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Abstract: The purpose of cross-domain sentiment classification (CDSC) is to fully utilize the rich
labeled data in the source domain to help the target domain perform sentiment classification even
when labeled data are insufficient. Most of the existing methods focus on obtaining domain transfer-
able semantic information but ignore syntactic information. The performance of BERT may decrease
because of domain transfer, and traditional word embeddings, such as word2vec, cannot obtain
contextualized word vectors. Therefore, achieving the best results in CDSC is difficult when only
BERT or word2vec is used. In this paper, we propose a Dual-word Embedding Model Considering
Syntactic Information for Cross-domain Sentiment Classification. Specifically, we obtain dual-word
embeddings using BERT and word2vec. After performing BERT embedding, we pay closer attention
to semantic information, mainly using self-attention and TextCNN. After word2vec word embedding
is obtained, the graph attention network is used to extract the syntactic information of the docu-
ment, and the attention mechanism is used to focus on the important aspects. Experiments on two
real-world datasets show that our model outperforms other strong baselines.

Keywords: cross-domain sentiment classification; word embedding; GAT

MSC: 68T50

1. Introduction

Sentiment classification is an important task in natural language processing, and
it can help people make better decisions in daily life [1,2]. Over the past few decades,
many machine learning methods have been introduced for classification tasks, such as
logistic regression, collaborative representation, support vector machines, and neural
networks [3–7]. With the development of the internet, a large number of user comments
and other texts containing sentiment have been generated from different domains. However,
the classical sentiment classification methods require that the training and testing data
come from the same domain [8,9]. In addition, the training of deep networks relies on
a large amount of labeled data, but texts in many domains lack sufficient labeled data.
Cross-domain sentiment classification (CDSC) is a promising direction that can make full
use of the rich labeled data in the source domain to assist the target domain with the lack
of labeled data for sentiment classification.

Traditional word-level vector representations, such as word2vec [10], glove [11],
and fastText [12], can use a single vector to represent all possible meanings of a word.
This method results in providing the same representation for words that express different
sentiment polarities in various domains. In recent years, pre-trained language models,
such as ELMO [13] and BERT [14], have been widely used in natural language processing
(NLP) tasks because they can obtain contextualized word embedding. Notably, BERT
has achieved state-of-the-art results on many NLP tasks because of its strong language
understanding capabilities. In cross-lingual tasks, multilingual BERT (mBERT) can share
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part of its representation space between languages [15]. In addition, the mBERT language
model has the ability to transfer syntactic knowledge cross-lingually, and can embed the de-
pendency parse tree of sentences cross-lingually [16]. This shows that Bert parse trees have
a strong ability to perform different tasks. However, some problems occur with directly
fine-tuning BERT in CDSC tasks [17]. One of the pre-training tasks of BERT is to randomly
MASK off 15% of the words, and when the words are filled back, various domains may
fill back different words. In addition, because no labeled data exist in the target domain,
fine-tuning only by the labeled data in the source domain reduces the performance because
of different training and test distributions. Therefore, using BERT or word2vec only to
obtain word vector embeddings in CDSC is insufficient. On the other hand, many current
models aim to learn transferable semantic information in CDSC to predict the sentiment
polarity of the target domain. However, in addition to semantic information, syntactic
information is equally important. Therefore, extracting transferable syntactic information
is important for CDSC tasks to better help target domain sentiment classification.

To solve the above problems, we propose a dual-word embedding model considering
syntactic information for CDSC. The model performs dual-word embedding through BERT
and word2vec to obtain rich word embedding information. Different from most previous
models that only consider semantic information, we adopt dual-channel to obtain transfer-
able semantic information and syntactic information. Semantic information is obtained by
self-attention and TextCNN. Syntactic information is obtained through the graph attention
network so that the aspects in the sentence can obtain syntactic information [18]. Then,
the attention mechanism is used to pay attention to important aspects so that the syntactic
information of aspects can play a role. Finally, domain-invariant features are obtained
through adversarial training. The contributions of our study can be summarized as follows:

• A CDSC method is proposed using BERT and word2vec to obtain dual-word embeddings;
• Dual-channel feature extraction and adversarial training to obtain transferable seman-

tic and syntactic information;
• Extensive experiments are conducted on two real-world datasets, and experimental

results show that our model achieves better results compared to other strong baselines.

