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Abstract: Multi-robot task allocation (MRTA) and route planning are crucial for a large-scale multi-
robot system. In this paper, the problem is formulated to minimize the total energy consumption
and overall task completion time simultaneously, with some constraints taken into consideration.
To represent a solution, a novel one-chromosome representation technique is proposed, which
eases the consequent genetic operations and the construction of the cost matrix. Lin–Kernighan–
Helsgaun (LKH), a highly efficient sub-tour planner, is employed to generate prophet generation
beforehand as well as guide the evolutionary direction during the proceeding of multi-objective
evolutionary algorithms, aiming to promote convergence of the Pareto front. Numerical experiments
on the benchmark show the LKH guidance mechanism is effective for two famous multi-objective
evolutionary algorithms, namely multi-objective evolutionary algorithm based on decomposition
(MOEA/D) and non-dominated sorting genetic algorithm (NSGA), of which LKH-guided NSGA
exhibits the best performance on three predefined indicators, namely C-metric, HV, and Spacing,
respectively. The generalization experiment on a multiple depots MRTA problem with constraints
further demonstrates the effectiveness of the proposed approach for practical decision making.

Keywords: multi-robot task allocation; route planning; multi-objective evolutionary algorithm;
Lin–Kernighan–Helsgaun; non-dominated sorting genetic algorithm; Pareto front; decision making
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1. Introduction

Today with the emphasis on environmental sustainability and digital transforma-
tion [1,2], people are looking for proper measures to progress green manufacturing [3,4],
urban sustainability, etc. As a potential paradigm to enable this progress, the multi-robot
system (MRS), or swarm robotics, has attracted considerable attention in the last two
decades [5–7]. An MRS is a swarm of robots that are designed to commit large-scale collec-
tive tasks that are difficult or impossible to address by a single robot, thus decreasing the
overall make-span time as well as promoting the efficiency of tasks completion. With MRS,
the system’s flexibility and overall robustness can be assured, and the individual robot’s
design can be simplified, too [8]. MRS are playing an important role in the context of Indus-
try 4.0, applications include but are not limited to modern logistics [9], surveillance [10],
intelligent manufacturing [11], wireless sensor networks [12], etc.

For most MRS cooperative task scenarios, tasks can be viewed as spatially located
points identified by their coordinates that need to be visited by the robots in the group; thus,
a fundamental and important problem arises to allocate whom to which task and in what
order for each robot to complete its assigned tasks, so that the overall system performance
can be maximized. This problem is known as MRTA (multi-robot task allocation) [6,13,14].
MRTA problems can be classified as follows as per the entities or requirements of MRS [14]:

• Single-task robots (ST) or multi-task robots (MT), according to single robot’s capability
of how many tasks it can execute at a time.
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• Single-robot tasks (SR) or multi-robot tasks (MR), according to the task’s requirement
of number of robots to fulfill it.

• Instantaneous assignment (IA) or time-extend assignment (TA), depending on the
timeliness of the solution. IA means the solution is instantaneous but may be short-
sighted, while TA uses more information of the situation and thus can achieve a plan
of global sense.

Generally, the MRTA approaches can be classified into two main categories according
to the organizational paradigm of robots [13,15,16]: centralized and decentralized. For
the centralized approaches, there is a central planner (e.g., control station) who uses the
global knowledge of the system to produce optimal or sub-optimal solutions, while for the
decentralized approaches, the solution is drawn by all or part of the robots together, in a
distributed and cooperative fashion, using only the local information available.

This paper focus on the ST–SR–TA problem, which is more common in MRTA. See
Figure 1 for example: how to assign a swarm of UAVs, i.e., R1. . .R3 in this case, to survey
all the targets located in the urban area, i.e., T1. . .T12, so that the global efficiency can be
maximized? In these type of cases: (a) each robot can only take at most one task at a
moment, (b) each task needs one robot to accomplish it, and (c) the time to deduce the
solution is not necessarily instantaneous. The centralized approaches will be studied herein
because in most cases, before launching the swarm, the decision maker wants to know the
assignment beforehand and modify it if possible.

Some papers used market-based approaches to tackle the problem, which mimic
the human society market economies mechanism to maximize the individual agent’s
profit and at the same time achieve a collective profit [17,18]. In these approaches, the
robots bid on tasks under auctioning, either in sequences or clusters, according to their
evaluation of each task. The solution quality, however, cannot be guaranteed because
of the intrinsic greedy heuristics of the market-based algorithms. The mostly researched
approaches are the heuristic methods, which search in the solution space for near-optimal
solutions that satisfy some certain objectives globally. These methods include particle
swarm optimization (PSO) [19], genetic algorithm (GA) [20], Tabu-list search (TS) [21], etc.,
which are customized to MRTA problems. Due to the exploration and exploitation nature
of the algorithms, heuristic-based methods often deduce satisfactory solutions.

