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Abstract: This article describes a two-dimensional steady laminar boundary layer flow and heat
mass transfer caused by a non-Newtonian nanofluid due to a horizontally stretching sheet. The
non-dimensional parameters take into consideration and regulate the effects of convective boundary
condition, slip velocity, Brownian motion, thermophoresis and viscous dissipation. The thermal
radiation, which affects the flow’s thermal conductivity and the nanofluid’s variable viscosity are also
taken into consideration. We propose that a hot fluid could exist beneath the stretching sheet’s bottom
surface, which could aid in warming the surface via convection. The physical boundary conditions
are non-dimensionalized, as are the governing transport set of nonlinear partial differential equations.
By using the shooting approach, numerical values for dimensionless velocity, temperature and
nanoparticle concentration are achieved. Distributions of velocity, temperature and concentration are
plotted against a number of newly important governing factors, and the outcomes are then provided
in accordance with those graphs. Additionally, the local skin-friction coefficient, the local Sherwood
number and the local Nusselt number are discussed in order to further clarify and thoroughly explain
the current problem. In order to validate the numerical results, comparisons are made with previously
published data in the literature. There is a really good accord. Additionally, the current work has
implications in the nanofluid applications.

Keywords: Maxwell nanofluid; thermal radiation; convective boundary condition; variable conduc-
tivity; viscous dissipation

MSC: 76A05; 76D10; 76W05

1. Introduction

Nanofluid is a crucial fluid type for energy conveyance since it includes both base
fluid and nanoparticles. In light of the demands of applications across decades, nanofluid
subjects are hence sustainable. There have been a number of general hypotheses put forth
on the thermophysical properties and heat transport of changed base fluid nanoliquids
up until this point. Choi [1] created the word “nanofluids” to describe the investigation
and examination of nanoparticles. Additionally, he looked into how adding nanoparticles
to the basic fluid improves the thermal characteristics of fluids. When a nanoparticle has
at least one of its major dimensions smaller than 100 nm, it is said to be suspended in
a thin liquid, or a nanofluid. Due to their amazing ability to increase heat conductivity,
nanofluids have proven beneficial in a variety of technical and industrial applications.
Because common heat transfer fluids have poorer thermal conductivities, it is impossible to
meet cooling rate requirements with them. The nanoparticles can be dispersed to improve
the thermal conductivity and the total thermal performance of common heat transfer fluids.
Nanofluids have unique features that make them potentially useful in a variety of heat
transfer processes, including microelectronics, fuel cells, hybrid engines, etc.
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Engine oils, radiators, engines, coolants, automatic transmission fluids, lubricants
and other synthetic high-temperature heat transfer fluids are all common components of
conventional truck thermal systems. These might profit from the increased heat conduc-
tivity provided by nanofluids as a result of the addition of nanoparticles [2]. Due to its
numerous manufacturing applications, certain numerical and experimental investigations
on nanofluids that focus on the thermal conductivity under different physical conditions
have been carefully examined [3–9].

The mechanism by which the work done by a nanofluid on adjacent layers as a result
of shear stresses is irreversibly transformed into heat is known as the viscous dissipation
phenomena. The viscous dissipation phenomenon, which shows as an increase in fluid
temperature, is caused by the irreversible work done by the fluid motion to resist the layers
of shear stresses in the flow. The viscous dissipation phenomenon is crucial in heat transport
research, particularly in boundary layer flows, because of the greater velocity gradients
inside the boundary layer’s region. The impact of viscous dissipation in nanofluids may
vary due to the influence of particle migration, which significantly alters the distribution
of temperature and nanoparticle concentration. Heat transfer is significantly impacted by
the viscous dissipation phenomena, especially in high-velocity flows and very viscous
flows at low velocities. Many scientists [10–15] have already looked at a range of real-
world issues connected to the phenomenon of viscous dissipation in nanofluid flow under
varied circumstances.