2. Related Work
2.1. CDSC

CDSC aims to utilize the source domain with rich labeled data to help sentiment clas-
sification in the target domain without labeled data. The traditional CDSC method needs to
manually select pivots. Blitzer et al. [19] proposed the structural correspondence learning
(SCL) method. The most frequently used words in both domains are good predictors of
source domain labels, so they select the set of pivot features that appear most frequently
in both the source and target domains. Pan et al. [20] proposed spectral feature alignment
(SFA) for CDSC. They want to associate the source domain with the target domain by
aligning pivots with non-pivots. However, manually obtaining domain-invariant features
through these traditional methods is a time-consuming and expensive process. With the
rise of neural networks in recent years, many scholars have explored the application of deep
learning in CDSC tasks. Among them, the domain adversarial neural network (DANN) [21]
is explored to learn domain-invariant features in the min-max game between the domain
classifier and the feature extractor through adversarial training. Li et al. [22] proposed a
hierarchical attention transfer network (HATN) that can automatically capture pivots and
non-pivots through hierarchical attention and auxiliary tasks. Zhang et al. [23] designed an
interactive attention transfer network (IATN) that applies interactive attention to CDSC,
considering the influence of aspects in sentences. Yang et al. [24] proposed a dual-channel
mutual learning domain adaptive model. In recent years, BERT has been gradually ap-
plied to CDSC because of the advantages of the BERT pre-training model. Du et al. [17]
designed a domain-aware BERT (BERT-DAAT) to apply BERT to unsupervised CDSC
tasks. Du et al. [25] designed a Wasserstein-based transfer network (WTN) to obtain rich
domain-invariant features. Fu et al. [26] paid closer attention to the intra-domain structure,
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and they proposed domain adaptation with a contractible difference strategy. The success-
ful application of the attention mechanism improves classification accuracy substantially.
However, it is difficult to obtain syntactic information using attention. In this paper, we
consider adding a graph attention network to obtain transferable syntactic information.

2.2. Graph Attention Work

Graph neural networks have received extensive attention from scholars in recent years
because these networks allow the use of deep learning frameworks on graph structure
data [27–30]. At present, many mature neural network models can work on regular network
structures. Since the graph convolutional neural network (GCN) [31] was proposed as a
deep convolutional learning paradigm for graph structure data, it has filled the gap in the de-
velopment of deep learning for processing such data. To capture the dependencies between
discontinuous and long-distance words in a document, Vashishth et al. [32] used GCN to
characterize the dependency tree for each sentence in the document. However, the im-
portance of each node in the graph should be different, and a graph convolutional neural
network cannot deal with this situation. Therefore, some researchers have introduced
the idea of attention mechanism into the graph convolutional neural network. Veličković
proposed [33] graph attention network (GAT), which mainly improves GCN by using
the attention mechanism to aggregate the characteristics of discriminated neighbor nodes.
Therefore, compared with GCN, GAT can better handle dynamic graphs. Huang et al. [18]
used GAT to establish dependencies between words. Although it is common to use GCN
or GAT to obtain syntactic information in single-domain tasks, few people extract syntactic
information in CDSC tasks.

2.3. Word Embedding

Word vector representations transform words in natural language into a form that the
computer can recognize and understand [34]. We can obtain word vector representations
by using word embedding methods, such as word2vec and glove. Nguyen et al. [35]
applied a word2vec embedding model to construct a semantic vector for the plot content
of each movie. Wang et al. [36] trained their personality classification model on a shared
potential feature space by predictive text embedding. Naderalvojoud [37] et al. proposed
two methods to create sentiment-aware word embeddings, improving on the pre-trained
word embedding of the word2vec and gloVe models.

