+1, (28)

where Xe
Np+1 means that we construct Xe

1, Xe
2, . . . and then take a random index Np + 1. In

other words,

Xe
Np+1 =

∞

∑
n=0

Xe
n+1I{Np = n}.

It was explained in Section 2 that a generalized equilibrium distribution function Fe
Wp

(x)
(see Definition 2) need not be a distribution function when the summands X1, X2, . . . can
take values of different signs. However, employing this function, one can establish the
following result.

Theorem 1. Let X1, X2, . . . be a sequence of independent random variables having finiteE[Xk] = µ,
where µ 6= 0, k ∈ N. Assume that Np and (Xn)n∈N are independent, where Np ∼ Geom(p),
0< p<1. If Z ∼ Exp(1), then

dH2(Wp, Z) =
E[X2

Np+1]

2µ2

(
p

1− p

)
(29)

where Wp was introduced in Equation (22).

Proof. If E[W2
p ] = ∞, then dH2(Wp, Z) = ∞ since, for a function h(x) = x2/2, x ∈ R,

belonging toH2, one has E[h(Wp)] = ∞, whereas E[h(Z)] < ∞. According to Equation (23),
E[W2

p ] and E[X2
Np+1] are both finite or infinite simultaneously. Consequently, Equation (29)

is true when E[W2
p ] = ∞.

Let us turn to the case E[W2
p ] < ∞. At first, we obtain an upper bound for dH2(Wp, Z).

Take h ∈ H2. Applying Lemmas 1 and 2 and Remark 1, one can write due to Stein’s
Equation (10) that

|E[h(Wp)]−E[h(Z)]| = |E[ f ′h(Wp)]−E[ fh(Wp)] + f (0)|. (30)
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Using the generalized equilibrium distribution transformation (20) one obtains:

|E[ f ′h(Wp)]−E[ fh(Wp)] + f (0)| =
∣∣∣∣∫R f ′h(x) dFWp(x)−

∫
R

f ′h(x) dFe
Wp

(x)
∣∣∣∣. (31)

Due to Lemma 3 this is true, for h ∈ H2, because fh ∈ H2 according to Lemma 2 (with
λ = 1). Next, we employ the relation∫

R
f ′h(x) dFWp(x)−

∫
R

f ′h(x) dFe
Wp

(x) =
∫
R

f ′h(x) d(FWp − Fe
Wp

)(x). (32)

Evidently, one can write
∫
R | f

′
h(x)| dFWp(x) < ∞. The notation dFe

Wp
(x) in the integral refers

to the Lebesgue–Stieltjes integral with respect to a function Fe
Wp

(x) of bounded variation. In
fact, the integral with integrator dFe

Wp
(x) means that integration employs a signed measure

Q+
p − Q−p , where Q+

p and Q−p have the following densities with respect to the Lebesgue
measure:

q+p (x) := (1− FWp(x))I{(0, ∞)}, q−p (x) := FWp(x)I{(−∞, 0]}, x ∈ R,

we took into account that E[Wp] = 1 according to Lemma 4. Then, for any −∞ < a <

b < ∞, one ascertains that variation of Fe
Wp

on [a, b] is given by formula Varb
a(Fe

Wp
) =∫ b

a |p
e
Wp

(u)|du (see, e.g., Theorem 4.4.7 [46]). Note that for any −∞ < a < b < ∞,

∫ b

a
|pe

Wp
(u)|du ≤ E|Wp| < ∞

according to Lemma 4. Thus, Fe
Wp

is a function of bounded variation. In the right-hand
side of Equation (32), we take the Lebesgue–Stieltjes integral with respect to the function of
bounded variation (FWp − Fe

Wp
)(x), x ∈ R. Let Fe

Wp
(x) = Fe

p,1(x)− Fe
p,2(x), x ∈ R, where Fe

p,i
are nondecreasing right-continuous functions (even continuous since Fe

Wp
is continuous),

i = 1, 2. Thus,

FWp(x)− Fe
Wp

(x) = (FWp(x) + Fe
p,2(x))− Fe

p,1(x), x ∈ R.

With the help of Equations (18) and (19) one makes sure that, for each n ∈ N,∫
(−n,n]

f ′h(x) d(FWp − Fe
Wp

)(x) =
∫
(−n,n]

f ′h(x) d(FWp(x) + Fe
p,2(x))−

∫
(−n,n]

f ′h(x) d(Fe
p,1(x))

=
∫
(−n,n]

f ′h(x) dFWp(x) +
∫
(−n,n]

f ′h(x) dFe
p,2(x)−

∫
(−n,n]

f ′h(x) dFe
p,1(x)

=
∫
(−n,n]

f ′h(x) dFWp(x)−
∫
(−n,n]

f ′h(x) d(Fe
p,1(x)− Fe

p,2(x))

=
∫
(−n,n]

f ′h(x) dFWp(x)−
∫
(−n,n]

f ′h(x) dFWe
p(x).

All the integrals in the latter formulas are finite. According to Lemma 2 and Remark 1, one
can write | f ′h(x)| ≤ A0|x|+ B0, where A0, B0 are positive constants. Thus, the Lebesgue
theorem on dominated convergence ensures that

lim
n→∞

∫
(−n,n]

f ′h(x) dFWp(x) =
∫
R

f ′h(x) dFWp(x),

where the latter integral is finite. Indeed,∫
R
(A0|x|+ B0) dFWp(x) = A0E|Wp|+ B0 < ∞ (33)
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according to Lemma 4. By the same Lemma, one has E[Wp] = 1. Therefore, on account of
Equation (17), the following relation holds:∫

(−n,n]
f ′h(x) dFWe

p(x) =
∫
(−n,0]

f ′h(x)(−FWp(x))dx +
∫
(0,n]

f ′h(x)(1− FWp(x))dx,

whereas Corollary 2, Sec. 6, Ch. II of [47] and Lemma 4 entail that

∫
(−∞,0]

(A0|x|+ B0)FWp(x)dx +
∫
(0,∞)

(A0|x|+ B0)(1− FWp(x))dx

≤ A0E[W2
p ] + B0E|Wp| < ∞. (34)

The Lebesgue theorem on dominated convergence for σ-finite measures and Equation (34)
yield

lim
n→∞

∫
(−n,n]

f ′h(x)dFe
Wp

(x) =
∫
R

f ′h(x)dFe
Wp

(x),

where the latter integral is finite. Now, we show that

lim
n→∞

∫
(−n,n]

f ′h(x) d(FWp − Fe
Wp

)(x) =
∫
R

f ′h(x) d(FWp − Fe
Wp

)(x). (35)

Note that f ′h(x)I(−n,n](x) → f ′h(x) at each x ∈ R as n → ∞. To apply the version of the
Lebesgue theorem to integrals over a signed measure, it suffices (see, e.g., [48], p. 74) to
verify that ∫

R
| f ′h(x)||d(FWp − Fe

Wp
)(x)| < ∞,

where |dG|means that one evaluates an integral with respect to the measure corresponding
to the total variation of a measure determined by a right-continuous function G of bounded
variation. The extension of the Lebesgue theorem on dominated convergence for signed
measures is an immediate corollary of the Jordan decomposition mentioned above. Using
this decomposition, one obtains the inequality∫

R
| f ′h(x)||d(FWp − Fe

Wp
)(x)| ≤

∫
R
| f ′h(x)||dFWp(x)|+

∫
R
| f ′h(x)||dFe

Wp
(x)|.

Due to Remark 1 one has | f ′h(x)| ≤ A0|x|+ B0 for all x ∈ R and some positive constants
A0, B0. Then, Equations (33) and (34) yield (as FWp generates probability measure)∫

R
(A0|x|+ B0)dFWp(x) +

∫
R
(A0|x|+ B0)|dFe

Wp
(x)| < ∞.

The functions f ′h and FWp − Fe
Wp

are right-continuous and have bounded variation. Then
each of them can be represented as the difference of right-continuous nondecreasing
functions, and using for any n ∈ N the integration by parts formula (see, e.g., Theorem 11,
Sec. 6, Ch. 2, [47]), one has∫

(−n,n]
f ′h(x) d(FWp − Fe

Wp
)(x)

= f ′h(x)(FWp(x)− Fe
Wp

(x))|n−n −
∫
(−n,n]

(FWp(x)− Fe
Wp

(x))d f ′h(x).

Since the integral in the right-hand side of Equation (35) is finite, it holds

f ′h(x)(FWp(x)− Fe
Wp

(x))→ 0, x → −∞ or x → ∞ (36)

(the proof is similar to the proof of Corollary 2, Sec. 6, Ch. 2 in [47]). Then,
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∫
R

f ′h(x) d(FWp − Fe
Wp

)(x) = − lim
n→∞

∫
(−n,n]

(FWp(x)− Fe
Wp

(x))d f ′h(x).

The function f ′h is absolutely continuous according to Lemma 2. Hence (see also
Equations (36) and (A12) in Appendix A) we get∣∣∣∣∫R f ′h(x) d(FWp(x)− Fe

Wp
(x))

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
(−n,n]

(FWp(x)− Fe
Wp

(x)) f ′′h (x) dx
∣∣∣∣

≤ ‖ f ′′h ‖∞

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx ≤

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx, (37)

because ‖ f ′′h ‖∞ ≤ ‖h′‖∞ ≤ 1 due to Lemmas 1 and 2. Using the homogeneity of the
Kantorovich metric for signed measures which is derived from formula (20) of [22] (see
Lemma 1 (a) there) and applying Lemma 3 of that paper, we can write

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx =

p
|µ|(1− p)

∫
R

∣∣FSNp
(x)− Fe

SNp
(x)
∣∣ dx

≤
E[X2

Np+1]

2µ2

(
p

1− p

)
. (38)

Relations (30), (31), (32), (37), (38) and Lemmas 1 and 2 guarantee that dH2(Wp, Z) does not
exceed the right-hand side of Equation (29).

Now, we turn to the lower bounds for dH2(Wp, Z). Choose h(x) = x2/2 as the test
function. Since h ∈ H2, we can write

dH2(Wp, Z) ≥
∣∣E[h(Wp)]−E[h(Z)]

∣∣ = 1
2

∣∣E[W2
p ]−E[Z2]

∣∣. (39)

For a random variable Z following the exponential law Exp(1), one has E[Z2] = 2. Formula
(23) of Lemma 4 yields

dH2(Wp, Z) ≥
E[X2

Np+1]

2µ2

(
p

1− p

)
.

Taking into account formula (38), we come to the desired statement. The proof is com-
plete.

Remark 3. Evidently,

E[X2
Np+1] =

∞

∑
n=0

E[X2
n+1]p(1− p)n.

Thus, one obtains
E[X2

Np+1] ≤ sup
n∈N

E[X2
n],

and the latter inequality becomes an equality when E[X2
n] = E[X2

1 ] for all n ∈ N. Therefore, the
statement of Theorem 1 can be written as follows

dH2(Wp, Z) ≤
supn∈N E[X2

n]

2µ2

(
p

1− p

)
,

and this becomes an equality when E[X2
n] = E[X2

1 ] for all n ∈ N.

Remark 4. In [22], the authors proved the following inequality

dH2(Wp, Z) ≤
3E[X2

Np+1]

2µ2

(
p

1− p

)
.
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We established the sharp estimate with a factor 1/2 instead of 3/2 having employed Equation (20)
for a class of functions comprising solutions of the Stein equation for h ∈ H2. The estimate with
factor 1/2 was also obtained in the recent paper [49] but for i.i.d. summands. The lower bounds
were not provided there. In our Theorem 1, the summands have the same expectations but need not
have the same distribution.

Remark 5. If the summands of Wp are non-negative, we consider We
p appearing in Equation (28).

Applying Theorem 1(i) [22] to relation (29), one obtains

dH1(W
e
p, Z) =

E[X2
Np+1]

2µ2
p

1− p
.

