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Abstract: In this paper, a quasi-quadratic online adaptive dynamic programming (QOADP) algo-
rithm is proposed to realize optimal economic dispatch for smart buildings. Load demand of high
volatility is considered, which is modeled by an uncontrollable state. To reduce residual errors of
the approximation structure, a quasi-quadratic-form parametric structure was designed elaborately
with a bias term to counteract effects of uncertainties. Based on action-dependent heuristic dynamic
programming (ADHDP), an implementation of the QOADP algorithm is presented that involved ob-
taining optimal economic dispatch for smart buildings. Finally, hardware-in-loop (HIL) experiments
were conducted, and the performance of the proposed QOADP algorithm is superior to that of two
other typical algorithms.

Keywords: adaptive dynamic programming; smart buildings; economic dispatch; energy management
systems

MSC: 37N35

1. Introduction

The world is seeing tremendous growth in independent smart buildings due to the de-
velopment of generators and battery techniques. When distributed generators and storage
equipment are connected to smart buildings, there are new challenges for traditional energy
management mechanisms due to uncertainties of user behaviors. These uncertainties are
likely to result in a load demand sequence with high volatility. Therefore, an intelligent
energy management system with the ability to confront with the uncertainties is necessary
for smart buildings to realize optimal and economic dispatch.

1.1. Literature Review

Optimal economic dispatch is generally formulated as an optimization problem [1,2].
Therefore, traditional optimization techniques are widely adopted to obtain optimal eco-
nomic dispatch solutions. The convex optimization algorithm is a fundamental and well-
developed method for dispatch tasks. In [3], the authors developed a Lyaponov-based
optimization method for a transformed problem of the original non-convex problem.
In [4], a robust convex optimization algorithm was designed for single-phase or balanced
three-phase microgrids with adverse conditions of random demand and renewable energy
resources. In [5], a chance-constraint-based stochastic optimization technique was applied
to design an optimal energy scheduling policy for multi-service battery energy storage.
However, it is still very difficult for some nonlinear and strongly coupled problems to
be transformed into a convex formulation. Motivated by the development mechanism in
nature, heuristic algorithms were developed to search for optimal solutions in the feasible
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domain. In [6], the authors developed a particle swarm optimization-based algorithm to
form a reliable hybrid microgrid with optimal economic dispatch for non-sensitive loads
and energy storage systems. In [7], a genetic-algorithm-based, online, real-time optimized
energy management strategy was proposed for plug-in hybrid electric vehicles. Most of the
literature above focused on static optimization problems whose solutions were in a space
with finite dimensions. For optimization problems of dynamical systems, dynamic pro-
gramming is a promising technique, since the optimality principle simplifies the numerical
computation. In [8], the authors developed a two-scale dynamic-programming-based opti-
mal energy management method for wind–battery-power systems. A multidimensional
dynamic-programming-based energy control policy was proposed for global composite
operating cost minimization in [9]. However, dynamic programming suffers from the so-
called “curse of dimensionality” as the number of time steps increases. The solution space
evolves with a exponential rate, which hinders the application of dynamic programming.

To avoid the “curse of dimensionality”, adaptive dynamic programming (ADP) was
developed to solve the optimal economic dispatch problem with unknown system dy-
namics [10]. One can refer to [11,12] for the pioneering work and an overview of ADP.
Due to its self-learning ability and adaptivity, it is popular in optimal economic dispatch
problems of smart buildings. An optimal battery-control policy was obtained by designing
a time-based ADP algorithm for residential buildings in [13]. In [14], the authors designed
action-dependent, heuristic dynamic programming-based algorithms for optimal economic
dispatch of multiple buildings. In [15], the authors proposed a temporal difference learning-
based ADP algorithm for fast computation. In a recent work [16], a novel, model-free,
real-time RT-ADP algorithm was verified in a hardware-in-the-loop experimental platform.
However, models studied in the above literature are deterministic. In engineering practice,
uncertainties are inevitable in most circumstances. Therefore, ADP was developed for opti-
mal economic dispatch of smart buildings with uncertainties in the past few years [17–20].
To make the ADP algorithms more convincing, stability analysis was provided for ADP
algorithms of energy systems in [21–25]. In [21], the authors proposed a dual, iterative
Q-learning algorithm to solve the optimal battery-control law for a smart microgrid. Ex-
tensions of [21] were created in [23] for cases with renewable generation and in [22] for
cases with actuator constraints. For application in appliance-level economic dispatch, a
data-based ADP algorithm was studied for ice-storage air conditioning systems in [24].
The above works commonly assumed that the load demand of users is periodic. However,
the load demand of users is random with high volatility in practice; thus, the periodic
assumption cannot be satisfied in most real cases.