Actually, for practical MRTA, we expect the swarm to accomplish the tasks as soon
as possible while keeping the cost at a low level, possibly with some constraints in some
scenarios. Thus, in this paper, we care about minimizing two objectives simultaneously:
(a) the overall completion time and (b) the total cost. Unfortunately, the two are optimized
in a contradictory way: for example, the lowest total cost might mean that one robot takes
all the tasks, leading to a high overall completion time due to the lack of cooperation
among robots. The best trade-offs among the multi-objectives are defined in terms of Pareto
optimality [22], and the set of all the Pareto optimal solutions form the called Pareto set.
The Pareto set is extremely valuable to the decision making of multi-objective MRTA; thus,
this paper aims to find effective methods to resolve the Pareto set.

The contribution of the paper is as follows:

• To code a feasible solution concisely, a novel one-chromosome representation tech-
nique is proposed. Compared to its traditional counterparts such as two-part chro-
mosome, it first deems the depots of robots as virtual tasks in MRTA, thus making
genetic operations easier and ensuring the diversity of the population.

• The Lin–Kernighan–Helsgaun (LKH) guidance mechanism, as an efficient local plan-
ner, is introduced into the multi-objective evolutionary algorithms (MOEA) in order
to generate prophet generation as well as guide the evolutionary direction during the
evolutionary process, which is proven effective to improve the solution quality of the
Pareto set. Moreover, the guidance mechanism is specifically designed to take effect in
a probabilistic sense so that it would not lead to additional computational burden.

• The guidance rate as the main parameter of the LKH guidance mechanism has been
studied, and the proper value is given.
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• Numerical experiments show the algorithm is helpful in providing near optimal
solutions for practical decision making in MRTA with constraints fulfilled.

The remainder of the paper is organized as follows: Section 2 briefly reviews the works
related to the multi-objective optimization for MRTA. Section 3 models the problem in
mathematical formulation, with bi-objective and two constraints. In Section 4, we propose
the LKH guided multi-objective evolutionary algorithm, which implements a novel one-
chromosome representation technique to code a solution and uses the LKH guidance
mechanism to guide the evolutionary direction of MOEA; Section 5 arranges the numerical
experiments and compares five different approaches to demonstrate the effectiveness of
the proposed methods. In Section 6, the proposed method is used to solve a more general
MRTA problem—multi-depot MRTA with constraints, showing how our approach can help
practical decision making. Finally, Section 7 concludes the paper.

Figure 1. A typical MRTA problem scenario: three robots (green) to survey fourteen tasks (blue-stars).

2. Related Work

As market-base approaches are based on greedy strategy and usually fail to give out
optimal solutions to MRTA problems, we only review heuristic methods herein. Various
works attribute MRTA problem to MTSP (multiple salesman problem) [13,15,23]. As this is
a combinational optimization problem (COP), the imperative step is how to code a solution.
Ref. [24] proposed the famous two-part chromosome representation, which has a clear
structure. However, the authors in [25] figure out there is a limitation on the diversity of
the genetic operation of the two-part chromosome, and they proposed a new crossover
approach named TCX to overcome this advantage. In addition, multi-chromosome is
another alternative representation technique, as proposed and used in [26,27]. Both the
techniques suffer from complex genetic operations because the chromosome must be split
first so that the operations can be executed. A more concise representation technique
is preferred.

As for the heuristic optimization methods for MRTA, Ref. [20] developed a combina-
tional algorithm in the context of an industrial plant inspection scenario, using GA for task
allocation and the A* algorithm for collision-free path planning, respectively. However, the
two objectives in their work—minimization of total fuel consumption and minimization
of task completion time—are resolved separately. Similar to this, the work in [28] used
GA and LKH to iteratively solve the tasks assignment problem in the context of car door
spot welding robots. The objective is established based on the balance of the welding tasks
of each robot, aiming to result in less welding time and awaiting time. In [19], a Multi-
Objective Particle Swarm Optimization (MOPSO) algorithm is proposed, with the objective
to minimize both the overall team cost and any individual robot’s workload simultaneously.
The algorithm extended the standard single-objective PSO to cope with discrete spaces and
multiple objectives. The result obtained a well-balanced workload among robots; however,
no proper evaluation indicator is presented. The authors in [29] presented a multi-objective
approach in designing a decision support system for underwater cleaning robots, using a
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Probabilistic Roadmap (PRM) to explore all the feasible paths and Non-dominated Sorting
Genetic Algorithm (NSGA) to optimize the sequential route for each robot. The objectives
including the path length and routing angle are considered to be optimized, while ensuring
constraints such as maximum travel distance and cable entanglement. Additionally, the
NSGA-based algorithms are compared with MOPSO and show that the NSGA-III produced
the best solution quality. A novel framework for multi-UAV task scheduling has been
proposed in [21], including two iterative phases: the first is the task allocation phase and
the second is the single UAV scheduling phase. Tabu-list-based simulated annealing (SATL)
and variable neighborhood descent (VND) algorithms are used to solve the two phases
separately. The objective, however, is formulated to maximize the total profit of scheduled
tasks only.