For i ∈ N, consider a random variable Xi having distribution Exp(1/µ). Then Xe
i ∼ Exp(1/µ),

and, consequently, Xe
Np+1 ∼ Exp(1/µ). We can choose Xe

i , i ∈ N, according to Remark 2. Then,
the distribution of We

p will be the same if we change Xe
Np+1 to XNp+1 in Equation (28). In such a

way, We
p is a normalized sum of a random number of independent random variables. Using the

homogeneity of the Kantorovich metric, one has

dH1

(
p
µ

Np+1

∑
k=1

Xk, (1− p)Z

)
= (1− p)dH1

(
p

µ(1− p)

Np+1

∑
k=1

Xk, Z

)
=

E[X2
Np+1]

2µ2 p. (40)

Therefore, for an arbitrary sequence (Xk)k∈N satisfying conditions of Theorem 1, the upper bound
for the left-hand side of Equation (40) is not less than the right-hand side of Equation (40).

4. Limit Theorem for Geometric Sums of Exchangeable Random Variables

Now, we consider exchangeable random variables X1, X2, . . . satisfying the depen-
dence condition proposed in [35]. Namely, assume that for all n ∈ N, tj ∈ R (j = 1, . . . , n)
and some ρ ∈ [0, 1]

E
[
ei(t1X1+...+tnXn)

]
= ρE

[
eiX1(t1+...+tn)

]
+ (1− ρ)

n

∏
j=1

E
[
eitjXj

]
, (41)

where i2 = −1. The cases of ρ = 0 and ρ = 1 correspond, respectively, to independent
random variables and those possessing the property of comonotonicity. The latter means
that for ρ = 1 the joint behavior of X1, . . . , Xn is strongly correlated and coincides with one
of a vector (X1, . . . , X1).

Theorem 2. Let X1, X2 . . . be exchangeable random variables with E[X1] = µ, µ 6= 0 satisfying
condition (41) for some ρ ∈ (0, 1). Suppose that (Xn)n∈N and Np are independent, where Np ∼
Geom(p), p ∈ (0, 1). In contrast to the Rényi theorem, one has

Wp
D→ Y, p→ 0+,

where the law of Y is the following mixture

PY = ρPVX1/µ + (1− ρ)PZ, (42)

random variables X1, V are independent and V ∼ Exp(1), Z ∼ Exp(1).

Proof. Let X̃1, X̃2, . . . be independent copies of X1, X2, . . ., respectively. Suppose that
X̃1, X̃2, . . . are independent with Np. Set S0 := 0, S̃0 := 0, S̃n := X̃1 + . . . + X̃n, n ∈ N.
Denote the characteristic function of a random variable ξ by fξ(t), t ∈ R. For each t ∈ R,
using Equation (41), one has
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fSNp
(t) =

∞

∑
n=0

E
[
eitSn

]
P(Np = n)

= P(Np = 0) +
∞

∑
n=1

(
ρE
[
eiX1tn

]
+ (1− ρ)

n

∏
j=1

E
[
eitXj

])
P(Np = n)

= p +
∞

∑
n=0

(
ρE
[
eiX1tn

]
+ (1− ρ)

n

∏
j=1

E
[
eitX̃j

])
P(Np = n)− ρp− (1− ρ)p

= ρ fX1 Np(t) + (1− ρ)
∞

∑
n=0

fS̃n
(t)P(Np = n) = ρ fX1 Np(t) + (1− ρ) fS̃Np

(t).

For each t ∈ R, one has

fWp(t) = ρ f p
µ(1−p) X1 Np

(t) + (1− ρ) fW̃p
(t), (43)

where W̃p = p
µ(1−p) ∑

Np
j=1 X̃j.

According to the classical Rényi theorem, W̃p
D→ Z as p → 0+, where Z ∼ Exp(1).

Note that Tp := p
1−p Np

D→ V as p → 0+, where V ∼ Exp(1). In fact, one can apply
Theorem 1 with Xj ≡ 1, j ∈ N to check this. For each t ∈ R, taking into account that Tp and
X1 are independent and applying the Lebesgue theorem on dominated convergence, we
see that

E
[
eitTpX1

]
= E

[
EeitTpX1 |X1

]
=
∫
R

eitTp xdFX1(x)→
∫
R

eitV xdFX1(x) = E
[
eitVX1

]
, p→ 0+,

since X1 and V are independent. Hence,

p
µ(1− p)

X1Np
D−→ VX1

µ
, p→ 0+

is true. In light of Equation (43),

Wp
D−→ Y, p→ 0+,

here the law of Y is the mixture of distributions VX1/µ and Z provided by Equation (42).
The proof is complete.

Theorem 3. Assume that Np and (Xn)n∈N satisfy conditions of Theorem 2. Let µ2 = E[X2
1 ].

Then,

dH2(Wp, Y) =
µ2

2µ2

(
p

1− p

)
. (44)

Proof. Relation (43) for characteristic functions implies that the following equality of
distributions holds

Wp
D
=

p
µ(1− p)

(
(1− Iρ)NpX1 + IρS̃Np

)
, (45)

where indicator Iρ equals 1 and 0 with probabilities 1 − ρ and ρ, respectively, and is
independent of all the variables under consideration. Assume at first that µ2 < ∞. Then,
for h ∈ H2,

E[h(Wp)] = ρE
[

h
(

p
µ(1− p)

NpX1

)]
+(1− ρ)E[h(W̃p)].

In view of Equation (42) one has



Mathematics 2022, 10, 4747 17 of 37

E[h(Y)] = ρE
[

h
(VX1

µ

)]
+(1− ρ)E[h(Z)].

The latter two formulas and the triangle inequality yield

|E[h(Wp)]−E[h(Y)]|

≤ ρ

∣∣∣∣E[h
(

p
µ(1− p)

NpX1

)]
−E
[

h
(VX1

µ

)]∣∣∣∣+ (1− ρ)
∣∣∣E[h(W̃p)]−E[h(Z)]

∣∣∣. (46)

By means of Theorem 1 we have

sup
h∈H2

|E[h(W̃p)]−E[h(Z)]| = µ2

2µ2

(
p

1− p

)
. (47)

For each h ∈ H2, taking into account the independence of X1, Np, V, one can write∣∣∣∣E[h
(

p
µ(1− p)

NpX1

)]
−E
[

h
(VX1

µ

)]∣∣∣∣
=

∣∣∣∣∫R
(
E
[

h
(

p
µ(1− p)

NpX1

)]
−E
[

h
( xV

µ

)])
dFX1(x)

∣∣∣∣.
Due to homogeneity of dH2 we infer from Theorem 1 that

sup
h∈H2

∣∣∣∣E[h
(

p
µ(1− p)

NpX1

)]
−E
[

h
( xV

µ

)]∣∣∣∣ = dH2

(
px

µ(1− p)
Np,

xV
µ

)

=

(
x
µ

)2
dH2

(
p

(1− p)

Np

∑
k=1

1, V

)
=

1
2

(
x
µ

)2 p
1− p

.

Consequently, it holds∣∣∣∣E[h
(

p
µ(1− p)

NpX1

)]
−E
[

h
(VX1

µ

)]∣∣∣∣
≤ p

2(1− p)

∫
R

(
x
µ

)2
dFX1(x) =

µ2

2µ2

(
p

1− p

)
. (48)

Equations (46), (47) and (48) lead to the upper bound for dH2(Wp, Y).
Note that a function h(x) = x2/2, x ∈ R, belongs to ∈ H2 and therefore

sup
H2

∣∣E[h(Wp)]−E[h(Y)]
∣∣ ≥ 1

2

(
E[W2

p ]−E[Y2]
)

. (49)

Note that E[Z2] = E[V2] = 2 because Z ∼ Exp(1) and V ∼ Exp(1). The random variables
X1, V, Z are independent. Thus, in light of Equation (42), one has

E[Y2] = 2ρ
µ2

µ2 + 2(1− ρ). (50)

By means of Equations (45), (23) and (25) we obtain

E[W2
p ] =

(
p

µ(1− p)

)2
ρE[N2

p ]E[X2
1 ] + (1− ρ)E[W̃2

p ]

=

(
p

µ(1− p)

)2
ρ
(1− p)(2− p)

p2 µ2 + (1− ρ)

(
p

µ2(1− p)
µ2 + 2

)
=

=
µ2

µ2

(
ρ

2− p
1− p

+ (1− ρ)
p

1− p

)
+ 2(1− ρ). (51)
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Equations (50) and (51) permit to find E[W2
p ]− E[Y2]. Hence Equation (49) leads to the

inequality

sup
H2

∣∣E[h(Wp)]−E[h(Y)]
∣∣

≥
(1

2

)µ2

µ2

(
ρ

(
2− p
1− p

− 2
)
+ (1− ρ)

p
1− p

)
=
(1

2

)µ2

µ2
p

1− p
. (52)

Now, let µ2 = ∞. Then, dH2(Wp, Y) = ∞ according to Equation (52). The proof is
complete.

5. Convergence of Random Sums of Independent Summands to Generalized
Gamma Distribution

Statements concerning weak convergence of geometric sums distributions to exponen-
tial law are often just particular cases of more general results concerning the convergence
of random sums of random summands to generalized gamma law when the number of
summands follows the generalized negative binomial distribution, see, e.g., [27,29,49]).
The recent work [29] demonstrated how it is possible to study the mentioned general case
employing the estimates of proximity of geometric sums distributions to exponential law.
We introduce some notation to apply Theorem 1 for analysis of the distance between the
distributions of random sums and the generalized gamma law.

Introduce a random variable Gr,λ such that Gr,λ ∼ G(r, λ), where G(r, λ) is the gamma
law with positive parameters r and λ, i.e., its density with respect to the Lebesgue measure
has the form

g(z; r, λ) =
λrzr−1

Γ(r)
e−λzI(0,∞)(z), z ∈ R,

Γ(r) being the gamma function. For r = 1, one has G(1, λ) = Exp(λ). Clearly, for a > 0,
aGr,λ ∼ G(r, λ/a). Set G∗r,α,λ := G1/α

r,λ , where α > 0. One says that random variable G∗r,α,λ
has the generalized gamma distribution G∗(r, α, λ). According to Equation (5) of [29], the
density of G∗r,α,λ is given by formula

g∗(z; r, α, λ) =
|α|λrzαr−1

Γ(r)
e−λzαI(0,∞)(z), z ∈ R.

Also it is known (see Equation (6) in [29]) that, for r ∈ (0, 1), α ∈ (0, 1] and λ > 0, the
following relation holds

g∗(z; r, α, λ) =
∫ 1

0

u
1− u

e−
u

1−u zq(u; r, α, λ) du, z > 0, (53)

where q is a density of a specified random variable Yr,α,λ such that support of its distribution
belongs to (0, 1) (see Remark 3 [49]). We only note that for α = 1 the density q admits a
representation

q
(

u; r, 1,
b

1− b

)
= br

(
sin πr

π

)
(1− u)r−1

u(u− b)r I(b,1)(u), b ∈ (0, 1).

Consider a random variable N∗r,α,p having the generalized negative binomial distribu-
tion GNB(r, α, p), where r > 0, α 6= 0 and p ∈ (0, 1), i.e.,

P(N∗r,α,p = k) =
∫ ∞

0

zk

k!
e−zg∗

(
z; r, α,

p
1− p

)
dz, k = 0, 1, . . . (54)

Thus GNB(r, α, p) has a mixed Poisson distribution. One can verify that GNB(r, 1, p)
coincides with NB(r, p), where NB(r, p) is the negative binomial law. Recall that Nr,p ∼
NB(r, p) if
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P(Nr,p = k) =
Γ(k + r)
k!Γ(r)

pr(1− p)k, k = 0, 1, . . .

Note also that N1,p ∼ Geom(p).
Introduce the random variables

W∗r,α,p :=
1
µ

(
p

1− p

)1/α N∗r,α,p

∑
k=1

Xk, S∗r,α,p :=
N∗r,α,p

∑
k=1

Xk, (55)

where N∗r,α,p ∼ GNB(r, α, p), r > 0, α 6= 0, p ∈ (0, 1), and E[Xk] = µ, µ 6= 0, k ∈ N. We
assume that (Xn)n∈N and N∗r,α,p are independent, where r > 0, α 6= 0, p ∈ (0, 1).