Most physical models are controlled by a system of differential equations, some of
which cannot be solved analytically. In order to solve this problem, we must use some
numerical methods that are connected to numerical analyses. Numerical approximation is
sufficient in many situations, including most practical engineering applications, chemistry,
economics, physics and biology. As a result, numerous models are addressed numerically
using different techniques [16,17]. According to the research described above, many re-
searchers have investigated the Newtonian and non-Newtonian nanofluid flow problems
using a variety of numerical methodologies. The current study, which is inspired by the
aforementioned literature and applications, investigates numerically the boundary layer
flow and heat transfer of a Maxwell nanofluid model that is exposed to a magnetic field
and thermal radiation. Along with convective boundary conditions, slip velocity, viscous
dissipation and the variable properties of nanofluids are also examined. Utilizing the shoot-
ing technique, numerical solutions are obtained for the domains of velocity, temperature
and concentration.

2. Problem Formulation

Consider an incompressible nanofluid flowing through a permeable stretched sheet in
a boundary layer with effects from radiation, viscous dissipation and convective heating.
The x-axis and y-axis are perpendicular to each other in the problem geometry, with the
surface lying along the x-axis. Here, heat and mass transmission mechanisms are explained
in terms of the Brownian and thermophoresis characteristics with diffusion coefficient DB
and thermophoretic diffusion coefficient DT , respectively. Additionally, the phenomenon of
convective heat transfer is also taken into account. In the x-direction, the sheet is stretched
with velocity uw = ax, where a is a positive constant with dimension s−1. Likewise, the
nanofluid flow is assumed to have the velocity vector

−→
U with two components u and v,

which can take the form: −→
U = u

−→
i + v

−→
j . (1)

In this investigation, we assume that a hot fluid exists beneath the stretching sheet’s
bottom surface. By using a convection phenomenon, this hot fluid, which has a temperature
of Tf , significantly contributes to warming the stretching sheet’s surface. So, the heat
transfer coefficient h f is created as a result. This temperature Tf is thought to be in the
following form:

Tf = T∞ + Ax2, (2)
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where T∞ refers to a constant ambient cold fluid temperature, A is constant. Here, we
have that Tf > T∞ is the highest temperature in the system. Furthermore, the nanofluid
concentration Cw(x) is assumed to take the form:

Cw(x) = C∞ + cx2, (3)

where C∞ stands for the nanofluid concentration away from the sheet and c is a constant.
Additionally, it is anticipated that the vector of the applied magnetic field would permeate
the Maxwell nanofluid with electrical conductivity σ, which can be considered to be
as follows: −→

B (x) = B0
−→
j , (4)

where B0, as shown in Figure 1, is a factor that indicates the intensity of the magnetic field
acting in the y-positive axis’s direction.

Figure 1. Schematic diagram for the nanofluid flow.

Further, we assume that the sheet is porous and the nanofluid moves through the
holes at a constant speed vw. In Cartesian coordinates, x and y, the fundamental steady
equations for the conservation of mass, momentum, thermal energy and nanoparticles for
nanofluids can be expressed as [18]:

∂u
∂x

+
∂v
∂y

= 0, (5)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρ∞

∂

∂y

(
µ(T)

∂u
∂y

)
− β1

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv

∂2u
∂x∂y

)
−

σB2
0

ρ∞
u, (6)

u
∂T
∂x

+ v
∂T
∂y

=
1

ρ∞cp

∂

∂y

(
κ(T)

∂T
∂y

)
+

1
ρ∞cp

(
µ(T)(

∂u
∂y

)2 − ρ∞β1

(
2uv

∂u
∂x

∂u
∂y

+ v2(
∂u
∂y

)2
))