As discussed, the previous works mainly focus on single-objective MRTA. Not so
many are concerned with the multi-objective counterpart, which is our concern. Actually,
both mathematical programming approaches and meta-heuristics are available for multi-
objective optimization problems [30]. The mathematical programming approaches such
as multi-objective branch and bound (MOB&B) [31] and Benson’s algorithm for multi-
objective linear programming [32], however, have limitations that are only adaptive to
specific features of the problem to be solved, or they confront the problem of a dimension
curse. In contrast, the multi-objective evolutionary algorithms (MOEA) are more popular
as they are less susceptible to the shape and continuity of the Pareto front, and they are
also capable of finding members of a Pareto set in a single run [30]. Such approaches
include the strength Pareto evolutionary algorithm (SPEA) [33], non-dominated genetic
algorithm (NSGA) [34,35], S-metric selection evolutionary multi-objective algorithm (SMS-
EMOA) [36], directed search domain (DSD) [37], multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [22], etc.

There is no doubt that the variety of MOEAs will offer various methods to tackle with
the multi-objective MRTA problem in this paper. Yet we believe some extra development
should be made in order to adapt the problem and promote the performance further.

3. Problem Formulation

We formulate the ST-SR-TA MRTA problem as a combinational optimization problem
(COP), the solution being proven NP-hard [15,23,26]. We will not distinguish between
single-depot or multi-depot MRTA because the former is a special case of the latter. We will
only consider closed-loop MRTA herein, where each robot returns to its depot after visiting
the tasks assigned to it.

Let R = {R1, · · · , Rn} be the set of robots and T = {T1, · · · , Tm} be the set of tasks.
Let Ωk ⊆ T, k ∈ {1, · · · , n} be a sequence of tasks assigned to robot k and let q(Ωk) be its
cost. Let xkij, i 6= j be a binary decision variable that indicates whether or not robot k travels
from task point i to j, xkij = 1 if yes; otherwise, xkij = 0. The objective of the task allocation
is to find an allocation {Ω}∗ that minimizes the total cost of the group, denoted as F1, and
the maximum cost of each robot, denoted as F2, simultaneously:

{Ω}∗ = argmin(F1, F2) (1)

F1 =
n

∑
k=1

q(Ωk) (2)

F2 = max{q(Ωk)} (3)

q(Ωk) =
m

∑
i=1

m

∑
j=1

xkijckij, ∀k ∈ {1, · · · , n} (4)

s.t.
n

∑
k=1

m

∑
j=1

xkij = 1, ∀i ∈ {1, · · · , m} (5)
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n

∑
k=1

m

∑
i=1

xkij = 1, ∀j ∈ {1, · · · , m} (6)

∑
i,j∈S

xkij ≤ |S| − 1, ∀S ⊂ Ωk\{1}, ∀k ∈ {1, · · · , n} (7)

xkij =

{
1, if robot k travels from i to j, i 6= j;

0, otherwise.
, ∀k ∈ {1, · · · , n} (8)

where Equations (5) and (6) ensure one task is being asked by the group only once, and in
Equation (7) prevents an unexpected sub-loop inside robot k’s tour, which is also named as
the sub-tour elimination constraints (SECs) [38].

The scalar ckij in (4) is the cost for robot k traveling from i to j. It can be calculated
using the energy consumption, or the traveling distance directly, taking the avoidance of
static obstacles in the environment into consideration if necessary. For convenience, we use
the Euclid distance in the following sections. For centralized MRTA, all the costs can be
calculated in advance for ease of usage as a cost matrix:

Ak =

ck11 . . . ck1n
...

. . .
...

ckn1 . . . cknn

 (9)

where the elements on the diagonal are all equal to 0 (neglecting the cost on the task
itself). As for homogeneous robots in this paper, Ak is the same for every robot; thus, Ak is
simplified as A.

Usually, for practical applications, the robot has limited energy to ensure a long
enough travel; hence, the mileage constraint needs to be taken into consideration. For
some time-sensitive tasks, for example a chemical plant to be surveyed may only operate
in a certain period, so the time-window needs to be considered, too. Hence, there are two
more constraints:

q(Ωk) ≤ Lk, ∀k ∈ {1, · · · , n} (10)

TWS
i ≤ tki ≤ TWE

i , if i ⊆ Ωk, ∀i ∈ {1, · · · , m} (11)

where Lk is the mileage ability of robot k, and tki is the moment it reaches task i. The
start and end time of the time-window of task i are TWS

i and TWE
i respectively, with

TWS
i < TWE

i . The constraints in (10) and (11) are to be handled using penalty functions,
that is to say, add the below item to the objective function:

P(Ω) = α×
n

∑
k=1

max{0, q(Ωk)− Lk}+ β×
m

∑
i=1

max{0, TWS
i − ti}+ γ×

m

∑
i=1

max{0, ti − TWE
i } (12)

where α, β, γ are three positive adjustable penalty factors implying the significance of the
corresponding violation is to the problem. Should one constraint be more strictly concerned,
its corresponding penalty factor must be set relatively bigger. Of course, a big enough
value, such as +∞, means no violation is allowed for the constraint.