Theorem 4. Let (Xn)n∈N be a sequence of independent random variables having E[Xn] = µ,
µ 6= 0, n ∈ N. Then, for W∗r,α,p introduced in Equation (55) with parameters r ∈ (0, 1), α ∈ (0, 1],
p ∈ (0, 1) and Gr,1 having the gamma distribution G(r, 1), the following relation holds

dH2(W
∗
r,α,p, G1/α

r,1 ) =
1

2µ2

(
p

1− p

)2/α ∫ 1

0
E[X2

Nu+1]

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du, (56)

whenever the right-hand side of Equation (56) is finite. Here, Nu := N∗1,1,u, Nu ∼ Geom(u),
u ∈ (0, 1) and q appeared in Equation (53).

Proof. Without loss of generality, we can assume that µ = 1; otherwise, we consider
X̃n := Xn

µ , n ∈ N. For such sequence, E[X̃2
Nu+1] =

1
µ2 E[X2

Nu+1]. Note that 1−p
p Gr,1 has the

same distribution as Gr,p/(1−p). Applying the homogeneity property of the ideal probability
metric of order two, one has

dH2(W
∗
r,α,p, G1/α

r,1 ) =

(
p

1− p

)2/α

dH2

(
S∗r,α,p, G1/α

r,p/(1−p)

)
.

The proof of Theorem 1 [29] starts with establishing for any bounded Borel function h,
r ∈ (0, 1), α ∈ (0, 1] and p ∈ (0, 1), that

E
[
h
(
G1/α

r,p/(1−p)

)]
=
∫ 1

0
E
[

h
(

1− u
u

Z
)]

q
(

u; r, α,
p

1− p

)
du, (57)

where Z ∼ Exp(1), and

E
[
h(S∗r,α,p)

]
=
∫ 1

0
E
[
h(S∗1,1,u)

]
q
(

u; r, α,
p

1− p

)
du. (58)

Let us examine these relations for each h ∈ H2. Recall that in light of Remark 1 |h(x)| ≤
A0x2 + B0 for some positive constants A0 and B0 (which depend on h), we write h =
h+ − h−, where h+(x) := h(x)I{h(x) ≥ 0}, h−(x) := −h(x)I{h(x) ≤ 0}. Set hn(x) :=
h+(x)I(−n,n](x), n ∈ N. Then, hn and n ∈ N are bounded Borel functions such that for each
x ∈ R, 0 ≤ hn(x)↗ h+(x) as n→ ∞. Hence, the monotone convergence theorem yields

E
[
h+
(
G1/α

r,p/(1−p)

)]
= lim

n→∞
E
[
hn
(
G1/α

r,p/(1−p)

)]
.

Note that, for each u ∈ (0, 1), E
[

hn

(
1−u

u Z
)]
↗ E

[
h+
(

1−u
u Z

)]
. Applying the monotone

convergence theorem once again, we obtain

∫ 1

0
E
[

h+
(

1− u
u

Z
)]

q
(

u; r, α,
p

1− p

)
du = lim

n→∞

∫ 1

0
E
[

hn

(
1− u

u
Z
)]

q
(

u; r, α,
p

1− p

)
du.
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So, Equation (57) is valid if instead of h belonging to H2 we write h+. Obviously, 0 ≤
h+(x) ≤ |h(x)| ≤ A0x2 + B0, x ∈ R, n ∈ R. Thus,

E
[

h+
(

G1/α
r,p/(1−p)

)2
]
≤ A0E

(
G2/α

r,p/(1−p)

)
+ B0 < ∞.

According to [27] (page 8), for δ > 0, one has

E
[
(G∗r,α,λ)

δ
]
=

Γ(r + δ
α )

λδ/αΓ(r)
. (59)

This permits us to write E
(
G2/α

r,p/(1−p)

)
= E

[
(G∗r,1,p/(1−p))

2/α
]
< ∞.

In the same manner, we demonstrate that Equation (57) is valid if instead of h ∈ H2

we take h−. Moreover, E
[
h−
(
G1/α

r,p/(1−p)

)]
is finite. Therefore, Equation (57) holds for any

h ∈ H2, and for such h, E
[
h
(
G1/α

r,p/(1−p)

)]
is finite.

By the monotone convergence theorem E[h+(S∗r,α,p)] = limn→∞ E[hn(S∗r,α,p)]. In a
similar way, E[hn(S∗1,1,u)]↗ E[h+(S∗1,1,u)] as n→ ∞, and applying this theorem once again,
we obtain∫ 1

0
E[h+(S∗1,1,u)]q

(
u; r, α,

p
1− p

)
du = lim

n→∞

∫ 1

0
E[hn(S∗1,1,u)]q

(
u; r, α,

p
1− p

)
du.

Taking into account that Equation (58) is valid for bounded Borel functions hn, one ascertains
that Equation (58) holds if we replace h by h+. To show the latter integral is finite, we note
that 0 ≤ h+(x) ≤ |h(x)| ≤ A0x2 + B0, for some positive A0, B0 and all x ∈ R. Formula (23)
of Lemma 4 yields, for each u ∈ (0, 1),

E
[
(S∗1,1,u)

2] ≤ 1− u
u

E[X2
Nu+1] + 2

(1− u)2

u2 .

It was assumed above that the right-hand side of Equation (56) is finite. So,

∫ 1

0
E
(

A0

(
1− u

u
E[X2

Nu+1] + 2
(1− u)2

u2

)
+ B0

)
q
(

u; r, α,
p

1− p

)
du < ∞,

since in light of Equation (57), taking h(x) = 1 and h(x) = x2

2 (these functions belong to
H2), x ∈ R, we obtain, respectively,∫ 1

0
q
(

u; r, α,
p

1− p

)
du = 1,

E[Z2]
∫ 1

0

(1− u)2

u2 q
(

u; r, α,
p

1− p

)
du = E

(
G2/α

r,p/(1−p)

)
< ∞. (60)

We demonstrate analogously that Equation (58) holds upon replacing h ∈ H2 with h− and
if the right-hand side of Equation (56) is finite, it follows that∫ 1

0
E
[
h−(S∗1,1,u)

]
q
(

u; r, α,
p

1− p

)
du

is finite as well. Consequently, Equation (58) is established for each h ∈ H2 (whenever the
right-hand side of Equation (56) is finite) and E

[
h(S∗r,α,p)

]
is finite for such h. Therefore, for

h ∈ H2 and fixed α, r, p, one has
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E
[
h(S∗r,α,p)

]
−E

[
h
(
G1/α

r,p/(1−p)

)]
=
∫ 1

0

(
E
[
h(S∗1,1,u)

]
−E

[
h
(

1− u
u

Z
)])

q
(

u; r, α,
p

1− p

)
du =: J(h).

By Theorem 1, for h ∈ H2, it holds∣∣∣∣E[h(S∗1,1,u)
]
−E

[
h
(

1− u
u

Z
)]∣∣∣∣ ≤ dH2

(
S∗1,1,u,

1− u
u

Z
)
=

(
1− u

u

)2
dH2

(
u

1− u
S∗1,1,u, Z

)

≤
(

1− u
u

)2 u
1− u

(
1
2

)
E[X2

Nu+1] =

(
1
2

)
1− u

u
E[X2

Nu+1],

where we take into account that N∗1,1,u ∼ NB(1, u), and NB(1, u) coincides with Geom(u).
Thus, u

1−u S∗1,1,u can be written as

u
1− u

Nu

∑
k=1

Xk,

where Nu ∼ Geom(u), Nu and (Xk)k∈N are independent.

Therefore, for each h ∈ H2,
(

p
1−p

)2/α
|J(h)| is bounded by the right-hand side of

Equation (56), and so the desired upper bound is obtained (recall that µ = 1).
Now, we turn to the lower bound of dH2(W

∗
r,α,p, G1/α

r,1 ). Take h(x) = x2/2 belonging to

H2. Then, applying Equation (23) to evaluate E
[(

S∗1,1,u
)2], one has

dH2(W
∗
r,α,p, G1/α

r,1 )

≥ 1
2

(
p

1− p

)2/α
∣∣∣∣∣
∫ 1

0

(
E
[(

S∗1,1,u
)2]−(1− u

u

)2
E
[
G2

1,1
])

q
(

u; r,
p

1− p

)
du

∣∣∣∣∣
=

1
2

(
p

1− p

)2/α ∫ 1

0

(
1− u

u

)
E[X2

Nu+1]q
(

u; r,
p

1− p

)
du, (61)

where G1,1 = Z ∼ Exp(1). Thus, Equation (61) completes the proof.

Corollary 1. Let conditions of Theorem 4 be satisfied and also µ2 = supn∈N E[X2
n] < ∞. Then,

the right-hand side of Equation (56) is finite and

dH2(W
∗
r,α,p, G1/α

r,1 ) ≤ µ2

2µ2

(
p

1− p

)1/α Γ(r + 1
α )

Γ(r)
.

The inequality becomes an equality if µ2 = E[X2
n] for all n ∈ N. In particular, if α = 1 then

Γ(r+1)
Γ(r) = r.

Proof. According to Equation (57), for h(x) = x, x ∈ R,

E
[
G1/α

r,p/(1−p)

]
= E[Z]

∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du.

Thus, the following relation is valid.∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du = E

[
G1/α

r,p/(1−p)

]
. (62)

Due to [27] (see page 8 there), for δ > 0, one has E[G∗r,α,λ] =
Γ(r+1/α)
λ1/αΓ(r) . Therefore,
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E
[
G1/α

r,p/(1−p)

]
= E[G∗r,α,p/(1−p)] =

(
1− p

p

) 1
α Γ(r + 1

α )

Γ(r)
.

For α = 1, we obtain E[Gr,p/(1−p)] =
1−p

p
Γ(r+1)

Γ(r) = r (1−p)
p .

6. Convergence of Random Sums of Exchangeable Summands to Generalized
Gamma Distribution

Consider the model of exchangeable random variables X1, X2, . . . described in Section 4.
Introduce the distribution of a random variable U∗r,α,λ as the following mixture

PU∗r,α,λ
= ρP( V∗r,α,λX1

µ

) + (1− ρ)PZ∗r,α,λ
, (63)

where ρ ∈ [0, 1], α > 0, r > 0, µ := E[X1], µ 6= 0, random variables X1, V∗r,α,λ are

independent, V∗r,α,λ ∼ G∗(r, α, λ), Z∗r,α,λ ∼ G∗(r, α, λ). Since E[G2/α
r,λ ] = Γ(r+2/α)

λ2/αΓ(r) (see, e.g.,
page 8 [27]), one has

E
[
(U∗r,α,λ)

2] = (ρ
E[X2

1 ]

µ2 + (1− ρ)

)
Γ(r + 2/α)

λ2/αΓ(r)
. (64)

Due to the properties of generalized gamma distributions, for any positive number c,

1
cα

U∗r,α,λ =
1
cα

(
(1− Iρ)

V∗r,α,λX1

µ
+ IρZ∗r,α,λ

)
=

(
(1− Iρ)

V∗r,α,λX1

µ
+ IρZ∗r,α,cλ

)
= U∗r,α,cλ, (65)

where indicator Iρ equals 1 and 0 with probabilities 1 − ρ and ρ, respectively, and is
independent with all the variables under consideration. Note that U∗1,1,1 has the same
distribution as a random variable Y, having the law defined in Equation (42). Recall that
the generalized negative binomial distribution GNB(r, α, p) is the law of a random variable
N∗r,α,p, see Equation (54). We will use the following result.

Lemma 5. If r > 0, α 6= 0, p ∈ (0, 1), then for N∗r,α,p ∼ GNB(r, α, p) one has

E
[
N∗r,α,p

]
= E

[
G∗r,α,p/(1−p)

]
, E

[
N∗r,α,p(N∗r,α,p − 1)

]
= E

[(
G∗r,α,p/(1−p)

)2]. (66)

Proof. According to Equation (54), for each n ∈ N,

n

∑
k=1

kP(N∗r,α,p = k) =
∫ ∞

0
z

n

∑
k=1

zk−1

(k− 1)!
e−zg∗(z; r, α,

p
1− p

) dz,

n

∑
k=2

k(k− 1)P(N∗r,α,p = k) =
∫ ∞

0
z2

n

∑
k=2

zk−2

(k− 2)!
e−zg∗(z; r, α,

p
1− p

) dz.