In the implementation of an ADP algorithm, the design of a function approximator
shows significant effects on the performance of the overall algorithm. The feedforward
neural network is the most commonly used as a function approximator. Leaving aside
feedforward neural networks, the authors of [26] employed an echo-state networks as a
parametric structure. The authors of [27] approximated the iterative value function by a
fuzzy structure. However, these general-function approximators were employed without
considering features of the considered systems, which can result in large residual errors.

1.2. Motivation and Contributions

According to the above discussion, the existing algorithms are mainly concerned
with optimal economic dispatch for smart buildings with periodic load demands. In
practice, load demands are not periodic due to uncertain user behaviors, and even with
high volatility, which inspires the study of our work. In this paper, a QOADP algorithm is
proposed to obtain the optimal economic dispatch for smart buildings with high volatility
load demand. A quasi-quadratic form parametric structure is designed elaborately to
approximate the value function precisely. Compared with the existing literature, the main
contributions of this paper are listed as follows:
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1. A kind of online ADP is proposed to iteratively obtain optimal economic dispatch for
smart buildings with high volatility of load demand. The online algorithm allows
parameters of controller to achieve optimal control with the changing of load demand.

2. A quasi-quadratic form parametric structure is designed for the implementation
of QOADP with a bias term to counteract the effects of uncertainties. To simplify
the function approximation structure in the proposed algorithm, the feedforward
information of the uncontrollable state is taken into account in the iterative value
function and the iterative controller.

The rest of this paper is organized as follows. In Section 2, the mathematical model
for the EMS is established. In Section 3, the QOADP is proposed for the EMS, and the
optimality is analyzed. Then, parametric structures are designed for implementation. In
Section 4, the data-driven approach is proposed. Section 5 provides hardware-in-loop (HIL)
experimental results of the proposed method, verifying the effectiveness of QOADP. In
Section 6, conclusions are drawn.

2. EMS of Smart Buildings

A smart building is composed of an utility grid; an energy storage system, which is
connected to the point of common coupling (PCC) with the power electronic converter;
and the building load. The diagram of the EMS of a smart building is shown in Figure 1.

Figure 1. EMS of a smart building.

Power balance at the PCC is

PG(t) = PL(t)− PB(t) (1)

The battery model is

d[SOC(t)]
dt

=


η

EB,rate
PB(t), PB(t) ≥ 0

1
ηEB,rate

PB(t), PB(t) < 0
(2)

where PB(t) ≥ 0 denotes battery charging and PB(t) < 0 denotes battery discharging. In
reality, dispatch of the storage system must satisfy the following constraints:

SOCmin ≤ SOC(t) ≤ SOCmax (3)

|PB(t)| ≤ PB,rate (4)

Constraint (3) makes sure the battery energy is bounded within an allowable range.
Constraint (4) limits the charging/discharging power of the battery.
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The transition function of the load demand in continuous form can be defined as

ṖL(t) = g(PL(t)) (5)

The optimal energy management problem is formulated as a discrete-time control
problem with τ = 1 h, which is consistent with the real-time price (RTP). Using the Euler
method with τ = 1 h leads to

SOC(kτ + τ) = SOC(kτ) + (sgn(PB(kτ)) · η

EB,rate

+ sgn(PB(kτ)) · 1
ηEB,rate

)PB(kτ)
(6)

PL(kτ + τ) = PL(kτ) + τg(PL(kτ))

= ĝ(PL(kτ))
(7)

PG(kτ) = PL(kτ)− PB(kτ) (8)

According to (6)–(8), the state of the system is defined as xk = [PG(kτ), SOC(kτ)−
SOCref, PL(kτ)]T , i.e., x1,k = PG(kτ), x2,k = SOC(kτ) − SOCref, x3,k = PL(kτ). Let
uk = PB(kτ) be the control vector.

