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equations with Gerasimov–Caputo derivatives in a Banach space is investigated. To this aim, we use
the condition of sectoriality for the pair of operators at the oldest derivatives from the equation and
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1. Introduction

Fractional integro-differential calculus provides effective tools for the study of applied
mathematical problems in various fields of science, such as physics, mathematical biology,
theory of financial markets and many others. A large number of mathematical models
of various real processes have appeared in the scientific literature, described in terms of
equations with fractional derivatives and integrals [1–9]. At the same time, such equations
are also of theoretical interest for the theory of differential equations and, therefore, have
been the objects of research in a multitude of papers over the past few decades (see
monographs [10–15] and the bibliographies therein).

In the theory of differential equations, a separate class consists of degenerate evolution
equations, the special properties of which are entailed by the presence of a degenerate
operator at the highest-order derivative. Various classes of degenerate evolution equations
of an integer order have been studied by many authors [16–22]. Degenerate evolution equa-
tions with Gerasimov–Caputo, Riemann–Liouville and Dzhrbashyan–Nersesyan fractional
derivatives were studied in [23–29].

In the present work, we study the unique solvability of a special initial value problem
in the degenerate multi-term linear equation

DαLx(t) =
n

∑
l=1

Dαl Ml x(t) + g(t), (1)

with the Gerasimov–Caputo derivatives Dβ, β ≥ 0, the Riemann–Liouville integrals Dβ,
β < 0 and the linear operators L, M1, M2, . . . , Mn, which act from a Banach space X into
a Banach space Y , ker L 6= {0}. Here, α1 < α2 < · · · < αn < α, where some of αl
may be negative, m − 1 < α ≤ m, mn − 1 < αn ≤ mn, T > 0 and g : [0, T] → Z . The
unique solvability of the Cauchy problem in such an equation with bounded operators
M1, M2, . . . , Mn in the nondegenerate case (X = Y , L = I) was proven in [30]. In [31],
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the Cauchy problem was researched for nondegenerate Equation (1) under the more
general condition (M1, M2, . . . , Mn) ∈ An

α,G on linear, closed, densely defined operators
M1, M2, . . . , Mn.

In the study of degenerate equations of the form DαLx(t) = Mx(t) and ker L 6= {0},
the conditions for the pair of operators (L, M) are often used, entailing the existence
of the so-called pairs of invariant subspaces. We are talking about the representation
of two Banach spaces in the form of the direct sums of the subspaces X = X 0 ⊕ X 1

and Y = Y0 ⊕ Y1, for which L, M : X r → Y r and there exist operators M−1
0 and L−1

1 ,
where Lr = L|DL∩X r , Mr = M|DM∩X r and r = 0, 1. The direct sums correspond to the
projectors P along X 0 on X 1 and Q along Y0 on Y1. Such an approach was used in [21]
with the condition of an (L, p)-bounded operator and p ∈ N0 := N ∪ {0} and in [25]
with the condition (L, M) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0. This makes
it possible to reduce the degenerate equation to a system of two simpler equations on
two subspaces. A generalization of this approach to the case of three or more operators
L, M1, M2, . . . , Mn for degenerate equations is not evident, since in this case, we need to
work with a pencil of operators µαL− µα1 N1 − µα2 N2 − . . . , and the standard technique
does not look applicable due to the presence of several fractional powers of the parameter
µ. However, the same conditions can be used for a pair of operators (L, Mn) if the action of
the remaining operators M1, M2, . . . , Mn−1 is coordinated with the subspaces X 0, X 1, Y0

and Y1. The simplest variant of such a coordination is the equality Ml P = QMl , implying
that Ml : X r → Y r, r = 0, 1 and l = 1, 2, . . . , n− 1. This is how multi-term degenerate
Equation (1) with bounded operators L, M1, M2, . . . , Mn was investigated in [30], namely
by reducing to the system of two simpler equations on two subspaces under the condition
of (L, 0)-boundedness of the operator Mn. In this paper, when studying Equation (1) with
unbounded operators L, Mn, a condition (L, Mn) ∈ Hα(θ0, a0) [25] is used that allows us
to obtain pairs of invariant subspaces. At the same time, the coordination of the other
operators M1, M2, . . . , Mn−1 has a general form Ml P = QMl + (I − Q)Nl P with some
bounded operators Nl , where l = 1, 2, . . . , n− 1.

In the second section, the preliminaries are given, including theorems on unique
solvability of the Cauchy problem for two classes of nondegenerate (X = Y , L = I)
multi-term equations (Equation (1)) with the Gerasimov–Caputo derivatives, where one
of them has bounded operators M1, M2, . . . , Mn [30], and for the other one, the condition
(M1, M2, . . . , Mn) ∈ An

α,G(θ0, a0) is satisfied, which implies the existence of analytic resolv-
ing families of the operators [31]. In the third section, the theorem on the existence of a
unique solution to the problem

Dkx(0) = xk, k = 0, 1, . . . , mn − 1, DkPx(0) = xk, k = mn, mn + 1, . . . , m− 1,

for the degenerate multi-term Equation (1) is proven under conditions (L, Mn) ∈ Hα(θ0, a0)
and Ml P = QMl + (I −Q)Nl P with some bounded operators Nl , where l = 1, 2, . . . , n− 1.
To this aim, Equation (1) is reduced to a system of two nondegenerate multi-term equations
on the subspaces of two classes, which are described in the second section. Abstract results
are applied to the study of unique solvability issues for the initial boundary value problems
of some systems of the dynamics of viscoelastic fluids in the framework of the abstract,
non-degenerate multi-term equation and for the system of the thermoconvection for the
Kelvin–Voigt fluid as a degenerate, multi-term equation in a Banach space.