Note the objective function (3) aims to minimize the maximum cost of each robot in the
group; thus, a minimum overall completion time can be attained. It can also be alternated
as the amplitude of the costs among robots in some related works [39,40], which ensures a
balanced workload among robots, i.e.:

F2 = max{q(Ωk)} −min{q(Ωk)} (13)

For convenience, we name the objective functions of (2), (3) and (13) as minsum,
minmax, and minamp, respectively. Unlike its single-objective counterpart, the optimization
of multiple objectives is more complex, because the minimization of one objective may
worsen another objective. Actually, the solution of multiple objective optimization (MOP)
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is not unique but a solution set, any element in the set is a feasible solution, and we cannot
say a solution is better than another without specifying the criterion to be compared. In
the following section, the solution set of MOP is solved by multi-objective evolutionary
algorithms, with some enhancements that are proposed in this paper.

4. Methodology

Multi-objective evolutionary algorithms (MOEA), as discussed in Section 2, are the
most popular methods to solve MOP. In this section, we will adapt and enhance them to
solve the MRTA problem. Firstly, a one-chromosome representation technique is designed
to code the solution. With the concise representation, normal genetic operations can
easily be proceeded, and the formulated cost matrix is intuitive. Then, the LKH guidance
mechanism will be introduced to the conventional MOEAs in order to promote convergence.
Two typical varieties of MOEA, namely NSGA and MOEA/D, are studied therein.

4.1. Solution Coding

The most commonly used representation techniques for MRTA are two-chromosome,
two-part chromosome [24], and multi-chromosome [26], of which the two-part chromosome
representation is the most preferred. Figure 2a is a showcase of this representation, where
robot R1 takes tasks T7, T5, T2, robot R2 takes tasks T3, T6, and robot R3 takes T4, T8, T9, T10,
T1. The limitation of the two-part chromosome technique lies in the genetic operation on
the second part of the chromosome. Take Figure 2b for example: the tasks per robot would
be limited to certain numbers; thus, the population diversity would be limited. In [25],
a new crossover approach called TCX (two-part chromosome crossover) is proposed to
overcome this drawback, but the genetic operations are complicated.

(a)

(b)

Figure 2. Example of (a) two-part chromosome representation and (b) crossover operation.

In this paper, we design a new one-chromosome representation. The reason we resort
to one-chromosome representation is that the genetic operations are easy to implement,
and the population diversity can be realized using normal genetic operations. An example
for 10 tasks and 4 robots is shown in Figure 3. We combine the depots of each robot and the
tasks as a whole by denoting the codes of depots as consequences after the last task, such
as no. 11, 12, 13, and 14 in Figure 3a. In appearance, it is a standard traveling salesman
problem (TSP) representation, so normal genetic operations can be implemented, but we
define a different meaning for this representation: the robot from one depot would visit its
following tasks numbers until the next depot is met. Take robot R1 in Figure 3a for example,
its depot is denoted as virtual no. 11, and it will visit tasks T7 and T5 in sequence and then
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return to its depot. Virtual no. 13 is the depot of robot R3, and it will take T2, T3, T6 as its
tasks, and so on.

To simplify the calculation of the cost function, we extend the cost matrix A to Ae,
as is shown in Figure 3b, where the extra elements, i.e., costs between any of the depots
and tasks, should be calculated in advance. This is worthwhile for a centralized MRTA
problem because it is carried out only once and can be used as a lookup table in the
succeeding processes.

(a)

(b)

Figure 3. Example of (a) the proposed one chromosome representation and (b) the extended
cost function.

4.2. Genetic Operations

With the proposed one-chromosome representation, normal genetic operations can
be proceeded, including selection, crossover, mutation, and re-insertion. For crossover
and mutation operations, we use PMX (Partial Matched Crossover) [41] and inversion,
respectively. For selection operation, we use RWS (roulette wheel selection) to select
the elites for offspring generation. Note for a multi-objective problem, we not only use
objective functions but also non-dominate comparison and crowding distance for fitness
evaluation [34]. Re-insertion is a special operation in NSGA, where the offspring are
re-inserted into the father population; then, we use fitness evaluation for elites reservation.

4.3. LKH Guidance

The multi-objective evolutionary algorithms, such as NSGA and MOEA/D, are ef-
fective in finding multi-objective solutions. As mentioned previously, the solution is not
unique, but a set of them constitutes the Pareto set. In practical decision-making systems,
we expect the algorithm to converge quickly while achieving high-quality solutions at the
same time. Actually, for MRTA, we can divide the problem into two hierarchical processes:
task allocation and sub-tours costs optimization. The latter is indeed a TSP problem to
optimize the visiting sequence of the nodes in the sub-tour. So, we need a proper solver
to tackle TSP efficiently. Exact solvers use Integer Linear Programming (ILP) to solve the
problem, but the intrinsic computational complexity renders them impractical for large-
scale problems. In contrast, heuristic solvers search for near-optimal solutions with much
lower complexity and thus are more desirable for real-life applications where statistically
good performance is the goal. Of all the heuristic TSP solvers, Lin–Kernighan–Helsgaun
(LKH) [42] is generally considered a powerful algorithm at present.
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LKH is a local optimization algorithm developed based on λ-opt move, where λ edges
in the current tour are replaced by another set of candidate λ edges to achieve a shorter tour.
Starting from a randomly initialized tour, it iteratively searches for λ-opt exchanges that
improve the tour, using a depth-first strategy. LKH has been proven to produce optimal
solutions for almost all problems with a known optimum [42]. Although the running time
is approximately O(n2.2), the efficiency is satisfactory for practical industrial problems.