For convenience of analysis, delays are introduced in PB(t) and PL(t). Therefore, the
discrete-time building management system is

x̄k+1 = Ax̄k + Buk + Dx̂k

x̂k+1 = g′(x̂k)
(9)

where x̄k = [x1,k x2,k]
T is controllable and x̂k = x3,k is uncontrollable. The drift, input and

disturbance dynamics of controllable subsystem are A = diag(0, 1), B = [−1 sign(uk) ·
η

EB,rate
+ sign(uk) · 1

ηEB,rate
]T and D = [1 0]T , respectively.

It should be noted that the building energy system (9) is partly controllable, since it is
assumed that users in the building are not sensitive to the electricity price. Differently from
completely controllable systems, the system state will deviate from the equilibrium point.
There is not a continuous control law µ(xk) asymptotically stabilizing the system. Hence,
no fixed optimal control law µ∗(xk) is able to maintain the optimality from step k to +∞.

It is essential for smart building users to find appropriate discharging/charging power
of battery to reduce the electricity cost under the RTP scheme. Hence, EMS is designed
to maximize economic benefits of users and extend the battery life. Therefore, a utility
function is defined as

U(xk, uk, k) = m1(λkx1,k)
2 + m2x2

2,k + m3x2
3,k + m4uT

k uk

= zT
k Mkzk

(10)

where Mk = diag(m1λ2
k , m2, m3, m4) is a time-varying matrix due to dynamic price. The

first term denotes the electricity cost, the second term represents the depth of discharge
and the fourth term is to shorten the charging/discharging cycle. The utility function is
continuous positive definite, which ensures that the performance index function is convex.
Then, the performance index function can be defined as the sum of utility functions from
time step k to ∞—i.e.,

J(xk, uk, k) =
∞

∑
i=k

γiU(xi, ui, i) (11)

Now, our goal is to design an optimal control sequence u∗k = {u∗k , u∗k+1, · · · } which
minimizes the performance index function (11). For ∀k, the optimal control is
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u∗(xk) = arg min
u
{U(xk, uk, k) + γJ∗(xk+1, k + 1)} (12)

where
J∗(xk, k) = min

u
{U(xk, uk, k) + γJ∗(xk+1, k + 1)} (13)

The discount factor γ should be less than one to ensure convergence of the series.

3. Building Energy Management Strategy

In this section, a QOADP-based building energy management strategy is proposed to
solve the optimal control problem formulated in Section 2. Moreover, the iterative QOADP
algorithm and the corresponding parametric structure are designed.

3.1. Iterative QOADP Algorithm

ADP is an effective tool for solving the nonlinear optimal control problem based on
the principle of optimality [11,12]. Generally, the iterative ADP algorithm can be classified
into value iteration (VI) and policy iteration (PI). The main idea of ADP is the solution of
the Hamilton–Jacobi–Bellman (HJB) equation can be iteratively approximated. We focus on
the value iteration in this study.

The building energy system in Section 2 is time-varying, since the utility function varies
with time. Hence, the performance index function J∗ is time-varying; i.e., J∗ = J∗(xk, k).