In recent years, BERT has received a lot of attention because it can learn contextualized
word representations. BERT is a bidirectional variant of the multilayer transformer, which
further integrates bidirectional representations. Jawahar et al. [38] revealed elements of the
English language structure learned by BERT. They also demonstrated that BERT captures
phrase-level information at the low layers, syntactic features at the intermediate layers,
and semantic features at the high layers. In addition, the information at lower layers is
diluted at higher layers. In this paper, we combine word2vec and BERT to obtain rich word
vector information. In addition, in order to prevent the low-layer information from being
diluted at the high-layer, we use the weighted sum of all layer information of BERT as the
input vector.

3. Methodology

In this section, we introduce the framework of DWE in technical detail. First, we
describe the problem and provide a model structure. Then, the training strategy is detailed.

3.1. Problem Definition

In the task of CDSC, we are given two domains, Ds and Dt, which denote a source
domain and a target domain, respectively. A set of labeled data {Xs, Ys} is used in Ds,
where {Xs, Ys} =

{
xs

i , ys
i
}Ns

i=1 presents Ns labeled samples in Ds. We also have a set of

unlabeled data {Xt} in Dt, where {Xt} =
{

xt
i
}Nt

i=1 presents Nt unlabeled samples in Dt.
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The goal of the CDSC task is to utilize the source domain with rich labeled data to assist
the target domain lacking labeled data for sentiment classification.

3.2. Model Structure

As shown in Figure 1, DWE mainly contains three parts: feature extraction module,
domain discriminator, and sentiment classifier. The feature extraction module uses dual
channels to obtain semantic information and syntactic information. The domain discrimina-
tor obtains domain-invariant features. The sentiment classifier uses the softmax activation
function to obtain the probability of the sentiment label.

Source data

Attention

Domain

discriminator

Sentiment

classifier

Attention

Text CNN

𝒆𝟏
𝑩BERT 𝒆𝟐

𝑩 𝒆𝒍
𝑩

𝒆𝟏
𝑾 word2vec𝒆𝟐

𝑾 𝒆𝒍
𝑾

Bi-GRUBi-GRU

GRL

Target data

Bi-GRU

GAT

…

…
…

…
…

…
…

…

Feature 

extraction

Figure 1. Model architecture.

3.3. Feature Extraction

To get rich word embedding information, we use BERT and word2vec to obtain dual
word embedding. After obtaining different word embeddings, a dual channel is formed to
extract transferable semantic information and syntactic information.

3.3.1. Bert Semantic Channel

In this channel, we mainly extract semantic information. We first use BERT to obtain
word vectors. To prevent the loss of some information, unlike in the general final hidden
state using the BERT structure, we apply an approach similar to that by Du et al. [25], using
the weighted sum of all hidden states as the input vector. We define the nth hidden state
of the mth layer as hm

n . We suppose that a document contains S sentences with k words,
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and wi is the ith word of the input document. wi is tokenized to q BPE (byte pair encoding)
tokens wi =

{
b1

i , b2
i , . . . , . . . , bn

i
}

. The word vector obtained by BERT can be defined as

eB
i =

L

∑
m=1

αm ·
∑

q
n=1 hm

n
q

(1)

where αm and L are the weight coefficients of layer m and the number of hidden state
layers of BERT, respectively. BiGRU is the variant of BiLSTM, which has the ability to learn
long-term dependencies. We can use BiGRU to build sequential information about words
or sentences. Thus, we then input the word vector into BiGRU to obtain the hidden states

hB
i = BiGRU

(
eB

i

)
(2)

Different words in a sentence have different effects on sentence sentiment because these
words express different semantic information. The attention mechanism can pay attention
to the words that play an important role in sentence sentiment according to attention
coefficient. In this paper, we use self-attention to calculate word-to-word associations in
sentences, which can focus on words that have a stronger impact on sentence sentiment.
Attention scores were calculated as follows:

gB
i = tanh

(
W ∗ hB

i + b
)