In our work we will firstly use LKH as an initializer to generate the prophet population;
then, we will use LKH to guide the evolutionary direction during the process of a multi-
objective evolutionary algorithm, resulting in Algorithm 1 (NSGA for example). The input
to the algorithm is the tasks points’ coordinate {Xi} and robots depots’ coordinate {Xk},
and the output is the Pareto set, which constitutes a set of assignments of each robot’s
tasks and the corresponding visiting sequence {Ωk}. The extended cost matrix Ae in line 1
contains not only the cost information among the tasks but also the cost information from
the depots to the tasks. Lines 3–6 intend to generate the prophet population, where each
individual’s sub-tours are optimized by LKH. In lines 9–18, the LKH algorithm tries to
optimize each individual of the population with probability pLKH . Note that a higher pLKH
does not imperatively improve the solution quality, because it benefits very little at the end
of the iteration, but it may consume much computational time. See Section 5.3 for a more
detailed discussion. The q(Ωk) in lines 4 and 11 means the cost of the robot k’s sub-tour,
which can be derived by summing up the looked-up values from Ae. The ObjV1 and ObjV2,
i.e., sum of and max of {q(Ωk)}, respectively, are crucial to the algorithm, they form the
so-called Pareto front which is the concrete optimization target of the algorithm.

Algorithm 1: LKH-guided NSGA for MRTA problem

Input: tasks points’ coordinate {Xi}; depots’ coordinate {Xk}; LKH guidance
probability pLKH ;

Output: assigned each robot’s tasks and corresponding visiting sequence {Ωk};
1 Use {Xi} and {Xk} to calculate the extended cost matrix Ae;
2 Randomly initialize NSGA populations {Pi_pop};
3 for each individual in {Pi_pop} do
4 {Ωk}i_pop, {q(Ωk)}i_pop ← use LKH to optimize the sub-tours;
5 [ObjV1, ObjV2]i_pop ← [sum({q(Ωk)}i_pop), max({q(Ωk)}i_pop)];
6 end
7 while not termination criteria do
8 selection, crossover, mutation operations to generate offspring;
9 if rand(0, 1) < pLKH then

10 for each individual in {Pi_pop} do
11 {Ωk}′i_pop, {q(Ωk)}i_pop ← try to use LKM to optimize the sub-tours;
12 [ObjV1, ObjV2]

′
i_pop ← [sum({q(Ωk)}i_pop), max({q(Ωk)}i_pop)];

13 if [ObjV1, ObjV2]
′
i_pop ≺ [ObjV1, ObjV2]i_pop then

14 {Ωk}i_pop ← {Ωk}′i_pop;
15 [ObjV1, ObjV2]i_pop ← [ObjV1, ObjV2]

′
i_pop

16 end
17 end
18 end
19 insert the offspring to the population;
20 non-dominate sorting, crowding distance evaluation to reserve the elites only;
21 end

5. Numerical Experiments

As lacking benchmarks of general MRTA problems, we use single-depot MTSP (SD-
MTSP) dataset for comparison with the existing approaches. The benchmark we used is
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the mTSPLib (https://profs.info.uaic.ro/~mtsplib/, accessed on 6 December 2022) defined
by Necula et al. [39], which includes 4 main instances, i.e., eil51, berlin52, eil76, and rat99,
each instance has different number of salesmen. For example, eil51, n = 5 is an instance
composed of 51 cities and 5 salesmen, where the first city is assigned as the common depot
that all the salesmen should start with. Two objectives, minimization of the total travel
distance and minimization of the maximum travel distance of each salesman, are to be
optimized simultaneously. No constraints are deployed in this benchmark.

In this section, in order to illustrate the performance of our proposed LKH guided
approach, we’d first dedicate comparison among 5 different approaches: (a) g-MinMaxACS,
(b) MOEA/D, (c) NSGA, (d) MOEA/D with LKH guidance, and (e) NSGA with LKH guidance.
Then we’d study the influence of guidance parameter on the performance of the approach.

5.1. Parameters Setup

g-MinMaxACS: The authors in [39] proposed and investigated several Ant Colony
System (ACS) based approaches, of which the g-MinMaxACS is reported the best overall
performance, achieving good trade-off solutions that are diverse and in proximity of the
reference Pareto front. We use this g-MinMaxACS approach and set the parameters as:
n_ants = 100, q0 = 0.9, ρ = 0.1, β = 2.0.

MOEA/D: The algorithm is based on the decomposition idea to decompose the multi-
objective optimization problem into a number of scalar optimization sub-problems and
optimize them simultaneously [22]. We adapt the algorithm to solve MRTA problems, for
comparability with other algorithms, the parameters are set as follows: population size
npop = 100, rate of crossover px = 0.5, rate of mutation pm = 1.

NSGA: The most popular NSGA-II (without guidance) is used herein. To make it
comparable, we set the parameters to be the same as MOEA/D: population size npop = 100,
rate of crossover px = 0.5, and rate of mutation pm = 1.