An initial value function V0(x, 0) is used to approximate J∗(x, 0). Then, the initial
iterative control policy µ0(x, 0) can be solved by

µ0(xk, 0) = arg min
u
{U(xk, u, 0) + γV0(xk+1, 0)}

= arg min
u
{U(xk, u, 0) + γV0(F(xk, u, 0), 0)}

(14)

Next, the iterative value function at time index k = 0 can be improved by

V1(xk, 0) = U(xk, µ0(xk, 0), 0) + γV0(xk+1, 0) (15)

For k = 0, i = 1, 2, · · · , the iterative control policy and iterative value function can be
updated by

µi(xk, 0) = arg min
u
{U(xk, u, 0) + γV0(xk+1, 0)} (16)

and
Vi+1(xk, 0) = U(xk, µi(xk, 0), 0) + γVi(xk+1, 0) (17)

For k = 1, 2, · · · , the real-time iterative control policy and the updating iterative value
function will be obtained by

µi(xk, k) = arg min
u
{U(xk, u, k) + γVi(xk+1, k)} (18)

Vi+1(xk, k) = U(xk, µi(xk, k), k) + γVi(xk+1, k) (19)

The above description explains the offline iterative algorithm. However, it is nearly
impossible to be applied in the real engineering tasks. The reasons are listed as follows:

(1) The number of iterations is infinite between time step k and time step k + 1, which
cannot be carried out.

(2) The iterative control policy obtained by finite iterations µi(xk, k) may not be stable.
Hence, it is likely to lead to abnormal operations of the system.

To overcome the difficulties, it is meaningful to develop an online algorithm, in which
the time index k is equal to iteration index i. Hence, the online value iteration can be
summarized as

µk(xk, k) = arg min
u
{U(xk, u, k) + γVk(xk+1, k)} (20)
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and
Vk+1(xk, k) = U(xk, µk(xk, k), k) + γVk(xk+1, k) (21)

with a positive semidefinite initial function V0(xk, 0). The whole structure diagram is
shown in Figure 2.

Figure 2. The structure diagram of online value iteration.

Note that the online value iteration cannot directly be applied to the EMS, as it is not
completely controllable, which differs from most nonlinear systems in the literature [22,28,29].
For controllable systems, there is an admissible control law [30] to bring states of systems to
the equilibrium point. Hence, the discount factor should not be omitted in the EMS control.
Moreover, the dynamics of load demand is very complex and stochastic. However, it is not
desirable to use a complex controller in the real application.

To solve this problem, load forecasting module is separated from the controller, and
the controller µk(xk, k) is modified by µk(xk, ¯̂xk+1, k), where ¯̂xk+1 is the predictive value of
load demand at time step k. The predictive module can be implemented by an exponen-
tial smoothing model [31], neural network model, etc. Therefore, the complexity of the
controller is reduced, which is beneficial for the real application.

3.2. Parametric Structure Design for Value Function

Function approximation structures should be specified to approximate Vk and µk.
The most commonly used parametric structures are the feedforward neural network [32]
and quadratic form neural network [33]. However, they are not the most fitting function
approximators to be used in EMS. Here, the iterative value function and iterative control
policy are defined as

Vk(xk, k) = xT
k P0,kxk + P1,kxk + P2,k (22)

and
µk(xk, k) = Kkxk + bk. (23)

where the coefficients of (22) and (23) can be expressed as

Kk =− (2m4 + 2γBTP̃011,kB)−1×

[2γBTP̃T
011,k A 2γBTP̃T

011,kD]
(24)

bk =− (2m4 + 2γBTP̃011,kB)−1×

(2γBTP̃T
021,k x̂k+1 + γP̃111,kB)

(25)

P0,k+1 = Ms + KT
k MuKk + γ([A 0]TP̃011,k[A 0]

+ [A 0]TP̃011,kBKk + KT
k BTP̃011,k[A 0]

+ KT
k BTP̃011,kBKk)

(26)
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P1,k+1 = 2bT
k MuKk + γ{[P̃111,k A 0] + P̃111,kBKk+

[(ATP̃012,k x̂k+1)
T + x̂k+1P̃021,k A 0]+

(KT
k BTP̃012,k x̂k+1)