The desired statement follows from the monotone convergence theorem for the Lebesgue
integral by letting n→ ∞.

Theorem 5. Let X1, X2 . . . be exchangeable random variables, introduced in Section 4, such that
E[X1] = µ, E[X2

1 ] = µ2 < ∞. Assume that for some ρ ∈ (0, 1) Equation (41) holds. Suppose that
(Xn)n∈N and N∗r,α,p are independent, where N∗r,α,p ∼ GNB(r, α, p). Then, for W∗r,α,p defined in
Equation (55) with parameters r ∈ (0, 1), α ∈ (0, 1], p ∈ (0, 1) and U∗r,α,1 given in Equation (63),
one has



Mathematics 2022, 10, 4747 23 of 37

dH2(W
∗
r,α,p, U∗r,α,1) =

µ2

2µ2

(
p

1− p

)1/α Γ(1 + 1
α )

Γ(r)
. (67)

Proof. Without loss of generality, we can assume that µ = 1; otherwise, we consider
X̃n := Xn/µ, n ∈ N. For such sequence, µ̃2 = EX̃2

1 = µ2/µ2. Note that Equation (58)
is true for dependent summands (see Theorem 1 [29]). Furthermore, for bounded h(t),
t ∈ R, function hx(t) = h(xt) is also bounded for any x ∈ R. Thus, an employment of
Equation (63) gives

E
[
h
(
U∗r,α,λ

)]
= ρ

∫
R
E
[
hx
(
G1/α

r,λ

)]
dFX1(x) + (1− ρ)E

[
h
(
G1/α

r,λ

)]
. (68)

Now we apply Equation (57) with bounded hx and by Fubini’s theorem obtain:

∫
R
E
[
hx
(
G1/α

r,λ

)]
dFX1(x) =

∫
R

∫ 1

0
E
[

hx

(
1− u

u
V∗
)]

q(u; r, α, λ) du dFX1(x)

=
∫ 1

0
E
[

h
(

1− u
u

X1V∗
)]

q(u; r, α, λ) du, (69)

where X1 and V∗ are independent and V∗ ∼ Exp(1). Apply Equation (57) for the second
summand of Equation (68). Then, Equation (69) yields

E
[
h
(
U∗r,α,λ

)]
= ρ

∫ 1

0
E
[

h
(

1− u
u

X1V∗
)]

q(u; r, α, λ) du + (1− ρ)
∫ 1

0
E
[

h
(

1− u
u

Z∗
)]

q(u; r, α, λ) du

=
∫ 1

0
E
[

h
(

1− u
u

U∗1,1,1

)]
q(u; r, α, λ) du, (70)

where Z∗ ∼ Exp(1) and U∗1,1,1 have the same distribution as Y, see Equation (42).
Recall that, for h ∈ H2, an inequality |h(x)| ≤ A0x2 + B0 holds for all x ∈ R and

some positive constants A0, B0 (see Remark 1). Moreover, E
[(

U∗r,α,λ
)2]

< ∞ according
to Equation (64). So, employing bounded hn(x) = h(x)I(−n,n](x) tending to h(x) ∈ H2
as n → ∞, one can invoke the Lebesgue dominated convergence theorem to claim that
limn→∞ E

[
hn(U∗r,α,λ)

]
= E

[
h
(
U∗r,α,λ

)]
. We take into account that

∫ 1

0
E
∣∣∣∣hn

(
1− u

u
U∗1,1,1

)∣∣∣∣q(u; r, α, λ) du ≤ A0E
[(

U∗1,1,1
)2] ∫ 1

0

(
1− u

u

)2
q(u; r, α, λ) du + B0.

The integral in the right-hand side of the latter formula is finite by Equation (60) and
E
[(

U∗1,1,1
)2]

< ∞ in accord with Equation (64). Thus, it is possible to apply the Lebesgue
dominated convergence theorem to obtain

lim
n→∞

∫ 1

0
E
[

hn

(
1− u

u
U∗1,1,1

)]
q(u; r, α, λ) du =

∫ 1

0
E
[

h
(

1− u
u

U∗1,1,1

)]
q(u; r, α, λ) du

for any h ∈ H2. So, Equation (70) holds for all h ∈ H2.
In a similar way, limn→∞ E[hn(S∗r,α,p)] = E

[
h
(
S∗r,α,p

)]
for h ∈ H2. According to the

Cauchy–Bunyakovsky–Schwarz inequality for identically distributed variables X1, X2, . . .
we have |E[XiXj]| ≤ µ2 for i, j ∈ N and consequently

E
[(

S∗r,α,p
)2]

=
∞

∑
k=0

P(N∗r,α,p = k)E
[( k

∑
j=1

Xj
)2
]

≤ µ2

∞

∑
k=0

P(N∗r,α,p = k)k2 = µ2E
[(

N∗r,α,p
)2]. (71)
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Equations (59) and (66) entail that E
[(

N∗r,α,p
)2]

< ∞. Thus, the dominated convergence
theorem guarantees that limn→∞ E[hn(S∗r,α,p)] = E

[
h
(
S∗r,α,p

)]
. Furthermore, one can demon-

strate that, for each h ∈ H2,

lim
n→∞

∫ 1

0
E
[
hn
(
S∗1,1,u

)]
q(u; r, α, λ) du =

∫ 1

0
E
[
h
(
S∗1,1,u

)]
q(u; r, α, λ) du. (72)

For this purpose we note that Equation (71) implies∫ 1

0
E
∣∣hn
(
S∗1,1,u

)∣∣q(u; r, α, λ) du ≤ C + Aµ2

∫ 1

0
E
[(

N∗1,1,u
)2]q(u; r, α, λ) du.

According to Equation (66) one has∫ 1

0
E
[(

N∗1,1,u
)2]q(u; r, α, λ) du =

∫ 1

0

(
E
[(

G∗1,1,u/(1−u)
)2]

+E
[
G∗1,1,u/(1−u)

])
q(u; r, α, λ) du.

The latter integral is finite because one can take h(x) = x and h(x) = x2/2 in Equation (57)
and invoke Equation (59). Then, it is possible to use the dominated convergence theorem
once again to establish Equation (72).

Now, combining Equation (58) and Equation (70) leads for any h ∈ H2 to the relation

E
[
h(S∗r,α,p)

]
−E

[
h(U∗r,α,p/(1−p))

]
=
∫ 1

0

(
E
[
h(S∗1,1,u)

]
−E

[
h
(

1− u
u

U∗1,1,1

)])
q
(

u; r, α,
p

1− p

)
du. (73)

Note that a random variable N∗1,1,u follows the geometric distribution Geom(u) with pa-
rameter u ∈ (0, 1). For each h ∈ H2 and any u ∈ (0, 1), by Theorem 3 and in view of dH2
homogeneity, we obtain∣∣∣∣E[h(S∗1,1,u)

]
−E

[
h
(

1− u
u

U∗1,1,1

)]∣∣∣∣ ≤ dH2

(
S∗1,1,u,

1− u
u

U∗1,1,1

)
=

(
1− u

u

)2
dH2(Wu, Y) ≤

(
1− u

u

)2( u
1− u

)
µ2

2
=

(
1− u

u

)
µ2

2
. (74)

Employing Equations (73), (74) and (62) one deduces

dH2(S
∗
r,α,p, U∗r,α,p/(1−p)) ≤

µ2

2

∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du =

µ2

2
E
[
G1/α

r,p/(1−p)

]
. (75)

Equation (65) implies by virtue of dH2 homogeneity that

dH2(W
∗
r,α,p, U∗r,α,1) =

(
p

1− p

)2/α

dH2(S
∗
r,α,p, U∗r,α,p/(1−p)). (76)

Combining Equations (59), (75) and (76) we conclude that the right-hand side of Equa-
tion (67) is an upper bound for dH2(W

∗
r,α,p, U∗r,α,1).

Choosing h(x) = x2/2 in Equation (73), upon employing Equation (52) and Equa-
tion (62) one infers:

dH2(W
∗
r,α,p, G1/α

r,1 ) ≥

≥ 1
2

(
p

1− p

)2/α
∣∣∣∣∣
∫ 1

0

(
E
[(

S∗1,1,u
)2]−(1− u

u

)2
E
[(

U∗1,1,1
)2])q

(
u; r, α,

p
1− p

)
du

∣∣∣∣∣ =
=

µ2

2

(
p

1− p

)2/α ∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du =

µ2

2

(
p

1− p

)2/α

E[G∗r,α,p/(1−p)].
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Using Equation (59) once again, we see that the right-hand side of Equation (67) is a lower
bound for dH2(W

∗
r,α,p, U∗r,α,1).

7. Inverse to Equilibrium Transformation

The development of Stein’s method is closely connected with various transformations
of distributions. Let a random variable W ≥ 0 and 0 < µ = E[W] < ∞. Then, one
says that a random variable Ws has the W-size biased distribution if for all f such that
E[W f (W)] exists

E[W f (W)] = µE[ f (Ws)].

The connection of this transformation with Stein’s equation was considered in [50,51].
It was pointed out in [51] that this transformation works well for combinatorial problems,
such as counting the number of vertices in a random graph having prespecified degrees,
see also [52]. In [53], another transformation was introduced. Namely, if a random variable
W has mean zero and variance σ2 ∈ (0, ∞), then the authors of [53] write (Definition 1.1)
that a variable W∗ has W-zero biased distribution whenever, for all differentiable f such
that EW f (W) exists, the following relation holds

E[W f (W)] = σ2E[ f ′(W∗)].

This definition is inspired by an equation E[W f (W)] = σ2E[ f ′(W)] characterizing
the normal law N(0, σ2). The authors of [53] explain that W∗ always exists if E[W] = 0
and varW ∈ (0, ∞). Zero-based coupling for products of normal random variables is
treated in [54]. In Sec. 2 of [30], it is demonstrated that the gamma distribution is uniquely
characterised by the property that its size-biased distribution is the same as its zero-biased
distribution. Two generalizations of zero biasing were proposed in [55], see p. 104 of that
paper for discussion of these transformations. We refer also to survey [56].

Now, we turn to the equilibrium distribution transformation introduced in [33] and
concentrate on approximation of the law under consideration by means of an exponential
law, see the corresponding Definition 1 in Section 2.

According to the second part of Theorem 2.1 of [33] (in our notation), for Z ∼ Exp(1)
and non-negative random variable X with E[X] = 1 and E[X2] < ∞ the following esti-
mate holds

dH1(X, Z) ≤ 2E|Xe − X|,

and at the same time
dH1(Xe, Z) ≤ E|Xe − X|. (77)

The authors of [33] also proved that dK(Xe, Z) ≤ E|Xe − X|. Notice that the estimate
for dH1(Xe, Z) is more precise than that for dH1(X, Z).

Now we turn to Equation (77) and demonstrate how to find the distribution of X
when we know the distribution of Xe. In other words, we concentrate on the inverse of an
equilibrium distribution transformation.

Assume that E[X] > 0. Recall that a random variable Xe exists if Fe(x) appearing in
Equation (16) is a distribution function. The latter statement for E[X] > 0 is equivalent to
nonnegativity of X. Indeed, for non-negative X, Fe(x) coincides with a distribution function
having a density (15). If Fe(x) is a distribution function and E[X] > 0 in Equation (16), then
Fe(x) ≥ 0 for x < 0 only if F(x) = 0 for x < 0.

Thus a random variable Xe has a (version of) density pe(x) introduced in Equation (15).
Obviously, the function pe(x) has the following properties. It is nonincreasing on [0, ∞) and
pe(x) = 0 for x < 0. This density is right-continuous on [0, ∞) and consequently pe(0) < ∞.
Now, we are able to provide a full description of the class of densities for random variables
Xe relevant to all non-negative X with positive mean.