+

τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]
− 1

ρ∞cp

∂qr

∂y
,

(7)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (8)

where, β1 is the Maxwell coefficient, ρ∞ is the ambient nanofluid density, µ(T) is the
nanofluid viscosity, T is the nanofluid’s Maxwell temperature and κ is the nanofluid
thermal conductivity. Here, we must remember that the Maxwell fluid class, characterized
by the Maxwell coefficient β1, is the most basic category of non-Newtonian fluids. The
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properties of the relaxation time can be accurately described by this model. Furthermore,
we must point out that if β1 = 0, our model can be reduced to a Newtonian model. Further,
according to the Rosseland approximation, the radiative heat transfer qr is represented by
the expression [19]:

qr = −
4σ∗

3k∗
∂T4

∂y
. (9)

The term T4 in the last equation is used to denote the slight temperature variation in
the fluid. The Taylor’s series about T∞ is used to expand the variable T4 as a linear function.
Consequently, disregarding the higher order terms produces the following [20]:

T4 ∼= 4T3
∞T − 3T4

∞. (10)

In order to fully formulate the suggested problem, following is an introduction to the
boundary conditions for the distributions of velocity, temperature and concentration [21]:

u = ax + (
λ1

µ∞
)

(
µ(T)

∂u
∂y
− ρ∞β1(2uv

∂u
∂x

+ v2 ∂u
∂y

)

)
, v = −vw,

− κ(T)
(

∂T
∂y

)
w
= h f

(
Tf − Tw

)
, C = Cw(x) = C∞ + cx2, at y = 0,

(11)

u→ 0, T → T∞, C → C∞ as y→ ∞, (12)

where µ∞ is the ambient viscosity of the nanofluid and λ1 is the slip velocity factor. We
now begin with dimensionless variables that can transform partial differential equations
into ordinary differential equations before creating the solution procedure [21]:

η =

(
a

ν∞

) 1
2
y, u = ax f ′(η), v = −(aν∞)

1
2 f (η), (13)

θ(η) =
T − T∞

Tf − T∞
, φ(η) =

C− C∞

Cw − C∞
, (14)

where f is the non-dimensional stream function, θ is the non-dimensional fluid tempera-
ture, φ is the dimensionless concentration and η is the dimensionless similarity variable.
Furthermore, we assume in this study that the dimensionless temperature impacts the
nanofluid thermal conductivity κ(T) as well as the nanofluid viscosity µ(T) according to
these laws [22]:

µ = µ∞e−αθ , κ = κ∞(1 + εθ), (15)

where κ∞ is the thermal conductivity away from the sheet, ε is the factor of the thermal
conductivity, α is the viscosity parameter, µ∞ is a constant viscosity of the nanofluid at the
ambient. Here, we must observe that κ = κ∞ when the nanofluid temperature T is equal to
the ambient temperature T∞. Therefore, the thermal conductivity of the nanofluid varies
with temperature along the thermal boundary layer before being constant at ambient. The
governing ordinary differential equations with boundary conditions are written as follows
when the aforementioned Equations (13) and (14) are introduced into the momentum,
energy and concentration equations:(

f ′′′ − α f ′′θ′
)
e−αθ + f f ′′ − f ′2 + β

(
2 f f ′ f ′′ − f 2 f ′′′

)
−M f ′ = 0, (16)

1
Pr

(
εθ′2 + (1 + R + εθ)θ′′

)
+ f θ′ − 2θ f ′ + Ntθ′2 + Nbθ′φ′ + Ec f ′′

(
e−αθ f ′′ + β

(
2 f f ′2 − f 2 f ′′

))
= 0, (17)

φ′′ + PrLe
(

f φ′ − 2φ f ′
)
+

Nt
Nb

θ′′ = 0. (18)
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According to the following modified boundary condition:

f = fw, f ′ = 1+λ
(

e−αθ f ′′ + β(2 f f ′2 − f 2 f ′′)
)

, φ = 1,

θ′ = −δ

(
1− θ

1 + R + εθ

)
, at η = 0,

(19)

f ′ → 0, θ → 0, φ→ 0, as η → ∞. (20)