(3)

where W and b represent the learnable weight matrix and bias in the network, respectively.
Furthermore, we normalized the attention scores by using the softmax activation

function to generate the attention coefficients αB
i for each word

αB
i =

exp
(

gB
i
)

∑n
i=1 exp

(
gB

i
) (4)

The attention coefficient is combined with the hidden state obtained by BiGRU to
obtain the sentence vector sB

sB =
k

∑
j=1

αB
j · hB

j (5)

where · indicates the element-wise product. After obtaining sentence vectors, TextCNN [39]
is used to further extract important semantic information that mainly includes convolution
layer and pooling layer. First, we input the sentence vector to the convolution layer and the
convolution operation involves the filter wcnn

cB = F
(

wcnn ◦ sB + bcnn

)
(6)

where ◦ represents the convolution operation, bcnn is the bias term, and F is a nonlinear
function such as Relu. Then, max pooling is performed to retain important features. Finally,
dropout prevents overfitting to obtain the sentence representation of the semantic channel.
The relevant formulas are the following:

cB
p = Maxpooling

(
cB
)

(7)

dB = dropout
(

cB
p

)
(8)

3.3.2. Word2vec Syntax Channel

In this channel, we first use word2vec to obtain the word vector representation

ew
i = word2vec(wi) (9)
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Then, input the word vector into BiGRU to extract the sentence representation. The hid-
den output of BiGRU can be expressed as follows:

hw
i = BiGRU(ew

i ) (10)

To obtain syntactic information, the syntax dependency tree of the given sentence
is built in advance, and then the tree structure is converted into a graph structure in
which each node represents a word. Given a dependency graph with N nodes, the node
representation is computed by aggregating the hidden states of the neighborhood. After l
layers of GAT, the last layer outputs the syntactic representation. The output of the ith node
at layer l is defined as gl

i , and g0
i indicates the initial node status, g0

i = hw
i . The node update

process is as follows:
el

ij = leakyRelu
(

αlT
(

W l
ggl

i‖W l
ggl

j

))
(11)

αl
ij =

exp
(

el
ij

)
∑k∈N(k) el

ik
(12)

gl+1
i = σ

 ∑
j∈N(i)

αl
ijW

l
ggl

i

 (13)

where W l
g and αlT

are trainable weight matrices and weight vectors, respectively. ‖ repre-
sents vector concatenation. el

ij is the raw attention score between the ith and jth nodes. N(i)

is the set of all adjacent nodes. αl
ij is the normalized attention weight. σ denotes a Relu

activation function. For simplicity, we can write such feature propagation process as

gl+1
i = GAT

(
gl

i , A, θl

)
(14)

where A is the graph adjacent matrix and θl is the set of parameters at layer l. Finally,
we input the syntactic representation into BiGRU and Attention. BiGRU can build the
long-term dependencies of sentences in a document. Attention mechanism can make the
syntactic information of important aspects in syntactic representation play a more critical
role. Thus, we obtain the final representation of the syntactic channel:

Hw
i = BiGRU(gw

i ) (15)

αw
i =

exp
(
tanh

(
WwHw

i + bw
))

∑n
i=1 exp

(
tanh

(
Ww Hw

i + bw
)) (16)

dw =
k

∑
j=1

αw
j · Hw

j (17)

where αw
i , · , Ww and bw represent the attention weight, the element-wise product, the learn-

able weight matrix, and bias in the network, respectively.

3.3.3. Final Document Representation

The final document representation is obtained by concatenating the document repre-
sentation of the two channels as follows:

d =
[
dB, dw

]
(18)
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3.4. Sentiment Classifier

The ultimate goal of our task is to predict sentiment labels. In this module, we use the
softmax activation function to obtain the sentiment prediction label for the document

y = so f tmax
(
Wyd + by

)
(19)

where Wy and by represent the learnable weight matrix and bias, respectively.