Lemma 6. Let a non-negative random variable Xe have a version of density (with respect to the
Lebesgue measure) pe(x), x ∈ R, such that this function is nonincreasing on [0, ∞), pe(x) = 0 for
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x < 0, and there is finite limx→0+ pe(x). Then, there exists a unique preimage of Xe distribution
having the distribution function F continuous at x = 0. Namely,

F(x) =

{
1− pe(x)

pe(0) , x ≥ 0,

0, x < 0.
(78)

Proof. First of all, note that pe(0) > 0 as otherwise pe(x) = 0 for all x ∈ R (pe is a
nonincreasing function on [0, ∞)). We also know that there exist a left-sided limit and a
right-sided limit of pe at each point x ∈ (0, ∞) as well as the right-sided limit of pe at x = 0.
The set of discontinuity points of pe is at most countable, and we can take a version which
is right continuous at each point of [0, ∞). Then, Equation (78) introduces a distribution
function. Consider a random variable X with distribution function F and check the validity
of Equation (14).

The integration by a parts formula yields, for any b > 0,

1 ≥
∫ b

0
pe(x) dx = bpe(b) + pe(0)

∫ b

0
x dF(x). (79)

Summands in the right-hand side of Equation (79) are non-negative. Therefore, for any
b > 0, E[XI(X ≤ b)] ≤ 1/pe(0). Hence, the monotone convergence theorem implies that
E[X] is finite. According to Equation (78)

bpe(b)/pe(0) = b(1− F(b)) = bP(X > b)→ 0, b→ ∞, (80)

since E[X] < ∞. Taking in the Equation (79) limit as b → ∞, one obtains 1 = pe(0)E[X].
Now, we are ready to verify Equation (14). For any Lipschitz function f , E[ f (X)] is
finite and

E[ f (X)] =
∫ ∞

0
f (x)dF(x) = − 1

pe(0)

∫ ∞

0
f (x)dpe(x).

Taking into account Equation (80), we infer that f (b)pe(b) → 0 as b → ∞. Consequently,
applying integration by parts once again ( f has bounded variation), we obtain

E[X]E[ f ′(Xe)] =
1

pe(0)

∫ ∞

0
f ′(x)pe(x) dx =

1
pe(0)

∫ ∞

0
pe(x)d f (x)

=
1

pe(0)

[
− f (0)pe(0)−

∫ ∞

0
f (x)dpe(x)

]
= E[ f (X)]− f (0).

Uniqueness of X distribution corresponding to Xe is a consequence of Equation (15)
and continuity of F(x) at x = 0. Indeed, assume that for X1 and X2 one has Xe

1 = Xe
2. Then,

Equation (15) yields that for almost all x ≥ 0,

1
E[X1]

P(X1 > x) =
1

E[X2]
P(X2 > x), (81)

and therefore P(X1 > x) = cP(X2 > x), where c is a positive constant (the equilibrium
distribution in Definition 1 is introduced for random variables with positive expectation
only). Since P(X1 = 0) = P(X2 = 0) = 0, one has P(X1 > 0) = P(X2 > 0). Let xn → 0+,
n → ∞, where the points xn belong to the set considered in Equation (81) to ensure that
c = 1. Thus, distributions of X1 and X2 coincide.

Remark 6. Let Xp be the Bernoulli random variable taking values 1 and 0 with probabilities p and
1− p, respectively. Then, it is easily seen that the distribution of Xe

p is uniform on [0, 1]. Thus, in
contrast to Lemma 6, without assumption of continuity of F at a point x = 0 one can not guarantee,
in general, the preimage uniqueness for the inverse transformation to the equilibrium one.
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In the proof of Lemma 6, we find out that E[X] = 1/pe(0). Set λ = pe(0), Z ∼ Exp(λ).
Then, E[X] = E[Z]. Further, we suppose that this choice of λ is made.

Recall that random variables U and V are stochastically ordered if either P(U ≤ x) ≤
P(V ≤ x), for every x ∈ R, or the opposite inequality holds (for all x ∈ R). Now, we clarify
one of the Theorem 2.1 of [33] statements (see also Theorem 3 [22], where the result similar
to Theorem 2.1 of [33] is formulated employing the generalized distributions).

Theorem 6. Let a random variable Xe satisfy conditions of Lemma 6, and E[Xe] < ∞ and X be a
preimage of the equilibrium transformation. Then, Equation (77) holds. Moreover, the inequality
becomes an equality when X and Xe are stochastically ordered.

Proof. Apply the Stein Equation (10) along with equilibrium transformation (14). Then, in
light of E[X] = 1

λ and E fh(X)− fh(0) = 1
λE f ′h(Xe), we can write∣∣E[h(Xe)]−E[h(Z)]

∣∣ = ∣∣E( f ′h(Xe)− λ fh(Xe)
)
+ λ f (0)

∣∣
= λ

∣∣E( fh(Xe)− fh(X)
)∣∣ ≤ λ|| f ′h||∞E|Xe − X| ≤ ||h′||∞E|Xe − X|. (82)

The last inequality in (82) is true due to Lemma 2. Now, we demonstrate that equality in (82)
can be attained. Taking h(x) = x− 1

λ , we have a solution fh(x) = − 1
λ x of Equation (12).

Then, ∣∣E[h(Xe)]−E[h(Z)]
∣∣ = λ

∣∣E( fh(Xe)− fh(X)
)∣∣ = ∣∣E(Xe − X)

∣∣.
Employing the integration by parts formula, one can show that the expression in

the right-hand side of the last equality is equal to the Kantorovich distance between
X and Xe when these variables are stochastically ordered. Note that x(1− F(x)) → 0,
x(1− Fe(x)) → 0 as x → ∞ and xF(x) → 0, xFe(x) → 0 as x → −∞ because E[X] and
E[Xe] are finite. Thus,

∣∣E[Xe]−E[X]
∣∣ = ∣∣∣∣∫R x

(
dFXe(x)− dFX(x)

)∣∣∣∣
=

∣∣∣∣− ∫R(FXe(x)− FX(x)
)

dx
∣∣∣∣ = ∫

R
|FXe(x)− FX(x)| dx,

since FXe(x) ≥ FX(x) (or ≤) for all x ∈ R. It is well-known that the Kantorovich distance is
the minimal one for the metric τ(U, V) = E|U −V| (see, e.g., [9], Ch. 1, §1.3). Therefore,∫

R
|FXe(x)− FX(x)| dx = infE|U −V|,

where the infimum has taken over all joint laws (U, V) such that PU = PXe and PV = PX
(see also Remark 2 and [10], Corollary 5.3.2). Consequently, in the framework of Theorem 6,∣∣E[Xe]−E[X]

∣∣ = E|Xe − X|.

Remark 7. One can show that by means of Lemma 2 and Equation (82) it is possible to provide an
estimate

dK(Xe, Z) ≤ λE|Xe − X|. (83)

For each function h belonging to K, in a similar way to Equation (82), one can apply Equation (10)
together with equilibrium transformation. Now, it is sufficient to study the Stein equation with
right derivative. Formula (13) gives a solution of the Stein equation according to Lemma 2. Note
that for fh, the right derivative coincides almost everywhere with the derivative, and the law of
Xe is absolutely continuous according to Equation (15). Thus, for the Lipschitz function fh (see
Lemma 2), one can use an equilibrium transformation.
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Example 1. Consider the distribution functions Fε(x) of random variables Xε, taking values
ε and 2− ε with probabilities 1/2, 0 < ε < 1. Formula (15) yields that Xe

ε has the following
piece-line structure

Fe
ε (x) =


0, if x < 0,
x, if 0 ≤ x < ε,
x/2 + ε/2, if ε ≤ x < 2− ε,
1, if 2− ε ≤ x.

If ε ≥ 1/2 then, for all x ∈ R, the following inequality holds: Fe
ε (x) ≥ Fε(x), i.e., Xε and Xe

ε

are stochastically ordered. We see that for ε < 1/2, the inequality is violated in the right
neighborhood of a point ε. Thus, there are beside the stochastically ordered pairs (X, Xe)
also those of a different kind.

Now, we turn to another example of stochastically ordered X and Xe.

Example 2. Take Xe having the Pareto distribution. The notation Xe ∼ Pareto(α, β) means
that Xe has a density f e(x) = αβα

(x+β)α+1 (x ≥ 0) and the corresponding distribution function

Fe(x) = 1−
(

β
x+β

)α
, where x ≥ 0, α > 0, β > 0.

Further, we consider only α > 1, since in this case there exists finite E[Xe] = β
α−1 .

By means of Lemma 6, we obtain the distribution of the preimage of the equilibrium
transformation

F(x) = 1− f e(x)
f e(0)

= 1− αβα

(x + β)α+1
βα+1

αβα
= 1−

(
β

x + β

)α+1
, x ≥ 0.

Thus one can state that X ∼ Pareto(α + 1, β). It is not difficult to see that Fe(x) ≤ F(x) for
x ∈ R, i.e., the random variables Xe and X are stochastically ordered. Due to Theorem 6,
one has

dH1(Xe, Z) = E|Xe − X| = E[Xe]−E[X] =
β

α− 1
− β

α
=

β

α(α− 1)
, (84)

dK(Xe, Z) ≤ α

β
E|Xe − X| = 1

α− 1
.

In such a way we find the bound for the Kolmogorov distance between the distributions
Pareto(α, β) and Exp(α/β). This relation demonstrates the convergence rate of d1(Xe, Z)
to zero as α→ ∞. The estimate is nontrivial for α > 2.

Remark 8. It is interesting that estimation of the proximity of the Pareto law to the Expo-
nential one became important in signal processing, see [34] and references therein. Let
X ∼ Pareto(α, β), where α > 0, β > 0, and Z ∼ Exp(λ). In [34], the author indicates that
the Pinsker–Csiszár inequality was employed to derive

dK(X, Z) ≤
√

2DKL(X||Z), (85)

where DKL(X||Z) is the Kullback–Leibler divergence between laws of X and Z. More
precisely, in the left-hand side of Equation (85) one can write the total variation distance
dTV(X, Z) between distributions of X and Z. Clearly, dK(X, Z) ≤ dTV(X, Z). By evaluating
DKL(X||Z) and performing an optimal choice of parameter λ, it was demonstrated (formula
(19) in [34]) that, for α > 1 and any β > 0,

dK(X, Z) ≤
√

2
α(α− 1)

(86)



Mathematics 2022, 10, 4747 29 of 37

if λ = α−1
β . The author of [34] on page 8 writes that in his previous work [57] the inequality

dK(X, Z) ≤ 3
α

(87)

was established with the same choice of λ. Next, he also writes that “in the most cases α > 2”
and notes that the estimate in Equation (86) involving the Kullback–Leibler divergence is
more precise for α > 9

7 than the estimate in Equation (87) obtained by the Stein method.
Moreover, on page 4 of [34] we read: “The problem with the Stein approach is that the
bounds do not suggest a suitable way in which, for a given Pareto model, an appropriate
approximating Exponential distribution can be specified”. However, we have demonstrated
that application of the inverse equilibrium transformation together with the Stein method
permits indicating, whenever α > 2, the corresponding Exponential distribution with
proximity closer than the right-hand sides of Equation (86) and Equation (87) can provide.

8. Conclusions

Our principle goal was to find the sharp estimates of the proximity of random sums
distributions to exponential and more general laws. This goal is achieved when we employ
the probability metric dH2 . Thus, it would be valuable to find the best possible approxima-
tions of random sums distributions by means of specified laws using the metrics ζs of order
s > 0. The results of [32] provide the basis for this approach.