Nevertheless, it is crucial to remember that the current non-Newtonian model can be
converted into a Newtonian model if β is missing from the previous system. In addition,
the equations above include the following dimensionless quantities and parameters:

β = aβ1, M =
σB2

0
aρ∞

, λ = λ1

√
a

ν∞
, Nb =

τDB(Cw − C∞)

ν∞
, Ec =

a2

Acp
, (21)

Nt =
τDT

(
Tf − T∞

)
ν∞T∞

, R =
16σ∗T3

∞
3κ∞k∗

, δ =
h f

κ∞

√
ν∞

a
, Le =

κ∞

ρ∞cpDB
, Pr =

µ∞cp

κ∞
, (22)

where β is the Maxwell parameter and measures the relaxation time and M, λ, Nb, Ec are
the magnetic number, slip velocity parameter, Brownian motion parameter and Eckert
number, which denote the viscous dissipation phenomenon. Nt is the thermophoresis
parameter, R is the thermal radiation parameter and δ, Le, Pr are the surface-convection
parameter, Lewis parameter and Prandtl number, respectively.

Skin friction C fx, heat transfer rate in term of Nux and mass transfer rate in terms of
Shx are the physical characteristics of Maxwell nanofluid flow. These terms are denoted
as follows:

C fx

2
Re

1
2
x = −

[
e−αθ(0) f ′′(0)− β( f ′′(0) f 2(0)− 2 f (0) f ′2(0))

]
,

Nux√
Rex

= −θ′(0),
Shx√
Rex

= −φ′(0),
(23)

where Rex = uwx
ν∞

is the local Reynolds number.

3. Physical And Graphical Interpretation of Results

Here, a comprehensive investigation of radiative, MHD Maxwell nanofluid flow is
described in this research using the shooting method, under the impact of slip velocity,
viscous dissipation and convective heating phenomenon. Firstly, a comparison of numerical
values representing the rate of heat transfer (−θ′(0)) for various suction parameters fw and
the Prandtl number Pr with results previously published (Ishak et al. [23]) is presented in
Table 1 as evidence of the reliability of the existing solutions.

Figure 2 shows three different values of the Maxwell parameter side-by-side com-
parisons of the fields of velocity, temperature and concentration. As can be seen, Figure 2
depicts a significant resistance to flow velocity with increasing Maxwell parameter values
due to the development of shear stress. Additionally, the temperature of the sheet θ(0) as
well as the temperature θ(η) and concentration φ(η) distributions were all dramatically
increased by the same parameter.
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Table 1. Comparison of Nusselt number −θ′(0) for different values of fw and Pr with the results of
Ishak et al. [23] when α = β = M = Ec = λ = R = ε = Nt = Nb = 0.

Pr fw, Ishak et al. [23] Present Work

0.72 −1.5 0.4570 0.457001520
1.0 −1.5 0.5000 0.500000000
10 −1.5 0.6542 0.654211910

0.72 0.0 0.8086 0.808589088
1.0 0.0 1.0000 1.000000000
3.0 0.0 1.9237 1.923689985

10.0 0.0 3.7207 3.720699510

0.72 1.5 1.4944 1.494389791
1.0 1.5 2.0000 2.000002010
10 1.5 16.0842 16.08419892

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

f 'HΗL

fw=0.5, Λ=0.2

M=0.2, Α=0.2

HaL

Β=0.0, 0.2, 0.5

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

R=0.5, Nb=0.8, Nt=0.1

Pr=1.0, ∆=0.2, Le=1.0

Ec=0.2, ¶=0.2

ΘHΗL

HbL

ΦHΗL

Β=0.0, 0.2, 0.5

Figure 2. (a) The f ′(η) for chosen β, (b) θ(η) and φ(η) for chosen β.