T + x̂T
k+1P̃021,kBKk+

(Bbk + Dx̂k)
TP̃011,k([A 0] + BKk)+

(Bbk + Dx̂k)
TP̃T

011,k([A 0] + BKk)}

(27)

P2,k+1 = bT
k Mubk + γ[P2,k + P̃111,k(Bbk + Dx̂k)

+ P̃112,k x̂k+1 + ((Bbk + Dx̂k)
TP̃012,k x̂k+1

+ x̂T
k+1P̃021,k(Bbk + Dx̂k) + x̂T

k+1P̃022,k x̂k+1)

+ (Bbk + Dx̂k)
TP̃011,k(Bbk + Dx̂k)

(28)

The iterative control law is composed of a proportional control term and a bias vector.
If the load demand x̂k = 0 for ∀k = 0, 1, · · · , it becomes a standard LQR problem. The
challenge of this paper comes from the dynamic load demand x̂k. To solve this problem, the
bias term bk is designed to confront with effects of the uncontrollable state x̂k. It is should
be pointed out that the bias term at time k is a function of x̂k+1. Moreover, (25) shows
that the bias term is a function of x̃k+1, which means that the optimal controller contains
feedback and feedforward signals.

4. Implementation of the Proposed Algorithm

The recursive formula for parameters of the iterative value function is given in
Section 3, but one still can hardly identify parameters of the EMS. Therefore, an online
data-driven implementation is necessary.

To carry out the above online iterative ADP algorithm, it is required to design a
parametric structure to approximate µk(xk) and Vk(xk). The output of the parametric
structure is formulated as

F̃(X; ω) = ωTσ(X) (29)

where σ(·) ∈ Rl , and l is the dimension of vector σ(·).
The ADHDP technique is adopted to implement the QOADP algorithm, which combines

the system dynamics and iterative value [34]. The Q function for ADHDP is defined as

Qk(xk, uk) = ωT
c σc(zk)

= Vk(F(xk, uk))
(30)

Inputs of the parametric structure of iterative Q function are xk and uk, and the
activation function σc(zk) is defined as

σc(zk) =[x2
1,k x1,kx2,k x1,kx3,k x1,kuk x2

2,k x2,kx3,k

x2,kuk x2
3,k x3,kuk u2

k x1,k x2,k x3,k uk 1]T
(31)

The input of the iterative control policy is xk, and the activation function σa(xk) is
defined as

σa(xk) =[x1,k x2,k x3,k 1]T (32)

The target of function Q is

Qk+1(xk, uk) =xT
k Qkxk + uT

k Ruk

+ Q̃k(x̃k+1, µk(x̃k+1))
(33)
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The error of Q function can be defined as

Ec,k(ωc,k) = (Q̃k(xk, uk; ωc)−Qk+1(xk, uk))
2 (34)

and the parameter-update rule for ωc,k is a gradient-based iteration given by

ωc,k|m+1 = ωc,k|m − αc
∂Ec,k|m
∂ωc,k|m

(35)

where αc is the learning rate of the iterative Q function and m is the iterative step for
updating ωc,k. Define the maximum number of iteration steps asM; then,

ωc,k+1 = ωc,k|M (36)

The target of the iterative control policy is given by

µk(xk) = arg min
u
{U(xk, uk, k) + Q̃k(xk+1, u)}. (37)

Additionally, error of the iterative control policy is

Ea,k(ωa,k) = (µ̃k(xk; ωa)− µk(xk))
2 (38)

Similarly, the weight update is

ωa,k|m+1 = ωa,k|m − αa
∂Ea,k−1|m
∂ωa,k−1|m

(39)

where αa is the learning rate of the iterative control policy

ωa,k = ωc,k−1|M (40)

In summary, the data-driven QOADP algorithm implemented by parametric structures
is shown in Algorithm 1.

Algorithm 1: Data-driven QOADP algorithm
Initialization:
1: Collect data of an EMS
2: Choose an initial array of ωc,0, which ensures initial Q0(·) to be positive
semi-definite.