3.5. Domain Discriminator

The purpose of the domain discriminator (D) is to enable the feature extractor (FE) to
learn domain-invariant representations. We consider using adversarial training. The do-
main discriminator tries to find out which domain the document vector comes from, while
the feature extractor aims to deceive the domain discriminator so that it cannot distinguish
which domain the document comes from and achieve the purpose of domain information
transfer. The domain discriminator regards the document representation obtained by the
feature extractor as input and outputs the probability that the document comes from the
source domain. If a document belongs to the source domain, we set ri = 1. For the target
domain, we set ri = 0. To better solve this problem, we introduce a gradient reversal layer
(GRL) that can reverse the gradient direction during training. We can treat the gradient
reversal layer as a pseudo function G(x). Through the domain discriminator, we can obtain
domain-invariant features. Formally, the domain discriminator performs a min-max game
to optimize the parameters ΘFE and ΘD as follows:

d̃ = G(d) (20)

y′d = so f tmax
(
Wdd̃ + bd

)
(21)

ΘFE, ΘD = argmax
ΘFE

min
ΘD

Ldom (22)

Ldom = −
(
ri Iny′d + (1− ri)In(1− y′d)

)
(23)

where Ldom, ΘFE, and ΘD represent the domain loss, parameters of the feature extractor,
and parameters of the domain discriminator, respectively.

3.6. Training Strategy

We apply the cross-entropy loss function to the sentiment classifier to obtain the
sentiment classification loss

Lsen = −
(
y′ Iny + (1− y′)In(1− y)

)
(24)

where y′ represents the ground truth of the sentiment label. Furthermore, we obtain our
total loss function

Ltotal = Lsen + Ldom + ρLreg (25)

Lreg = λ‖θ‖2 (26)

where Lreg, ρ, λ, θ represents the L2 regularization term which can avoid overfitting, reg-
ularization parameter, hyperparameters, and all parameters in the network, respectively.
The regularization term can automatically weaken unimportant feature variables, auto-
matically extract important feature variables from many feature variables, and reduce the
magnitude of feature variables.

4. Experiment
4.1. Datasets

To verify the effectiveness of the proposed model, we used two datasets which are
obtained from Amazon product reviews. Dataset 1 has been widely used in CDSC tasks.
It contains reviews from four different domains: Books (B), DVDs (D), Electronics (E),
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and Kitchen (K). A total of 2000 labeled data are in each domain, consisting of 1000 positive
reviews and 1000 negative reviews. We selected 800 positive and 800 negative reviews in
the source domain as the training data; 1600 in the target domain for domain classification;
and the remaining 200 positive reviews and 200 negative reviews in the target domain as
the test data. Table 1 records the details of Dataset 1.

Dataset 2, constructed by He et al. [40], contains data for three sentiment labels, namely,
positive, neutral, and negative, so this dataset is more convincing. Dataset 2 also contains
data from four domains: Book (BK), Beauty (BT), Music (M), and Electronics (E). Each
domain has two types of data: Set 1 and Set 2. Set 1 is balanced, with 2000 data for each
sentiment label, while Set 2 is unbalanced. For Dataset 2, we choose processing similar to
that used by Du et al. [25], using balanced Set 1 as the training data of the source domain,
and using unbalanced data Set 2 as the training data of the target domain. We selected 1200
reviews from the training set of the source domain as the development set. The balanced
data Set 1 from the target domain is used as the test set. Table 2 presents an overview of
the datasets.

Table 1. Statistics of Dataset 1.

Domain Positive Negative Vocabulary

Books 1000 1000 26,278
DVD 1000 1000 26,940

Electronics 1000 1000 13,256
Kitchen 1000 1000 11,187

Table 2. Statistics of Dataset 2.