According to the change of the suction parameter fw, Figure 3 shows the analysis of
the flow and heat mass transportation performance of Maxwell nanofluid. An intriguing
finding is that the classical model specifies the lowest fluid flow for high values of the
suction parameter while having the fastest velocity profile for low values. Higher suction
parameter values lessen the mass distribution while enhancing the cooling of the nanofluid
and the sheet temperature θ(0) since the fluid displays the fastest heat and mass transfer in
the absence of the suction parameter (impermeable sheet).

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

f 'HΗL

Β=0.1, Λ=0.2

HaL

M=0.2, Α=0.2

fw=0.0, 0.5, 0.8

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

R=0.5, Nb=0.8, Nt=0.1

Pr=1.0, ∆=0.2, Le=1.0

HbL

Ec=0.2, ¶=0.2

ΘHΗL
ΦHΗL

fw=0.0, 0.2, 0.5

Figure 3. (a) The f ′(η) for chosen fw, (b) θ(η) and φ(η) for chosen fw.

Figure 4 depicts variations in velocity f ′(η), temperature θ(η) and concentration φ(η)
caused by the magnetic field’s M impact on the Maxwell nanofluid. Various inputs of the
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non-dimensional magnetic parameter M are used in this investigation while holding the
inputs of other related physical parameters constant. The velocity of the nanofluid is observed
to be restricted by an increase in the magnetic parameter. The existence of the Lorentz force
is the physical component that causes this result. One of the viscous forces of this type, the
Lorentz force, works in the opposite direction of nanofluid flow and slows down the fluid
velocity. As a result, the creation of these viscous forces has a profound impact and causes
the fluid to be warmed and concentrated to enhance the magnetic parameter.

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

f 'HΗL

fw=0.5, Λ=0.2

HaL

Β=0.1, Α=0.2

M=0.0, 0.5, 1.0

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

R=0.5, Nb=0.8, Nt=0.1

Pr=1.0, ∆=0.2, Le=1.0

HbL

Ec=0.2, ¶=0.2

ΘHΗL
ΦHΗL

M=0.0, 0.5, 1.0

Figure 4. (a) The f ′(η) for chosen M, (b) θ(η) and φ(η) for chosen M.

For various values of the viscosity parameter α, Figure 5 explains the demeanor of the
velocity f ′(η), temperature θ(η) and concentration φ(η) fields. The graphic shows that as
the viscosity parameter climbs, the momentum boundary layer thickness and velocity field
slow down. The essential duty of nanofluid viscosity, which mostly depends on temperature,
is to promote mass and heat transfer rates within the boundary layer. As a result, it is evident
that as the viscosity parameter improves, the concentration and temperature of nanofluid
as well as the sheet temperature θ(0) and the thickness of the thermal boundary layer rise.
Clearly the velocity distribution through the boundary layer was greatly impacted by the
viscosity parameter α since the viscosity parameter directly influences the velocity field, as
seen from Equation (16). While the concentration and temperature fields are both indirectly
influenced by the viscosity parameter, and as a result, both are only marginally impacted.

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

f 'HΗL

fw=0.5, Λ=0.2

HaL

M=0.2, Β=0.1

Α=0.0, 1.0, 2.5

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

R=0.5, Nb=0.8, Nt=0.1

Pr=1.0, ∆=0.2, Le=1.0

HbL

Ec=0.2, ¶=0.2

ΘHΗL
ΦHΗL

Α=0.0, 1.0, 2.5

Figure 5. (a) The f ′(η) for chosen α, (b) θ(η) and φ(η) for chosen α.

Figure 6 examines the impact of the slip velocity parameter λ on the velocity f ′(η),
temperature θ(η) and concentration φ(η) fields while the other physical governing pa-
rameters are unchanged. We notice that anytime the slip velocity λ increases, both the
sheet velocity f ′(0) and the nanofluid velocity f ′(η) dramatically decrease with the di-
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mensionless variable η. Additionally, we see that the velocity distribution changes as η is
increased in the interval 0 ≤ λ < 2. Further, when the slip velocity parameter λ improves,
the same drop tendency is shown for both the temperature distribution θ(η) and the sheet
temperature θ(0). Moreover, we can see from the following graphic that with rising values
of λ, the boundary layer thickness and the concentration field both get better.