MOEA/D and NSGA with LKH guidance: The LKH-guided MOEA/D as well as
NSGA, as we proposed in the paper, are with the same parameters as their counterpart
without guidance, but we add one more parameter: guidance rate pLKH = 0.002, meaning
that the algorithm has a chance of an average of two times guidance every 1000 iterations.

Above each algorithm, we executed for a maximum number of iterations of 1500 as
the stopping criteria. All the multi-objective evolutionary algorithms are programmed in
Python language with geatpy toolbox (http://geatpy.com/, accessed on 6 December 2022).

5.2. Evaluation Metrics

The solution quality of an algorithm is evaluated from three aspects, i.e., convergence,
diversity, and uniformity, which are quantified by the below listed three indicators. Note
that the ground true Pareto fronts are not known for the mTSPLib instances [39], so the
convergence can only be evaluated by some indicators indirectly.

C-metric: We use the C-metric to indicate the convergence of the solution set indirectly,
which is computed as the fraction of members of set B that are weakly dominated by any
member of set A [43]:

C(A, B) =
|{b ∈ B; ∃a ∈ A : a � b}|

|B| (14)

The function C(A, B) maps the pair (A, B) in comparison into the interval [0, 1]. To make
it simple, we define the solution set of the algorithm in evaluation as B and all the other
algorithms as A. So, the lower the C-metric is, the better the solution set of B is, in other
words, the more likely to converge to the true Pareto front.

HV: Hyper-volume is the most commonly used indicator to indicate both the conver-
gence and diversity of the Pareto set. Given a solution set P and a reference point r, HV
can be computed as follows:

HV(P) = λ(∪p∈P{x|p ≺ x ≺ r}) (15)

https://profs.info.uaic.ro/~mtsplib/
http://geatpy.com/
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where λ denotes the Lebesgue measure [43]. Actually, the HV value can be seen as the
volume of the union of the hyper-volumes determined by each element of the solution set
and the shared reference point. So, a larger HV value implies the better convergence and
diversity of the solution set.

Spacing: We use the spacing to gauge the uniformity of the solution set, which is
defined as follows [43]:

Spacing(P) =

√√√√ 1
|P| − 1

|P|−1

∑
i=1

(d− di)2 (16)

where di is the Euclidean distance between the i-th solution and its next neighbor in the
objective space, and d is the mean value of all di. A lower spacing value means the solution
set is more uniform.

5.3. Result and Discussion

We perform the five algorithms on eight instances: eil51, n = 5; eil51, n = 7; berlin52,
n = 5; berlin52, n = 7; eil76, n = 5; eil76, n = 7; rat99, n = 5; rat99, n = 7. The obtained
Pareto fronts can be seen in Figure 4. Generally speaking, for minimization problems, objec-
tive values close to the left and bottom of the axes of the graph indicate better convergence
to the true Pareto front. At the same time, the wide and even spread of the objective values
means good performance on diversity and uniformity. It can be observed from Figure 4
that the LKH guidance mechanism is effective for the solutions quality improvement, both
for MOEA/D and NSGA algorithms; i.e., they dominate most of the solutions of the rest of
the algorithms, and they are much closer to the left and bottom side of the graph. This phe-
nomenon is much clearer for large-scale problems such as eil76 and rat99. On rat99, n = 7,
which is the largest instance, LKH-guided algorithms gain the most obvious improvements
compared with other instances, reminding that the guidance rate is only two times every
1000 iterations (pLKH = 0.002). It can also be observed that the NSGA algorithms, with or
without LKH guidance, perform better than the MOEA/D counterparts.

Even though the solution set of g-MinMaxACO can sometimes dominate some other
algorithms partially, the main drawback is that they are too crowded in the objective
space, lacking diversity, which puts a huge limitation on the scope of candidates that the
decision maker can choose from. The possible reason is that the pheromone mechanism
of ACO tends to attract the ants to select similar edges. On the contrary, the evolutionary
algorithm-based approaches, no matter with or without LKH guidance, tend to produce a
more diverse solution set in which the decision maker has more choices.

Detailed comparative information is shown in Table 1, each algorithm is evaluated
by the three metrics designed in Section 5.2, on all the instances. The best performance is
highlighted with black bold in the table. It can be observed that the LKH-guided NSGA
outperforms the others on the indicators C-metric, HV, and spacing, except for the instance
berlin52, n = 7. To address how much the improvement is, the relative improvements of
LKH-NSGA with respect to the rest of the algorithms are given in Table 1, too. The relative
improvements for C-Metric and Spacing indicators are computed as the reduced percent
with respect to the minimum of the rest of the algorithms because these two indicators
should be as small as possible, while for the HV indicator, the percent increased with respect
to the maximum of the rest of the algorithms because it should be as high as possible. We
can say that with the proposed LKH guidance mechanism, the solutions quality of both
MOEA/D and NSGA are promoted dramatically, especially when the situation comes to
large-scale problems, and the LKH-guided NSGA is more preferred.
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Figure 4. The resulting Pareto fronts of 5 different algorithms on 8 different instances.
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Now, we take a closer look at the solution set derived by LKH-guided NSGA. Take
the instance eil51, n = 5 as an example, see LKH-NSGA in Figure 4a. Here, the solution
set is formed by 28 individuals, and each is a near-optimal solution. The two ends, i.e.,
obj(443.44, 226.08) and obj(622.43, 127.45), are the objective values of minsum and minmax
solution, respectively. The minsum solution has a total length of 443.44, which is shorter
than the minmax solution’s 622.43, while the minmax solution has a max length of 127.45,
which is shorter than the minsum solution’s 226.08. Meanwhile, we can observe that for the
minmax solution, the max length is quite equal to 1/n of the total length (127.45 ≈ 622.43/5),
which definitely implies the workloads are well balanced. The other 26 solutions can be
viewed as trade-offs of the minsum and minmax solutions; they together provide sufficient
near optimal candidates that can really support decision making.