There are various complementary refinements of the Rényi theorem. One approach is
related to the employment of Brownian motion. It is interesting that in [58] (p. 1071) the
authors proposed an explanation of the Rényi theorem involving the embedding theorem.
We provide a little bit different complete proof. Let X1, X2, . . . be i.i.d. random variables
with mean µ := EX1 and σ2 := varX1 < ∞, whereas Sn, n ∈ N, denote the corresponding
partial sums. According to Theorem 12.6 of [59], which is due to A.V. Skorokhod and V.
Strassen, there exists a standard Brownian motion B(t), t ≥ 0, (perhaps it is defined on an
extension of initial probability space) such that

1√
t

sup
0≤u≤t

|S[u] − µu− σB(u)| P→ 0, t→ ∞, (88)

and

lim
t→∞

S[t] − µt− σB(t)√
2t log log t

= 0 a.s., (89)

where P→ stands for convergence in probability, and a.s. means almost surely. Thus, in light
of Equation (89), we can write, for t ≥ 0,

S[t] = µt + σB(t) + R(t), (90)

where sup0≤u≤t R(u)/
√

t P→ 0 and R(t)/
√

2t log log t→ 0 a.s. when t→ ∞. Substitute Np

(see Equation (2)) in Equation (90) instead of t. It is easily seen that Np
P→ ∞ (i.e., for each

t > 0, one has P(Np ≤ t)→ 0 as p→ 0+) and by means of characteristic functions one can

verify that pNp
D→ Z as p→ 0+, where Z ∼ Exp(1). Therefore, µpNp

D→ µZ, p→ 0+. In
the proof of Lemma 4, we showed (Equation (24)) that E[Np] = (1− p)/p. Consequently,

var[pB(Np)] = p2E[B(Np)
2] = p2

∞

∑
k=0

E[B(k)2]p(1− p)k

= p2
∞

∑
k=0

kp(1− p)k = p2E[Np] = p2 1− p
p

= p(1− p)→ 0, p→ 0 + .
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Hence, pσB(Np)
P→ 0 as p→ 0+. Now, we demonstrate that pR(Np)

P→ 0, p→ 0 + .
For any ε > 0 and any t > 0,

P(p|R(Np)| > ε) ≤ P(p|R(Np)| > ε, Np ≤ t) + P(Np > t)

≤ P(p sup
0≤u≤t

|R(u)| > ε) + P(Np > t).

In light of Equation (88), for arbitrary γ > 0 and ε > 0, one can take t0 = t0(γ) such
that P(sup0≤u≤t0

|R(u)| > ε
√

t0) < γ/2. Then, for any 0 < p ≤ 1/
√

t0, we obtain

P(p sup
0≤u≤t0

|R(u)| > ε) < γ/2.

Since Np
P→ ∞, we can find p0 > 0 such that P(Np > t0) < γ/2 if 0 < p ≤ p0.

Therefore, R(Np)
P→ 0 as p→ 0+. The Slutsky lemma yields the desired relation

pSNp
D→ µZ, p→ 0+,

which implies Equation (3). However, it seems that there is no clear intuitive reason why
the law of the random sum converges to an exponential in the Rényi theorem. Moreover, in
Ch. 3, Sec. 2 “The Rényi Limit Theorem” of [20] (see Sec. 2.1 “Motivation”), one can find
examples demonstrating that intuition behind the Rényi theorem is poor.

Actually, relation (90) leads to refinements of Equation (3). In [58], it is proved that
if X1 has finite exponential moments and other specified conditions are satisfied then
there exists a more sophisticated approximation for distribution of Wp, and its accuracy
is estimated. The results are applied to the study of M/G/1 queue for both light-tailed
and heavy-tailed service time distributions. Note that in [58], Section 5, the authors study
the model where the distribution of X1 can depend on p. For future research, it would be
desirable to establish analogues of our theorems for such a model.

The results concerning the accuracy of approximating a distribution under consid-
eration by an exponential law are applicable to some queuing models. Let, for a queue
M/G/1, the inter-arrival times follow Exp(λ) distribution and S stand for the general
service time. Introduce the stationary waiting time W and define ρ := λE[S] to be its load.

Due to [60], if E[S3] < ∞ then (1− ρ)W D→ Z as ρ → 1, where Z ∼ Exp(1). Theorem 3.1
of [45] contains an upper bound of dH1(Wp, Z), where Z ∼ Exp(1). This estimate is used
by the authors for analysis of queueing systems with a single server. It would be interesting
to obtain the sharp approximations in the framework of queueing systems.

For the model of exchangeable random variables, Theorem 2 in Section 2 ensures the
weak convergence of distributions under consideration to specified mixture of explicitly
indicated laws. Theorem 3 proves the sharp convergence rate estimate to this limit law
by means of the ideal probability metric of the second order. It would be worthwhile to
establish such an estimate of the distributions proximity applying the Lévy–Prokhorov
distance because convergence in this metric is equivalent to the weak convergence of
distributions of random variables. All the more, at present there is no unified theory of
probability metrics. In this regard, one can mention Proposition 1.2 of [17] stating that
if a random variable Z has the Lebesgue density bounded by C then, for any random
variable Y,

dK(Y, Z) ≤
√

CdH1(Y, Z).

However, this estimate only gives the sub-optimal convergence rates. We also highlight
the important total variation distance dTV . The authors of [61] study the sum W := ∑j∈J Xj,
where {Xj, j ∈ J} is a family of locally dependent non-negative integer-valued random
variables. Using the perturbations of Stein’s operator, they establish the upper bounds for
dTV(W, M) where the law of M is a mixture of Poisson distribution and either binomial or
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negative binomial distribution. It would be desirable to obtain the sharp estimates and,
moreover, consider a more general model where the set of summation is random. In this
connection, it seems helpful to employ the paper [62], where the authors proved results
concerning the weak convergence of distributions of statistics constructed from samples
of random size. In addition, it would be interesting to extend these results to stratified
samples by invoking Lemma 1 of [63].

Special attention is paid to various generalizations of the geometric sums. In Theorem 3.3
of [64], the authors consider random sums with summation index Tn := Y1 + . . . + Yn, where
Y1, Y2, . . . are i.i.d. random variables following the geometric law Geom(p), see Equation (2).
Then, they show that STn /E[STn ] converge in distribution to the gamma law with certain
parameters as p→ 0+. In [62], it is demonstrated that the Linnik and the Mittag–Leffler
laws arise naturally in the framework of limit theorems for random sums. Hopefully,
in future the complete picture of limit laws involving general theory of distributions
mixtures will appear. In addition, it is desirable to study various models of random
sums of dependent random variables. On this track, it could be useful to consider the
decompositions of exchangeable random sequences extending the fundamental de Finetti
theorem, see, e.g., [65].

One can try to generalize the results of Section 7 for accumulative laws proposed
in [66]. These laws are akin to both the Pareto distribution and the lognormal distribution.
In addition, we refer to [43] where the “variance-gamma distributions” were studied. These
distributions form a four-parameter family and comprise as special and limiting cases the
normal, gamma and Laplace distributions. Employment of these distributions permits
enlarging a range of applications in modeling and fitting real data.

To complete the indication of further research directions, we note that the next essential
and nontrivial step is to establish the limit theorem in functional spaces for processes
generated by a sequence of random sums of random variables. For such stochastic processes,
one can obtain the analogues of the classical invariance principles.
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Appendix A

Proof of Lemma 1. If Lip(h) = C < ∞, then h is absolutely continuous (see, e.g., §13
in [42]), and consequently there exists h′(x) for almost all x ∈ R. Thus, |h′(x)| ≤ C for
almost all x ∈ R in light of Equation (4). Assume that essential supremum ‖h′‖∞ = C0 < C.
Then, for any ε > 0, one can find a version of h′, defined on R, such that supx∈R |h′(x)| ≤
C0 + ε. (It was explained in Section 2 that one can consider a measurable extension of h′

to R). Then, due to Equation (11) with h instead of f we obtain Equation (5) with C0 + ε
instead of C. Consequently, Lip(h) ≤ C0 < C. We come to the contradiction.

On the other hand, let h be absolutely continuous. Then, for almost all x ∈ R, there
exists h′(x) and Equation (11) is valid for h instead of f . Assume that essential supremum
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‖h′‖∞ = C < ∞. Then, for any ε > 0 there is a version of h′ such that supx∈R |h′(x)| ≤ C+ ε.
According to Equation (11), the relation (5) holds with C + ε instead of C. Since ε > 0 can be
taken as an arbitrary small, one can claim that Lip(h) ≤ C. Suppose that Lip(h) ≤ C0 < C.
Then, for almost all x ∈ R, there exists h′ and |h′| ≤ C0. Thus, we found a version with
‖h′‖∞ ≤ C0. The contradiction shows that Lip(h) = C. Hence, the desired statement is
proved.

Proof of Lemma 2. Let x0 be a continuity point of a function h ∈ K ∪H1 ∪H2. Then, the
same is true for a function h(u)e−λu, u ∈ R. Hence, the function

∫ ∞
x h(u)e−λudu has a

derivative −h(x0)e−λx0 at point x0 (in light of Remark 1 an integral
∫ ∞

x h(u)e−λudu is well
defined for any x ∈ R). Thus, for each point x of continuity h there exists

f ′h(x) = −λeλx
∫ ∞

x
h(u)e−λudu− eλx(−h(x)e−λx) = λ fh(x) + h(x). (A1)

For each fixed z ∈ R and a function h(x) = I{x ≤ z}, where x ∈ R, Equation (12) is verified
in a similar way for the right derivative fh at point z ∈ R. Taking x = 0 in Equation (12), we
obtain −E[h(Z)]/λ. Evidently, −eλx ∫ ∞

x e−λudu = −1/λ. Therefore, Equation (A1) yields

f ′h(x) = −λeλx
∫ ∞

x
(h(u)− h(x))e−λudu. (A2)

If a function h belongs to K, then, for any u, x ∈ R, the following inequality holds |h(u)−
h(x)| ≤ 1. Consequently, for h ∈ K, one has ‖ f ′h‖∞ ≤ 1 (where f ′h means a right derivative
of a version of f ′h, and we operate with essential supremum).

Taking into account Lemma 1, for a function h ∈ H1 and any x ≤ u, one can write
|h(u)− h(x)| ≤ Lip(h)(u− x) = ‖h′‖∞(u− x). For h ∈ H2 and x ≤ u, by the Lagrange
finite-increments formula, |h(u)− h(x)| ≤ |h′(v)|(u− x) ≤ ‖h′‖∞(u− x), where x < v < u.
Hence, for any x ∈ R and h ∈ H1 ∪H2,

| f ′h(x)| = λeλx
∫ ∞

x
(h(u)− h(x))e−λudu ≤ λeλx‖h′‖∞

∫ ∞

x
(u− x)e−λudu =

‖h′‖∞

λ

since
λeλx

∫ ∞

x
(u− x)e−λudu =

∫ ∞

0
λve−λvdv =

1
λ

. (A3)

Taking into account Equation (12), one can see that, for any h ∈ H2, f ′h = λ fh + h, where fh
and h have derivatives at each point x ∈ R. Using Equation (A2) and Equation (A3), we
obtain, for x ∈ R,

f ′′h (x) = λ f ′h(x) + h′(x) = −λ2eλx
∫ ∞

x
(h(u)− h(x))e−λudu + h′(x)

= −λ2eλx
∫ ∞

x
(h(u)− h(x)− h′(x)(u− x))e−λudu. (A4)

By means of Equation (A3) and the Lagrange finite-increments formula we can write

| f ′′h (x)| ≤ 2‖h′‖∞λ2eλx
∫ ∞

x
(u− x)e−λudu = 2‖h′‖∞. (A5)

Let us apply the Taylor formula with integral representation of the residual term:

h(u) = h(x) + h′(x)(u− x) + R(u, x), R(u, x) =
∫ u

x
(u− t)h′′(t)dt, u, x ∈ R. (A6)

This representation known for the Riemann integral (see, e.g., [67], §9.17) holds in the
framework of the Lebesgue integral if it is possible to use the recurrent integration by parts
for R(u, x), i.e.,
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∫ u

x
(u− t)h′′(t)dt = −h′(x)(u− x) +

∫ u

x
h′(t)dt = −h′(x)(u− x) + h(u)− h(x). (A7)

Integral in the left-hand side of Equation (A7) exists by virtue of Lemma 1 since h′ ∈ Lip(1).
Therefore, h′′(x) is defined for almost all x ∈ R and (essential supremum) ‖h′′‖ ≤ 1. The
latter equality in Equation (A7) is obvious since h′ is continuous function on R. The first
equality in Equation (A7) is valid due to the integration by parts formula for the Lebesgue
integral. Indeed, functions h′(t) and (u − t) are absolutely continuous for t belonging
to [x, u]. Thus, we can apply, e.g., Theorem 13.29 of [42] to justify the first equality in
Equation (A7). Consequently, due to Equation (A4) and Equation (A6) one can write

| f ′′h (x)| ≤
∣∣∣∣−λ2eλx

∫ ∞

x

(∫ u

x
(u− t)h′′(t)dt

)
e−λudu

∣∣∣∣
≤ ‖h

′′‖∞

2

∣∣∣∣∫ ∞

x
λ2(u− x)2e−λ(u−x)du

∣∣∣∣ = ‖h′′‖∞Γ(3)
2λ

=
‖h′′‖∞

λ
, (A8)

where Γ(α) :=
∫ ∞

0 uα−1e−udu, α > 0. Relations Equation (A5) and Equation (A8) lead to
the last statement of Lemma 2. The proof is complete.