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

f 'HΗL

fw=0.5, Β=0.1

HaL

M=0.2, Α=0.2

Λ=0.0, 0.2, 0.5

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

R=0.5, Nb=0.8, Nt=0.1

Pr=1.0, ∆=0.2, Le=1.0

HbL

Ec=0.2, ¶=0.2

ΘHΗL
ΦHΗL

Λ=0.0, 0.2, 0.5

Figure 6. (a) The f ′(η) for chosen λ, (b) θ(η) and φ(η) for chosen λ.

According to the influence of the Eckert number Ec, the temperature distribution θ(η)
shows modification in Figure 7a. In the nanofluid heat transfer mechanism, the principal
objective of the viscous dissipation phenomena is to alter the thermal performance with
sources of energy. Larger Eckert number values indicate that heat is dissipating and traveling
in the direction of the fluid as a result of viscous force. Fluid particles travel quickly as
a result, causing more collisions between them. This greater collision produces thermal
energy by converting kinetic energy. Furthermore, the graph of the temperature field θ(η)
for miscellaneous values of thermal radiation parameter R is designed in Figure 7b. With the
higher thermal radiation parameter along the sheet, as opposed to away from it, a significant
drop in both the sheet temperature θ(0) and the nanofluid temperature is seen.

1 2 3 4 5 6
Η

0.05

0.10

0.15

0.20

0.25

ΘHΗL

R=0.5, Nb=0.8, Nt=0.1, Α=0.2
Pr=1.0, ∆=0.2, Le=1.0, M=0.2

HaL

Β=0.1, ¶=0.2, fw=0.5, Λ=0.2

Ec=0.0, 0.2, 0.5

1 2 3 4 5 6
Η

0.05

0.10

0.15

0.20

ΘHΗL

Ec=0.2, Nb=0.8, Nt=0.1, Α=0.2

Pr=1.0, ∆=0.2, Le=1.0, M=0.2

HbL

Β=0.1, ¶=0.2, fw=0.5, Λ=0.2

R=0.0, 0.5, 1.0

Figure 7. (a) θ(η) for chosen Ec (b) θ(η) for chosen R.

Figure 8 shows how the surface-convection parameter δ affects the temperature dis-
tributions θ(η) in the region of the thermal boundary layer. The nanofluid temperature
θ(η) is seen to dramatically increase along the sheet wall but only modestly rise away
from the sheet, especially when η is greater than 4.0. As a result, the nanofluid along the
sheet warmed due to higher values of the surface-convection parameter, which thickened
the thermal boundary layer. Figure 8b illustrates the graphical behavior of the nanofluid’s
dimensionless temperature for various values of the thermal conductivity parameter ε. It is
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evident that as ε increases, the Maxwell nanofluid temperature and the thermal boundary
layer thickness grow away from the sheet wall, whereas the reverse trend is noted beside the
sheet. In contrast to nanofluids with constant thermal conductivity, this causes the thermal
boundary layer thickness of the nanofluid with variable thermal conductivity to be greater.

1 2 3 4 5 6
Η

0.05

0.10

0.15

0.20

0.25

0.30

ΘHΗL

R=0.5, Nb=0.8, Nt=0.1, Α=0.2

Pr=1.0, Ec=0.2, Le=1.0, M=0.2

HaL
Β=0.1, ¶=0.2, fw=0.5, Λ=0.2

∆=0.0, 0.2, 0.5

1 2 3 4 5 6
Η

0.05

0.10

0.15

ΘHΗL

Ec=0.2, Nb=0.8, Nt=0.1, Α=0.2

Pr=1.0, ∆=0.2, Le=1.0, M=0.2

HbL

Β=0.1, R=0.5, fw=0.5, Λ=0.2

¶=0.0, 1.5, 3.5

Figure 8. (a) The θ(η) for chosen δ, (b) θ(η) for chosen ε.