Table 1. The performance of different algorithms.

Instances Indictors g-MinMaxACS MOEA/D NSGA LKH-
MOEA/D LKH-NSGA Rel. Impr.

LKH-NSGA

eil51,
n = 5

C-metric 1 1 1 0.786 0 100%
HV 0.318 0.278 0.373 0.385 0.411 6.8%

Spacing 14.542 59.640 14.504 22.945 3.792 73.9%

eil51,
n = 7

C-metric 1 1 1 0.938 0.113 88.0%
HV 0.274 0.296 0.381 0.381 0.420 10.2%

Spacing 9.389 28.385 5.047 49.992 2.784 44.8%

berlin52,
n = 5

C-metric 1 1 1 0.812 0.011 98.6%
HV 0.272 0.214 0.306 0.303 0.342 11.8%

Spacing 118.189 1500.125 467.152 457.896 69.930 40.8%

berlin52,
n = 7

C-metric 0.962 1 0.670 0.862 0.220 67.2%
HV 0.328 0.332 0.407 0.401 0.445 9.3%

Spacing 189.513 1105.016 72.243 378.840 266.841 -

eil76,
n = 5

C-metric 1 1 1 0.600 0.595 0.8%
HV 0.359 0.217 0.325 0.399 0.431 8.0%

Spacing 13.082 107.803 42.998 17.816 5.109 60.9%

eil76,
n = 7

C-metric 1 1 1 0.615 0.232 62.3%
HV 0.315 0.196 0.327 0.402 0.437 8.7%

Spacing 9.431 71.677 8.670 70.807 6.016 30.6%

rat99,
n = 5

C-metric 1 1 1 0.647 0.222 65.7%
HV 0.399 0.223 0.367 0.503 0.526 4.6%

Spacing 35.503 200.523 209.447 66.495 15.510 56.3%

rat99,
n = 7

C-metric 0.8 1 1 0.923 0.141 82.4%
HV 0.326 0.292 0.359 0.501 0.527 5.2%

Spacing 52.892 220.603 26.184 101.713 15.960 39.0%

However, the introduction of an LKH guidance mechanism will inevitably consume
more computation time than the raw algorithms. For example, on a desktop computer
of Intel Core i9 3.6GHz CPU and 16G RAM, it costs 17.5 s for the raw NSGA and 20.0 s
for the LKH-guided NSGA, respectively, on the same instance of rat99, n = 7. The time
consumption of the guidance mechanism highly depends on the parameter of guidance
rate pLKH . By increasing the guidance rate, the solution set quality might be improved in
the same iteration steps. However, it is not always true because, at the end of the iteration,
the guidance mechanism benefits very little to the solution set quality improvement. This
phenomenon can be seen in Figure 5, where raw NSGA is shown for clearness and ’LKH-
NSGA, pLKH = 0’ means NSGA is initialized by LKH optimized prophet populations but
without any guidance during the consequent evolutionary processes. As can be observed,
the four different guidance rates, namely pLKH = 0.001, 0.002, 0.005, 0.01, make little differ-
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ence with respect to the solution set quality. According to our experience, pLKH = 0.002
can be a good trade-off between the solution set quality and time consumption.
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Figure 5. The Pareto fronts of LKH-guided NSGA with different guidance rate pLKH .

6. A General Case Study

A multi-depot MRTA problem (MD-MRTA), where each robot of the swarm departs
from its own depot while not from one shared same depot as in the instances of Section 5,
is the more general case of MRTA. In this section, we will conduct simulations to show the
generalization capability of our proposed LKH-guided NSGA with multi-objective as well
as some constraints taken into consideration.

The simulation case is inspired by urban surveying tasks using multiple drones. It is
set as follows: n = 4 drones are assigned to survey m = 50 tasks points that are distributed
randomly in a square area of 1000 m× 1000 m. The objective is to complete the overall tasks
as soon as possible while consuming as little energy as possible, given the following two
constraints: (a) each drone has a mileage capability of Lk = 4200 m, ∀k ∈ {1, · · · , n}, and
(b) three of the tasks, for instance schools, are to be visited within specified time-windows.
Refer to Figure 6b for a preview of the case, where the drones in their depots are small
green-squared and the tasks are red-dotted, three of the tasks, namely T1, T5, T13, are
with time-windows of TW1 = [100 s, 160 s], TW5 = [200 s, 260 s], TW13 = [210 s, 270 s],
respectively. For simplification, we set the drones traveling in the same velocity vk = 5 m/s,
∀k ∈ {1, · · · , n}; thus, the bi-objective can be simplified as a minimization of the maximum
cost of the tours and the total cost of the tours, simultaneously.