Domain Positive Negative Neutral

Book
Set1 2000 2000 2000

Set2 4824 513 663

Beauty
Set1 2000 2000 2000

Set2 4709 616 675

Music
Set1 2000 2000 2000

Set2 4441 785 774

Electronics
Set1 2000 2000 2000

Set2 4817 694 489

4.2. Experiment Setup

In the experiment, we use the common word2vec and BERT to obtain dual-word em-
bedding. First, we use 300-dimensional word2vec vectors as one of the word embeddings,
which are trained on 100 billion words from Google News. Then, we fine-tune it during the
training. We use uniform distribution U (−0.25,0.25) to randomly initialize words outside
the vocabulary. In addition, we use BERT with 12 layers, 768 hidden units, 12 self-attention
heads, and 110 million parameters as another word embedding. The dimension of the
attention vector is set to 200. The dimension of the feature representation in each field
and the maximum word number of every review are set to 200. The weight matrix in the
network is randomly initialized from the uniform distribution U (−0.01,0.01). The dropout
rate is 0.5 to prevent overfitting. The number of GAT layers is set to 3, and Adam algorithm
is used as the optimizer.

4.3. Experimental Results

Following previous studies, we apply the accuracy rate as the evaluation standard.
The accuracy rate is the percentage of correctly classified data in the total data. The best
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results are highlighted in bold. We compare the proposed model DWE with some classic
baselines as follows:

• DANN [21]: The model is trained using the domain adversarial network approach,
including GRL for domain obfuscation;

• AuxNN [41]: The model uses auxiliary tasks for CDSC;
• AMN [42]: The model is based on memory network and the adversarial training

method to obtain domain-invariant features;
• DAS [40]: It uses feature adaptation and semi-supervised learning to improve classi-

fiers while minimizing domain divergence;
• HATN [22]: The hierarchical attention network is used for CDSC, and pivots and

non-pivots features are extracted to assist classification tasks;
• IATN [23]: Interactive attention mechanism is used to connect sentences with impor-

tant aspects;
• WTN [25]: A Wasserstein-based transfer network is used to obtain domain-invariant fea-

tures;
• PTASM [43]: The attention-sharing mechanism and parameter transferring method

are used for CDSC;
• DWE w/o BERT: The BERT word embedding is removed from our proposed model;
• DWE w/o word2vec: The word2vec word embedding is removed from our pro-

posed model.

Table 3 records the classification accuracy of different models on Dataset 1. The results
show that our proposed model DWE achieves the best performance on 11 cross-domain
pairs. Our model outperforms DANN by 12.24%, AMN by 9.64%, DAS by 9.44%, HATN
by 6.74%, IATN by 5.64%, WTN by 1.14%, and PTASM by 0.44% on average. DAS uses
entropy minimization and self-integration methods to refine its classifier, which improves
the experimental results compared with DANN and AMN. The addition of attention has
greatly improved HATN and IATN compared with DAS, reflecting the effectiveness of
the attention mechanism. Both WTN and PTASM have applied BERT to CDSC, which has
been greatly improved compared with previous methods. WTN is based on Wasserstein
distance as a domain discrepancy learning module, while PTASM uses an attention transfer
mechanism and hierarchical attention to improve target domain classification. Different
from previous methods, our proposed model uses dual-word embedding to make up for the
deficiency of single word embedding. Our model also considers both transferable semantic
information and syntactic information, which may be the reason for the improvement of
our model.

Table 3. Classification accuracy of various models on Dataset 1.

S → T DANN AMN DAS HATN IATN WTN PTASM DWE

B→ D 0.8330 0.8450 0.8390 0.8590 0.8680 0.9090 0.9012 0.9150
B→ K 0.7920 0.8090 0.8220 0.8470 0.8590 0.8840 0.9060 0.9100
B→ E 0.7730 0.8030 0.8120 0.8490 0.8650 0.8960 0.9010 0.9075

D→ B 0.8050 0.8360 0.8190 0.8600 0.8700 0.9080 0.8990 0.9125
D→ E 0.7980 0.8050 0.8160 0.8510 0.8690 0.9150 0.9110 0.9150
D→ K 0.8080 0.8160 0.8140 0.8580 0.8580 0.8910 0.9080 0.9100

K→ B 0.7490 0.8010 0.8020 0.8260 0.8470 0.9160 0.9210 0.9250
K→ E 0.8320 0.8540 0.8590 0.8640 0.8760 0.9190 0.9190 0.9200
K→ D 0.7680 0.8120 0.8150 0.8400 0.8440 0.8890 0.9140 0.9150

E→ K 0.8380 0.8580 0.8490 0.8760 0.8870 0.9320 0.9170 0.9300
E→ B 0.7350 0.7740 0.7970 0.8060 0.8180 0.9010 0.9140 0.9175
E→ D 0.7790 0.8170 0.8020 0.8380 0.8410 0.8920 0.9070 0.9075

Average 0.7930 0.8190 0.8210 0.8480 0.8590 0.9040 0.9110 0.9154
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Furthermore, we also compare our proposed model DWE with other baseline models
on Dataset 2 and conduct ablation experiments simultaneously.