Additionally, Figure 9 shows the temperature field θ(η) outcomes for the Brownian
motion parameter Nb and the thermophoresis parameter Nt. The particles’ erratic motion
generates extra kinetic energy, which boosts the thermal energy that is already there. As a
result, a rise in Nb causes the fluid temperature in the boundary layer’s thermal domain to
increase faster. The Maxwell nanofluid temperature and the sheet temperature θ(0) both
accelerated similarly as a result of the increase in the thermophoresis parameter Nt.
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Figure 9. (a) The θ(η) for chosen Nb, (b) θ(η) for chosen Nt.

Before we have finished our analysis, we must concentrate on the drag force, which

can be calculated using the skin-friction coefficient C fx
2 Re

1
2
x , rate of heat transfer (which can

be evaluated using the local Nusselt number Nux√
Rex

), and the rate of mass transfer, which

can be determined using the local Sherwood number Shx√
Rex

. Therefore, we are interested to
examine the key physical characteristics that can influence how these quantities behave.
In order to obtain these values for this work, we constructed Table 2. It is evident from
Table 2 that as the Maxwell number, viscosity parameter, slip velocity parameter and
surface-convection parameter grow, the local skin-friction coefficient changes inversely.
Additionally, a reduction in the Sherwood number is brought about by rising values of
the Maxwell number, magnetic number, viscosity parameter and slip velocity parameter,
whereas the remaining parameters affect the Sherwood number in the opposite direction.
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In addition, increasing the suction, slip and surface-convection parameters elevates the
values of the local Nusselt number, but the opposite trend is shown for the remaining
parameters. Last but not least, the thermal conductivity parameter can increase the local
Sherwood number and the skin friction coefficient values while having an opposite impact
on the Nusselt number.

Table 2. Values of C fx
2 Re

1
2
x , Nux√

Rex
and Shx√

Rex
for various values of β, fw, M, α, λ, Ec, R, δ and ε with

Nb = 0.8, Le = 1.0, Pr = 1.0 and Nt = 0.1.

β fw M α λ Ec R δ ε C fx
2 Re

1
2
x

Nux√
Rex

Shx√
Rex

0.0 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 1.010101 0.106808 1.404140
0.2 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.980241 0.105987 1.361981
0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.937128 0.104581 1.291542

0.1 0.0 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.845444 0.105775 1.168950
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.8 0.2 0.2 0.2 0.2 0.5 0.2 0.2 1.095980 0.106979 1.536251

0.1 0.5 0.0 0.2 0.2 0.2 0.5 0.2 0.2 0.937012 0.107398 1.414660
0.1 0.5 0.5 0.2 0.2 0.2 0.5 0.2 0.2 1.071621 0.105056 1.342411
0.1 0.5 1.0 0.2 0.2 0.2 0.5 0.2 0.2 1.179310 0.103068 1.284550

0.1 0.5 0.2 0.0 0.2 0.2 0.5 0.2 0.2 1.003950 0.106514 1.388790
0.1 0.5 0.2 1.0 0.2 0.2 0.5 0.2 0.2 0.958801 0.105961 1.360981
0.1 0.5 0.2 2.5 0.2 0.2 0.5 0.2 0.2 0.888192 0.104945 1.308652

0.1 0.5 0.2 0.2 0.0 0.2 0.5 0.2 0.2 1.329681 0.104874 1.515341
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.5 0.2 0.5 0.2 0.2 0.734743 0.106767 1.258561

0.1 0.5 0.2 0.2 0.2 0.0 0.5 0.2 0.2 0.997361 0.112547 1.383421
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.5 0.5 0.2 0.2 0.991547 0.097316 1.383845

0.1 0.5 0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.994306 0.152219 1.379111
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.2 1.0 0.2 0.2 0.995541 0.081922 1.386090

0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.0 0.2 0.997938 0.057677 1.389350
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.5 0.2 0.988322 0.215834 1.370541