As proposed, the depots of R1, · · · , R4 are treated as virtual tasks that can form the
one-chromosome coding of the solution. Then, the LKH-guided NSGA is performed to
solve the case, resulting in the Pareto front, as shown in Figure 6a. Every dot in the Pareto
front represents a near-optimal solution that can serve as a candidate for decision making.
To visualize, we sample three from the solution set, see sub Figure 6b–d that correspond to
objective points (b)–(d) in Figure 6a, where Figure 6b is the minsum solution and Figure 6c is
the minmax solution. The minsum solution achieves a total cost of tours of 7873.50 m, which
is the optimal until now, but the lack of cooperation among robots (some robots take most
of the tasks while some take very little) will inevitably lead to a long maximum cost of tours
and thus the long overall completion time. The case is vice versa for the minmax solution,
where the workload among robots is relatively balanced, resulting in the shortest maximum
sub-tour of 2493.01 m, so that the overall completion time is optimized, but the total cost of
tours of 8937.50 m is the highest among the solution set. As a trade-off, the decision maker
can also choose another solution like (d) in Figure 6a depending on the decision preference.
The task allocation and each robot’s route planning of this solution are shown in Figure 6d,
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the maximum cost of sub-tours increases by only 21.14 m (=2514.15 − 2493.01), but the
total cost will save 414.80 m (=8937.50 − 8522.70) compared to the solution of Figure 6c.
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Figure 6. An instance of MD-MRTA with constraints: (a) Pareto front, (b–d) different solutions of
task allocation and route planning for each robot.

Figures 7 and 8 show the constraints fulfillment of the solution set; the three sub-
figures correspond to the three sampled solutions from Figure 6a. It is clear in Figure 7
that all the robots’ travel distances are below the mileage capability of each robot. Figure 8
illustrates the time sequences of the assigned tasks of each robot, where the tasks id. are
shown alongside the timeline, three tasks with time-window constraints, namely T1, T5, T13,
are highlighted above the task, each with a couple of small triangles to indicate the required
start time and end time. It can be observed that the moment the robot reached the tasks is
right within the predefined time-windows.

In summary, our approach can provide a satisfactory (near optimal) solution set that
can really help practical decision making for multi-objective MRTA problems. Once the
final solution is confirmed by the decision maker, the corresponding task planning can be
downloaded into each robot. A robot would then execute its allocated tasks in sequence,
as illustrated by the color-mapped lines in Figure 6b–d; i.e., it would move from the dark
black end to the bright yellow end.



Mathematics 2022, 10, 4714 15 of 17

robot_1 robot_2 robot_3 robot_4
0

1000

2000

3000

4000 mileage capability
travel distance

(a)
robot_1 robot_2 robot_3 robot_4

0

1000

2000

3000

4000 mileage capability
travel distance

(b)
robot_1 robot_2 robot_3 robot_4

0

1000

2000

3000

4000 mileage capability
travel distance

(c)

Figure 7. The travel distance of each robot, (a–c) correspond to the three solutions sampled from
Figure 6a.
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Figure 8. The time sequence the assigned tasks of each robot, (a–c) correspond to the three solutions
sampled from Figure 6a.

7. Conclusions

The paper aims to resolve the Pareto set of multi-objective MRTA and route-planning
problem in an efficient way so as to assist in practical decision making. The proposed
one-chromosome representation technique to code a solution is concise and can ease the
succeeding genetic operations. The cost matrix is extended accordingly to serve as a look-
up table to the following processes of multi-objective evolutionary algorithms. The LKH
solver is employed as a highly efficient sub-tour planner to generate prophet generation
at the beginning of the evolution as well as to guide the evolutionary direction during
the proceeding of the evolutionary algorithms. The LKH guidance mechanism has been
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proven to be effective in the conducted numerical experiments, both for MOEA/D and
NSGA, where the latter holds better performance on almost all the indicators, i.e., C-metric,
HV, and Spacing. The guidance rate of the LKH guidance plays an important role in the
performance of the algorithm by increasing the rate the solution quality will be improved
to some extent; however, the benefit diminishes when the rate is higher than a certain
value. At last, with the benefit of the one-chromosome representation technique and the
LKH-guided NSGA algorithm, the more general instance of multi-objective MD-MRTA
with constraints can be resolved efficiently, and the resulting Pareto set can serve as a
powerful tool to practical decision making.

The limitation of the work lies in the homogeneous diagram of the researched multi-
robot systems; the heterogeneous diagram is also an interesting topic and will be studied in
our future work. Another challenging work is dynamic task allocation after the robots are
sent to execute the tasks in a dynamic environment, which relates to dynamic programming,
distributed cooperation, etc.
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