Comments to Definition 1. For each Lipschitz function f , one can claim that E[ f (X)] is
finite since E|X| < ∞ and, in light of Remark 1, one has | f (x)| ≤ C|x| + | f (0)|, where
C = Lip( f ), x ∈ R. Clearly, it is sufficient to verify Equation (14) for any Lipschitz
function f such that f (0) = 0 (otherwise we take the Lipschitz function f (x)− f (0), x ∈ R).
Evidently, pe(x), x ∈ R, introduced by Equation (15), is a probability density because for
non-negative random variable X according to [47], Ch.2, formula (69)

E[X] =
∫
[0,∞)

P(X > u)du. (A9)

We will show that, for such f and a density pe of Xe, one has∫
[0,∞)

f (u)dF(u) =
∫
[0,∞)

f ′(u)P(X > u)du, (A10)

where F is a distribution function of X and E[X] 6= 0. We take integrals over [0, ∞) as X ≥ 0
and pe(x) = 0 for x < 0.

We know that a function f has a derivative at almost all points x ∈ R. Therefore, the
right-hand side of Equation (A10) does not depend on the choice of a version f ′ (P(X > u)
is a measurable bounded function). The integral in the right-hand side of Equation (A10) is
finite because ‖ f ′‖ ≤ C in light of Lemma 1 and since the right-hand side of Equation (A9) is
finite. One can take the integrals over (0, ∞) in Equation (A10) as f (0) = 0 and m({0}) = 0,
where m stands for the Lebesgue measure.

Function f is a function of finite variation (as f is the Lipschitz function). Therefore,
f = f1 − f2 where f1 and f2 are nondecreasing functions. We can take the canonical
representation with f1(x) = Varx

0( f ) and f2(x) = f (x) − f1(x), x ∈ R, where Varb
a( f )

is the variation of f on [a, b], a < b (see, e.g., [42], Theorem 12.18). If f ∈ Lip(C), then
Varb

a( f ) ≤ C(b− a). For a < c < b, one has (see, e.g., [42], Lemma 12.15)

Varc
a( f ) + Varb

c ( f ) = Varb
a( f ).

We see that such f1 and f2 are the Lipschitz functions when f is the Lipschitz one. Hence,
for almost all x ∈ R, there exist f ′1(x), f ′2(x) and f ′(x) = f ′1(x)− f ′2(x). Thus, it is enough
to demonstrate that∫

(0,∞)
fi(u)dF(u) =

∫
(0,∞)

f ′i (u)P(X > u)du, i = 1, 2.
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These integrals are finite since f1 and f2 are the Lipschitz functions. Note that∫
(0,∞)

fi(u)dF(u) = −
∫
(0,∞)

fi(u)d(1− F(u)) = −
∫
(0,∞)

fi(u)dP(X > u).

By applying Theorem 11 of Sec. 6, Ch. 2 [47], one obtains, for each b > 0, nondecreasing
continuous function fi and a nondecreasing right-continuous function (−P(X > u)), the
following formula:∫

(0,b]
fi(u)dP(X > u) = fi(b)P(X > b)− fi(0)P(X > 0)−

∫
(0,b]

P(X > u)d fi(u) (A11)

= fi(b)P(X > b)−
∫
(0,b]

P(X > u) f ′i (u)du.

We take into account that fi(0) = 0 and the σ-finite measure Qi corresponding to fi is
absolutely continuous w.r.t. m, and the Radon–Nikodým derivative dQi

dm (x) = f ′i (x), x ∈ R,
i = 1, 2. In addition, we can write P(X > u) in Equation (A11) since for at almost all u ∈ R
the left-limit of this function coincides with P(X > u) (there exist at most a countable
set of jumps of P(X > u), u ∈ R). Obviously, fi(b)P(X > b) → 0 as b → ∞ because
| fi(u)| ≤ Aiu + Bi for some positive Ai, Bi and all u ∈ R. Indeed, according to formula (73)
of Sec. 6, Ch. 2 of [47] the condition E|X| < ∞ yields

bP(|X| > b)→ 0, b→ ∞.

By the Lebesgue dominated convergence theorem one infers that∫
(0,b]

fi(u)dP(X > u)→
∫
(0,∞)

fi(u)dP(X > u), b→ ∞.

and
lim
b→∞

∫
(0,b]

P(X > u) f ′i (u)du =
∫
(0,∞)

P(X > u) f ′i (u)du.

This permits to claim the validity of Equation (A10) which entails the desired Equation (15).

Proof of Lemma 3. For f ∈ H2, in light of Remark 1 one can state that | f (x)| ≤ A0x2 + B0
for some positive numbers A0 and B0. Let F be a distribution function of X. Since E[X2] <
∞, due to Corollary 2, Sec. 6, Ch. 2, v.1, [47] one has

x2F(x)→ 0, x → −∞; x2(1− F(x))→ 0, x → ∞.

Hence, we obtain that f (x)F(x) → 0 as x → −∞ and f (x)(1− F(x)) → 0 as x → ∞.
Continuous function f has a bounded variation. Thus f = f1 − f2 where f1 and f2 are
nondecreasing continuous functions. Thus, for any a < 0 and i = 1, 2, the integration by
parts formula (see, e.g., Theorem 11, Sec. 6, Ch. 2, [47]) and Equation (18) give∫
(a,0]

( f1(x)− f2(x))dF(x) = f (0)F(0)− f (a)F(a)−
(∫

(a,0]
F(x)d f1(x)−

∫
(a,0]

F(x)d f2(x)
)

= f (0)F(0)− f (a)F(a)−
∫
(a,0]

F(x)d f (x).

We take into account that the integrands are bounded measurable functions and the mea-
sures corresponding to F, f1 and f2 are finite on any interval (a, 0]. Therefore such integrals
are finite. According to the Lebesgue theorem on dominated convergence (recall that
E[X2] < ∞) one has

lim
a→−∞

∫
(a,0]

f (x)dF(x) =
∫
(−∞,0]

f (x)dF(x),
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and the limit is finite. The monotone convergence theorem for σ-finite measure yields

lim
a→−∞

(∫
(a,0]

F(x)d f1(x)−
∫
(a,0]

F(x)d f2(x)
)
=
∫
(−∞,0]

F(x)d f1(x)−
∫
(−∞,0]

F(x)d f2(x).

We have seen that f (a)F(a)→ 0 as a→ −∞. Hence, in light of Equation (18)∫
(−∞,0]

F(x)d f1(x)−
∫
(−∞,0]

F(x)d f2(x) =
∫
(−∞,0]

F(x)d f (x).

Therefore, for i = 1, 2, each integral
∫
(−∞,0] F(x)d fi(x) is finite as

∫
(−∞,0] F(x)d f (x) is finite.

Thus,∫
(−∞,0]

f (x)dF(x) = f (0)F(0)−
∫
(−∞,0]

F(x)d f (x) = f (0)F(0) +
∫
(−∞,0]

(−F(x)) f ′(x)dx,

as f is absolutely continuous. Indeed, for any x ∈ R,

f (x) = f (0) +
∫
(0,x]

f ′(u)du,

where (continuous) f ′ ∈ L1[a, b] for any finite interval [a, b]. Thus, ( f ′)+ ∈ L1[a, b] and
( f ′)− ∈ L1[a, b]. Set

f1(x) := f (0) +
∫
(0,x]

( f ′(u))+du, f2(x) :=
∫
(0,x]

( f ′(u))−du.

Then f1 and f2 are nondecreasing continuous functions on R, f = f1 − f2 and∫
(a,0]

F(x)d f (x) =
∫
(a,0]

F(x)d f1(x)−
∫
(a,0]

F(x)d f2(x),

where these three integrals are finite. For (non-negative) σ-finite measures corresponding
to f1 and f2, one can write∫

(a,0]
F(x)d f1(x) =

∫
(a,0]

F(x)( f ′(x))+dx,
∫
(a,0]

F(x)d f2(x) =
∫
(a,0]

F(x)( f ′(x))−dx.

Thus, one has∫
(a,0]

F(x)d f (x) =
∫
(a,0]

F(x)( f ′(x))+dx−
∫
(a,0]

F(x)( f ′(x))−dx

=
∫
(a,0]

F(x)(( f ′(x))+ − ( f ′(x))−)dx =
∫
(a,0]

F(x) f ′(x)dx. (A12)

The bound ‖ f ′‖ ≤ 1 follows from Lemma 1. Therefore, the Lebesgue theorem on dominated
convergence yields (as E|X| < ∞)

lim
a→−∞

∫
(a,0]

F(x) f ′(x)dx =
∫
(−∞,0]

F(x) f ′(x)dx.

We have demonstrated that∫
(−∞,0]

F(x)d f (x) =
∫
(−∞,0]

F(x) f ′(x)dx.

In a similar way, we consider
∫
(0,b](1− F(x))dx and letting b→ ∞ come to relation

−
∫
(0,∞)

f (x)d(1− F(x)) = f (0)(1− F(0)) +
∫
(0,∞)

(1− F(x))d f (x)
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= f (0)(1− F(0)) +
∫
(0,∞)

(1− F(x)) f ′(x)dx.

This establishes Equation (21).

References
1. Steutel, F.W.; Van Harn, K. Infinite Divisibility of Probability Distributions on the Real Line; Marcel Dekker: New York, NY, USA, 2004.
2. Nolan, J.P. Univariate Stable Distributions. Models for Heavy Tailed Data; Springer: Cham, Switzerland, 2020.
3. Jagers, P. Branching processes: Personal historical perspective. In Statistical Modeling for Biological Systems; Almudevar, A., Oakes,

D., Hall, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–12. [CrossRef]
4. Schmidli, H. Risk Theory; Springer: Cham, Switzerland, 2017.
5. Gnedenko, B.V.; Korolev V.Y. Random Summation. Limit Theorems and Applications; CRC Press: Boca Raton, FL, USA, 1996.
6. Kalashnikov V.V. Geometric Sums: Bounds for Rare Events with Applications; Kluwer Academic: Dordrecht, The Netherlands, 1997.
7. Pinski, M.A.; Karlin, S. An Introduction to Stochastic Modeling, 4th ed.; Academic Press: Amsterdam, The Netherlands, 2011.
8. Bulinski, A.; Spodarev, E. Introduction to random fields. In Stochastic Geometry, Spacial Statistics and Random Fields. Asymptotic

Methods; Spodarev, E., Ed.; Springer: Berlin, Germany, 2013; pp. 277–336. [CrossRef]
9. Zolotarev, V.M. Modern Theory of Summation of Random Variables; De Gruyter: Berlin, Germany, 1997.
10. Rachev, S.T.; Klebanov, L.B.; Stoyanov, S.V.; Fabozzi, F.J. The Methods of Distances in the Theory of Probability and Statistics; Springer:

New York, NY, USA, 2013.
11. Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables.

In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory; Statistical
Laboratory of the University of California: Berkeley, CA, USA, 1972; pp. 583–602.

12. Stein, C. Approximate Computation of Expectations, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 7; Institute of
Mathematical Statistics: Hayward, CA, USA, 1986.