3: Choose the maximum time step Tfinal.
Iteration (Online):
4: Let k = 0, and let Q0(xk, uk) = Q0(xk, uk; ωc,0).
5: Calculate µ0(xk) and Q1(xk, uk) by (37) and (33) (k = 0).
6: Let k = k + 1.
7: Calculate µk(xk) and Qk+1(xk, uk) by (37) and (33) (k 6= 0).
8: If k > Tfinal, go to next step. Otherwise, go to Step 6.
9: return.

5. Hardware-in-Loop Experimental Verification

In this section, two cases of numerical experiments were performed to examine the
proposed QOADP algorithm. Comparisons will also be given to prove the superiority of
QOADP. In case 1, QOADP was carried out under the assumption that the building load
demand and electricity rate are periodic. In case 2, the dual iterative Q-learning (DIQL)
algorithm [21], the fuzzy periodic value iteration (FPVI) algorithm [27] and the QOADP
algorithm were, respectively, applied to the load demand of high volatility. The advantages
of QOADP were verified by comparing the systems states and electricity cost of the three
EMSs. For the purpose of comparison, the dual iterative Q-learning (DIQL) algorithm [21]
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and the fuzzy periodic value iteration (FPVI) algorithm [27] were also applied to the same
load demand. Some important parameters for experiment can be found in Table 1.

Table 1. Parameters for experiment.

Parameters Value

Capacity of battery in kWh 25
Upper bound of SOC 0.9
Lower bound of SOC 0.15

Rated power output of the battery in kW 3.5
Initial energy of battery in kWh 12.5

Discount factor 0.996

5.1. HIL Platform

The proposed QOADP algorithm was verified by an HIL experimental platform,
as shown in Figure 3. The HIL platform was composed of an OPAL-RT OP5600 digital
simulator as the controlled plant emulator and a dSPACE DS1103 as the controller. DS1103
is a controller board for digital control, which enables the connection between hardware and
MATLAB/Simulink simulation environment. By Simulink, algorithms were implemented,
compiled and converted to C-code, which was then loaded to the real-time dSPACE
processor. The RT-LAB rapid control prototype (RCP) drive system loaded the smart
building model, including the utility grid, battery and loads onto a real-time simulation
platform configured with the I/O interface required for the study. MATLAB R2021a was
the platform, and CPU was an 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz.

Figure 3. HIL experimental platform.

5.2. Dataset

The load demand data were taken from the IEEE Power-Energy Society (PES) Open
Dataset. The load demand contained the active power of a single household in a family
housing from 25 December 2011 to 15 March 2013. The sampling time was 1 h. Figure 4a
shows the load demand of a smart building in a week, which has high volatility. In
Figure 4b, the load demand in every single day is plotted. The bold line is the average daily
load demand. The bold line shows the average load demand in a 24 h time horizon. The
electricity price is consistent with the one in [13]. Figure 4c shows the electricity price. The
electricity price is quasi-periodic, since it is determined by the aggregated load demand,
which has a smaller fluctuation than a single building. Similarly, Figure 4d shows seven
daily electricity prices ranging from 1 to 24, and the average electricity price is plotted by a
bold line. It is assumed that users are not aware of the electricity price, which means that the
load is not scheduled, and the target is to design a control strategy for the battery system.

5.3. Case 1: Periodic Load Demand

In this case, the load demand and electricity price are periodic. Without rescheduling
of the energy storage system, the power cost over one week was 1999.2 cents.

The iterative weights of value function and controller are depicted in Figure 5. The
learning process shows that weights converge to a periodic sequence. Since the iterative
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algorithm has an exponential convergence rate, the initial weights have little influence on
the performance.
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Figure 4. The weekly load demand and its average load curve. (a) Load demand of a smart building
for one week. (b) Seven daily load demands and average load demand (bold line). (c) Electricity
prices for one week. (d) Seven daily electricity prices and average electricity price (bold line).