0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.0 0.995008 0.108859 1.383361
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 1.5 0.995196 0.093315 1.384910
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 3.5 0.995396 0.079346 1.386282

4. Conclusions

Maxwell nanofluid flow caused by stretching surfaces has presented numerous chal-
lenges to the fluid mechanics research community as a result of widespread applications in
the commercial and industrial sectors. As a result, the main goal of this work is to elucidate
how the convective heating and viscous dissipation phenomena, which are connected to
the variable thermo-physical properties, affect the slippery flow of the Maxwell MHD
nanofluid toward a stretching horizontal sheet. The simplified reduced core governing
equations are numerically solved using the shooting method. Graphs and tables are used
to investigate how physical parameters affect fluctuations in velocity, temperature, concen-
tration, skin-friction coefficient, Sherwood number and the Nusselt number. The following
findings are achieved after computation and observation.

1. The increased Maxwell parameter, slip velocity parameter, viscosity parameter, mag-
netic number and suction parameter diminishes the nanofluid velocity.

2. Eckert number and surface-convection parameter values that are larger result in
magnifying values for the temperature field.
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3. The suction parameter, thermal conductivity parameter and magnetic parameter all
raise the skin-friction coefficient.

4. The results showed that the existence of thermophoresis and Brownian motion makes
the heat transmission phenomena more effective.

5. Higher radiation and suction parameter values result in a larger Sherwood number,
while Maxwell and slip velocity parameter values result in a smaller Sherwood number.

6. A larger magnetic number, Brownian motion parameter, viscosity parameter and
Maxwell parameter will result in a temperature rise whereas a higher suction parame-
ter and slip velocity parameter will reduce the temperature.

7. The concentration of the nanofluid is severely degraded as the viscosity, magnetic
number, Maxwell and slip velocity parameters drop.
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Greek Symbols

ρ nanofluid density (kg m−3)
ρ∞ the ambient nanofluid density (kg m−3)
β the dimensionless Maxwell parameter
β1 the Maxwell coefficient (S)
µ coefficient of viscosity (kg m−1s−1)
µ∞ the ambient nanofluid viscosity (kg m−1s−1)
ν kinematic viscosity (m2 s−1)
ν∞ the ambient kinematic viscosity (m2 s−1)
θ dimensionless temperature
φ dimensionless concentration
λ1 slip velocity factor (m)
λ slip velocity parameter
σ electrical conductivity (S m−1)
σ∗ Stefan–Boltzmann constant (W m−2 K−4)
δ the surface convection parameter
η similarity variable
κ thermal conductivity (W m−1 K−1)
κ∞ the ambient nanofluid thermal conductivity (W m−1 K−1)
ε thermal conductivity parameter

Superscripts

′ differentiation with respect to η

∞ free stream condition
w wall condition
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Nomenclature

a velocity coefficient (s−1)
A is a constant (K m−2)
B0 strength of a uniform magnetic field (T)
c is a constant (mol L−1 m−2)
cp specific heat at constant pressure (J kg−1 K−1)
C nanoparticles concentration (mol L−1)
C fx skin friction coefficient
Cw surface nanoparticles concentration (mol L−1)
C∞ ambient nanoparticles concentration (mol L−1)
DB Brownian diffusion coefficient (m2 s−1)
DT thermophoresis diffusion coefficient (m2 s−1)
Ec Eckret number
f dimensionless stream function
fw suction parameter
h f the heat transfer coefficient (W m−2 K−1)
k∗ mean absorption coefficient (m−1)
Le Lewis parameter
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
R radiation parameter
Rex local Reynolds number
Shx local Sherwood number
T nanofluid temperature (K)
Tf convection temperature (K)
T∞ ambient temperature (K)
u velocity component in the x-direction (m s−1)
v velocity component in the y-direction (m s−1)
vw suction velocity (m s−1)
x, y Cartesian coordinates (m)
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