13. Slepov, N.A. Convergence rate of random geometric sum distributions to the Laplace law. Theory Probab. Appl. 2021, 66, 121–141.
[CrossRef]

14. Tyurin, I.S. On the convergence rate in Lyapunov’s theorem. Theory Probab. Appl. 2011, 55, 253–270. [CrossRef]
15. Barbour, A.D.; Chen, L.H.Y. (Eds.) An Introduction to Stein’s Method; World Scientific: Singapore, 2005.
16. Chen, L.H.Y.; Goldstein, L.; Shao, Q.-M. Normal Approximation by Stein’s Method; Springer: Heidelberg, Germany, 2011.
17. Ross, N. Fundamentals of Stein’s method. Probab. Surv. 2011, 8, 210–293. [CrossRef]
18. Arras, B.; Breton, J.-C.; Deshayes, A.; Durieu, O.; Lachièze-Rey, R. Some recent advances for limit theorems. ESAIM Proc. Surv.

2020, 68, 73–96. [CrossRef]
19. Arras, B.; Houdré, C. On Stein’s Method for Infinitely Divisible Laws with Finite First Moment, 1st ed.; Springer: Cham, Switzerland,

2019.
20. Chen, P.; Nourdin, I.; Xu, L.; Yang, X.; Zhang, R. Non-integrable Stable Approximation by Stein’s Method. J. Theor. Probab. 2022,

35, 1137–1186. [CrossRef]
21. Rényi, A. (Hungarian) A characterization of Poisson processes. Magyar Tud. Akad. Mat. Kutató. Int. Közl. 1957, 1, 519–527.
22. Shevtsova, I.; Tselishchev, M. A generalized equilibrium transform with application to error bounds in the Rényi theorem with no

support constraints. Mathematics 2020, 8, 577. [CrossRef]
23. Brown, M. Error bounds for exponential approximations of geometric convolutions. Ann. Probab. 1990, 18, 1388–1402. [CrossRef]
24. Brown, M. Sharp bounds for exponential approximations under a hazard rate upper bound. J. Appl. Probab. 2015, 52, 841–850.

[CrossRef]
25. Hung, T.L.; Kein, P.T. On the rates of convergence in weak limit theorems for normalized geometric sums. Bull. Korean Math. Soc.

2020, 57, 1115–1126. [CrossRef]
26. Shevtsova, I.; Tselishchev, M. On the accuracy of the exponential approximation to random sums of alternating random variables.

Mathematics 2020, 8, 1917. [CrossRef]
27. Korolev, V.; Zeifman, A. Bounds for convergence rate in laws of large numbers for mixed Poisson random sums. Stat. Probab.

2021, 168, 108918. [CrossRef]
28. Aldous, D.J. More Uses of Exchangeability: Representations of Complex Random Structures. In Probability and Mathematical

Genetics: Papers in Honour of Sir John Kingman; Bingham, N.H., Goldie, C.M., Eds.; Cambridge Univesity Press: Cambridge, UK,
2010.

29. Shevtsova, I.; Tselishchev, M. On the accuracy of the generalized gamma approximation to generalized negative binomial random
sums. Mathematics 2021, 9, 1571. [CrossRef]

30. Liu, Q.; Xia, A. Geometric sums, size biasing and zero biasing. Electron. Commun. Probab. 2022, 27, 1–13. [CrossRef]
31. Döbler, C.; Peccati, G. The Gamma Stein equation and noncentral de Jong theorems. Bernoulli 2018, 24, 3384–3421. [CrossRef]
32. Korolev, V. Bounds for the rate of convergence in the generalized Rényi theorem. Mathematics 2022, 10, 4252. [CrossRef]
33. Peköz, E.A.; Röllin, A. New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 2011, 39,

587–608. [CrossRef]
34. Weinberg, G.V. Kulback-Leibler divergence and the Pareto-Exponential approximation. SpringerPlus 2016, 5, 604. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-34675-1_18
http://dx.doi.org/10.1007/978-3-642-33305-7_9
http://doi.org/10.1137/S0040585X97T990290
http://dx.doi.org/10.1137/S0040585X97984760
http://dx.doi.org/10.1214/11-PS182
http://dx.doi.org/10.1051/proc/202068005
http://dx.doi.org/10.1007/s10959-021-01094-5
http://dx.doi.org/10.3390/math8040577
http://dx.doi.org/10.1214/aop/1176990750
http://dx.doi.org/10.1017/S0021900200113476
http://dx.doi.org/10.4134/BKMS.b190768
http://dx.doi.org/10.3390/math8111917
http://dx.doi.org/10.1016/j.spl.2020.108918
http://dx.doi.org/10.3390/math9131571
http://dx.doi.org/10.1214/22-ECP462
http://dx.doi.org/10.3150/17-BEJ963
http://dx.doi.org/10.3390/math10224252
http://dx.doi.org/10.1214/10-AOP559
http://dx.doi.org/10.1186/s40064-016-2253-y


Mathematics 2022, 10, 4747 37 of 37

35. Daly, F. Gamma, Gaussian and Poisson approximations for random sums using size-biased and generalized zero-biased couplings.
Scand. Actuar. J. 2022, 24, 471–487. [CrossRef]

36. Zolotarev, V.M. Ideal metrics in the problem of approximating the distributions of sums of independent random variables. Theory
Probab. Appl. 1977, 22, 433–449. [CrossRef]

37. Gibbs, A.L.; Su, F.E. On choosing and bounding probability metrics. Int. Stat. Rev. 2002, 70, 419–435. [CrossRef]
38. Janson, S. Probability Distances. 2020. Available online: www2.math.uu.se/∼svante (accessed on 1 September 2022).
39. Peköz, E.A.; Röllin, A.; Ross, N. Total variation error bounds for geometric approximation. Bernoulli 2013, 19, 610–632. [CrossRef]
40. Slepov, N.A. Generalized Stein equation on extended class of functions. In Proceedings of the International Conference on

Analytical and Computational Methods in Probability Theory and Its Applications, Moscow, Russia, 23–27 October 2017;
pp. 75–79.

41. Ley, C.; Reinert, G.; Swan, Y. Stein’s method for comparison of inivariate distributions. Probab. Surv. 2017, 14, 1–52. [CrossRef]
42. Yeh, J. Real Analysis. Theory of Measure and Integration, 2nd ed.; World Scientific: Singapore, 2006.
43. Gaunt, R.E. Wasserstein and Kolmogorov error bounds for variance gamma approximation via Stein’s method I. J. Theor. Probab.

2020, 33, 465–505. [CrossRef]
44. Halmos, P.R. Measure Theory; Springer: New York, NY, USA, 1974.
45. Gaunt, R.E.; Walton, N. Stein’s method for the single server queue in heavy traffic. Stat. Probab. Lett. 2020, 156, 108566. [CrossRef]
46. Muthukumar, T. Measure Theory and Lebesgue Integration. 2018. Available online: home.iitk.ac.in/∼tmk (accessed on

1 September 2022).
47. Shiryaev, A.N. Probability-1; Springer: New York, NY, USA, 2016.
48. Burkill, L.C. The Lebesgue Integral; Cambridge University Press: Cambridge, UK, 1963.
49. Korolev, V.; Zeifman, A. Generalized negative binomial distributions as mixed geometric laws and related limit theorems. Lith.

Math. J. 2019, 59, 366–388. [CrossRef]
50. Baldi, P.; Rinott, Y.; Stein, C. A normal approximations for the number of local maxima of a random function on a graph. In

Probability, Statistics and Mathematics, Papers in Honor of Samuel Karlin; Anderson, T.W., Athreya, K.B., Iglehart, D.L., Eds.; Academic
Press: San-Diego, CA, USA, 1989; pp. 59–81. [CrossRef]

51. Goldstein, L.; Rinott, Y. Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Prob. 1996, 33,
1–17. [CrossRef]

52. Goldstein, L. Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing.
J. Appl. Probab. 2005, 42, 661–683. [CrossRef]

53. Goldstein, L.; Reinert, G. Stein’s method and the zero bias transformation with application to simple random sampling. Ann.
Appl. Probab. 1997, 7, 935–952. [CrossRef]

54. Gaunt, R.E. On Stein’s method for products of normal random variables and zero bias couplings. Bernoulli 2017, 23, 3311–3345.
[CrossRef]

55. Döbler, C. Distributional transformations without orthogonality relations. J. Theor. Probab. 2017, 30, 85–116. [CrossRef]
56. Arratia, R.; Goldstein, L.; Kochman, F. Size bias for one and all. Probab. Surv. 2019, 16, 1–61. [CrossRef]
57. Weinberg, G.V. Validity of whitening-matched filter approximation to the Pareto coherent detector. IET Signal Process 2012, 6,

546–550. [CrossRef]
58. Blanchet, J.; Glinn, P. Uniform renewal theory with applications to expansions of random geometric sums. Adv. Appl. Prob. 2007,

39, 1070–1097. [CrossRef]
59. Kallenberg, O. Foundations of Modern Probability; Springer: New York, NY, USA, 1997.
60. Kingman, J.F.C. On queues in heavy traffic. J. R. Stat. Soc. Ser. B Stat. Methodol. 1962, 24, 383–392. [CrossRef]
61. Su, Z.; Wang, X. Approximation of sums of locally dependent random variables via perturbation of Stein operator. arXiv 2022,

arXiv:2209.09770.v2.
62. Korolev, V.Y.; Zeifman, A.I. Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler

distributions and their generalizations. J. Korean Stat. Soc. 2017, 46, 161–181. [CrossRef]
63. Bulinski, A.; Kozhevin, A. New version of the MDR method for stratified samples. Stat. Optim. Inf. Comput. 2017, 5, 1–18.

[CrossRef]
64. Ginag, L.T.; Hung, T.L. An extension of random summations of independent and identically distributed random variables.

Commun. Korean Math. Soc. 2018, 33, 605–618. [CrossRef]
65. Farago, A. Decomposition of Random Sequences into Mixtures of Simpler Ones and Its Application in Network Analysis.

Algorithms 2021, 14, 336. [CrossRef]
66. Feng, M.; Deng, L.-J.; Chen, F.; Perc, M.; Kurths, J. The accumulative law and its probability model: An extension of the Pareto

distribution and the log-normal distribution. Proc. R. Soc. A 2020, 476, 20200019. [CrossRef] [PubMed]
67. Nikolsky, S.M. A Course of Mathematical Analysis, v. 1; Mir Publishers: Moscow, Russia, 1987.

http://dx.doi.org/10.1080/03461238.2021.1984293
http://dx.doi.org/10.1137/1122056
http://dx.doi.org/10.1111/j.1751-5823.2002.tb00178.x
http://www2.math.uu.se/~svante/papers/sjN21.pdf
http://dx.doi.org/10.3150/11-BEJ406
http://dx.doi.org/10.1214/16-PS278
http://dx.doi.org/10.1007/s10959-018-0867-4
http://dx.doi.org/10.1016/j.spl.2019.108566
https://home.iitk.ac.in/~tmk/courses/mth404/main.pdf
http://dx.doi.org/10.1007/s10986-019-09452-x
http://dx.doi.org/10.1016/B978-0-12-058470-3.50012-4
http://dx.doi.org/10.2307/3215259
http://dx.doi.org/10.1017/S0021900200000693
http://dx.doi.org/10.1214/aoap/1043862419
http://dx.doi.org/10.3150/16-BEJ848
http://dx.doi.org/10.1007/s10959-015-0646-4
http://dx.doi.org/10.1214/13-PS221
http://dx.doi.org/10.1049/iet-spr.2011.0304
http://dx.doi.org/10.1239/aap/1198177240
http://dx.doi.org/10.1111/j.2517-6161.1962.tb00465.x
http://dx.doi.org/10.1016/j.jkss.2016.07.001
http://dx.doi.org/10.19139/soic.v5i1.277
http://dx.doi.org/10.4134/CKMS.c170110
http://dx.doi.org/10.3390/a14110336
http://dx.doi.org/10.1098/rspa.2020.0019
http://www.ncbi.nlm.nih.gov/pubmed/32523415

	Introduction
	Auxiliary Results
	Limit Theorem for Geometric Sums of Independent Random Variables
	Limit Theorem for Geometric Sums of Exchangeable Random Variables
	Convergence of Random Sums of Independent Summands to Generalized Gamma Distribution
	Convergence of Random Sums of Exchangeable Summands to Generalized Gamma Distribution
	Inverse to Equilibrium Transformation
	Conclusions
	Appendix
	References