The grid power is plotted in Figure 6a. Each of them works in a safe zone. The battery
power is plotted in Figure 6b. Figure 6c shows the SOC of three EMSs. The battery charges
when the electricity price is low at midnight and discharges in the daytime. Compared
with QOADP, the maximum battery power levels of DIQL- and FPVI-based EMS are larger,
which is not beneficial to battery life. Moreover, the total electricity cost of QOADP is less
than those of DIQL and FPVI. Hence, QOADP has advantages in both economic costs and
battery life degradation. QQADP-based EMS has higher grid power than DIQL and FPVI
from 1 am to 6 am only when the electricity price is low.
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Figure 5. The iterative weights of the QOADP under periodic assumption.
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Figure 6. System state and control under periodic assumption: (a) Grid power; (b) Battery power;
(c) SOC.

5.4. Case 2: Load Demand of High Volatility

Consider the load demand with high volatility shown in Figure 4a,c, which depicts
the electricity price.

Figure 7 shows ωc,12 and ωa,4 of the iterative value function and iterative controller.
Differently from the periodic case, weights will not converge to an array of parameters,
but iterate towards the optimal. In Figure 7, optimal parameters are plotted under load
demand of high volatility.
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Figure 7. The iterative weights of parametric structures (load demand of high volatility).
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The state and control variables of three EMSs are plotted in Figure 8. Similar to the first
case, batteries charge when price is low and discharge when price is high. In QOADP-based
EMS, the control variable, i.e., PB, can adapt to the real-time change in load demand. Hence,
the battery power compensates the load demand in a good way. Furthermore, the grid
power of QOADP is more stable than those of DIQL and FPVI, which is a desirable feature
in the utility grid.
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Figure 8. System state and control under load demand of high volatility: (a) Grid power; (b) Battery
power; (c) SOC.

The electricity costs of three methods are listed in Figure 9. The proposed algorithm is
not only able to adapt to the change of load demand, but also saves more electricity cost for
residential users.
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Figure 9. Electricity costs of three methods.
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6. Conclusions

This paper proposes a QOADP algorithm to realize optimal economic dispatch in
smart buildings. The load demand is allowed to be uncertain with high volatility, which
is modeled by an uncontrollable state in the EMS. Firstly, the framework of iterative
QOADP algorithm is designed to obtain optimal economic dispatch control law. Then,
a quasi-quadratic-based function approximation structure with a bias term is utilized to
approximate the value function precisely. Moreover, the implementation of the proposed
algorithm is given out with detailed steps. The design of QOADP has paved the way for
applying ADP technique to EMS of smart buildings and some other systems with uncertain-
ties. Finally, experimental results reveal that QOADP not only can be applied to periodic
load demand but also can be employed to load demand of high volatility with superior
performance. Our future work will be concerned with expanding the proposed algorithm
to more practical engineering systems and formulating a general way to apply ADP.
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Abbreviations

i iteration steps.
t, k time steps (hours).
PG(t) Power from the utility grid at time t (kW).
PB(t) Battery discharging/charging power at time t (kW).
PL(t) Building load at time t (kW).
η Charging/discharging efficiency of Power electronic converter in the storage system.
SOC(t) State of charge of the battery at time t.
EB,rate Rated energy of battery (kWh).
SOCmin Minimum value of SOC.
SOCmax Maximum value of SOC.
PB,rate Battery rated discharging/charging power at time t (kW).
g(·) Transition function of building load (continuous time).
ĝ(·) Transition function of building load (discrete time).
τ Sampling time.
x̄k Controllable system state vector.
x̂k Unontrollable system state vector.
xk System state vector, xk ∈ Rn, xk = [x̄T

k x̂T
k ]

T .
uk System control vector, uk ∈ Rm.
zk zk = [xT

k uT
k ]

T

uk control sequence from time k to ∞.
F(·) System transition function.
A, B, D Drift dynamics, input dynamics, disturbance dynamics.
U(·) Utility function.
λk Real-time electricity price at time k (cents/kWh)
J(·) Performance index function.
γ Discount factor, 0 < γ < 1.

https://open-power-system-data.org/
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