Table 4 records the classification accuracy on Dataset 2. We can see that our model
DWE has the best performance among all cross-domain pairs. Our model outperforms
AuxNN by 9.5%, DAS by 6.5%, and WTN by 3.8% on average, which demonstrates the
effectiveness of our proposed model. On the other hand, after removing BERT word
embedding and word2vec word embedding, the average performance decreases by 8.9%
and 1.9%, respectively, which demonstrates the validation of the proposed dual-word
embedding. The possible reason is that the single word embedding causes the model to
lose part of the information, especially after removing the BERT word embedding, where a
large amount of context-related information is lost.

Table 4. Classification accuracy of various models on Dataset 2.

S → T AuxNN DAS WTN DWE w/o
BERT

DWE w/o
word2vec DWE

BK→ BT 0.478 0.547 0.576 0.5160 0.558 0.588
BK→ E 0.482 0.539 0.579 0.504 0.559 0.587
BK→M 0.488 0.535 0.582 0.551 0.587 0.603

BT→ BK 0.585 0.633 0.640 0.550 0.643 0.655
BT→ E 0.591 0.598 0.631 0.571 0.650 0.654
BT→M 0.536 0.560 0.576 0.534 0.600 0.615

M→ BK 0.582 0.608 0.623 0.591 0.686 0.692
M→ BT 0.469 0.497 0.545 0.499 0.588 0.595
M→ E 0.494 0.529 0.545 0.485 0.583 0.603

E→ BK 0.577 0.552 0.588 0.570 0.579 0.646
E→ BT 0.544 0.560 0.590 0.544 0.644 0.654
E→M 0.523 0.554 0.561 0.505 0.577 0.592

Average 0.529 0.559 0.586 0.535 0.605 0.624

4.4. Case Study

To demonstrate the role of the proposed DWE model, we selected a piece of data from
BK as our case analysis and compared it with WTN when BT was the source domain and
BK was the target domain. Figure 2 shows the attention weights of the DWE and WTN for
the sample. The darker the color, the higher the attention weight.

Figure 2. Case Study of Book Domain.

Figure 2 shows that the WTN model focuses more on “alot” and “love,” while our
proposed DWE model focuses more on the most important sentiment word “profound”.
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The main reason may be that the syntactic module we added allows “profound” and “book”
to establish a syntactic connection, thereby focusing on the more important sentiment word.

4.5. Visualization of Feature Representation

In this section, we visualize the data in two cross-domain pairs, namely, M→ BK and
BT→ E in Dataset 2. Figure 3 shows the feature representation of M as the source domain
and BK as the target domain. Figure 4 shows the feature representation of BT as the source
domain and E as the target domain.

Figure 3. Visualization of feature representation on M→ BK.

Figure 4. Visualization of feature representation on BT→ E.

Figures 3 and 4 show that the sample features of two different domains are aligned.
No obvious boundary exists between the two domains, and distinguishing between them
is difficult. This condition shows that the two domains can share the learned feature
representation, and the information from the source domain can be transferred to the
target domain.
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5. Conclusions

In this paper, we proposed a dual-word embedding model considering syntactic
information for CDSC. The dual-word embedding is obtained through BERT and word2vec;
then, the transferable syntactic information and semantic information are obtained by
combining dual channel and adversarial training. Experiments showed that our model
achieved better results on two real-world datasets. In future work, we will apply the model
to cross-domain aspect-based sentiment analysis.
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