2. Preliminaries

We define the Riemann–Liouville fractional integral of the order β > 0 [12,14] as
follows:

Jβh(t) :=
1

Γ(β)

t∫
0

(t− s)β−1h(s)ds, t > 0.
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Let m− 1 < α ≤ m ∈ N, Dm be the derivative of the order m ∈ N and Dα be the fractional
Gerasimov–Caputo derivative of the order α [14,32]:

Dαh(t) := Dm Jm−α

(
h(t)−

m−1

∑
k=0

Dkh(0)
tk

k!

)
.

For β < 0, by defintion, we will mean Dβh(t) := J−βh(t). Hereafter, with Dβh(0) for β ∈ R,
we denote the limit lim

t→0+
Dβh(t).

Let X and Y be Banach spaces, denoting with L(X ;Y) the Banach space of all linear
bounded operators acting from X into Y and with C l(X ;Y) the set of all linear closed
operators acting on Y with a dense domain in X . We also denote L(X ;X ) := L(X )
and C l(X ;X ) := C l(X ), for A ∈ C l(X ) Rµ(A) := (µI − A)−1 and for L, M ∈ C l(X ;Y)
RL

µ(M) := (µL−M)−1L, while LL
µ(M) := L(µL−M)−1, ρL(M) is the set of µ ∈ C such

that µL−M : DL ∩ DM → Y is injective mapping and RL
µ(M) ∈ L(X ), LL

µ(M) ∈ L(Y).
We will assume that ker L 6= {0}.

2.1. Theorem on Pairs of Invariant Subspaces

Definition 1. [32]. An operator A ∈ C l(X ) belongs to the class Aα(θ0, a0) if
(1) there exist θ0 ∈ (π/2, π) and a0 ≥ 0 such that for all λ ∈ Sθ0,a0 := {µ ∈ C :

| arg(µ− a0)| < θ0, µ 6= a0}, we have λα ∈ ρ(A) := {µ ∈ C : (µI − A)−1 ∈ L(X )} and
(2) for every θ ∈ (π/2, θ0), a > a0, there exists a constant K = K(θ, a) > 0 such that, for all

λ ∈ Sθ,a, we have

‖Rλα(A)‖L(X ) ≤
K(θ, a)

|λα−1(λ− a)| .

Definition 2. [25]. Let L, M ∈ C l(X ;Y). A pair (L, M) belongs to the classHα(θ0, a0) if
(1) there exist θ0 ∈ (π/2, π) and a0 ≥ 0 such that, for all λ ∈ Sθ0,a0 , we have λα ∈ ρL(M),

and
(2) for every θ ∈ (π/2, θ0), a > a0, there exists a constant K = K(θ, a) > 0 such that, for all

λ ∈ Sθ,a, we have

max{‖RL
λα(M)‖L(X ), ‖LL

λα(M)‖L(Y)} ≤
K(θ, a)

|λα−1(λ− a)| .

Remark 1. In the case of the inverse operator L−1 ∈ L(X ) existing, we have (L, M) ∈ Hα(θ0, a0)
if and only if L−1M ∈ Aα(θ0, a0) and ML−1 ∈ Aα(θ0, a0).

From the pseudo-resolvent identity, which is valid for RL
µ(M) and for LL

µ(M) sepa-
rately, it follows that the subspaces ker RL

µ(M) = ker L, imRL
µ(M) and ker LL

µ(M), imLL
µ(M)

do not depend on µ ∈ ρL(M). We introduce the denotations ker RL
µ(M) := X 0 and

ker LL
µ(M) := Y0. With X 1 (Y1), we denote the closure of the image imRL

µ(M) (imLL
µ(M))

in the norm of the space X (Y). With Lr (Mr), the restriction of the operator L (M) on
DLr := DL ∩ X r (DMr := DM ∩ X r) will be denoted, where r = 0, 1.

Theorem 1. [25]. Let the Banach spaces X and Y be reflexive, where (L, M) ∈ Hα(θ0, a0). Then,
the following are true:

(1) X = X 0 ⊕X 1 and Y = Y0 ⊕Y1.
(2) The projection P (Q) on the subspaceX 1 (Y1) alongX 0 (Y0) has the form P := s- lim

n→∞
nRL

n(M)

(Q := s- lim
n→∞

nLL
n(M)).

(3) L0 = 0, M0 ∈ C l(X 0;Y0) and L1, M1 ∈ C l(X 1;Y1).
(4) There exist inverse operators L−1

1 ∈ C l(Y1;X 1) and M−1
0 ∈ L(Y0;X 0).

(5) ∀x ∈ DL Px ∈ DL and LPx = QLx.
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(6) ∀x ∈ DM Px ∈ DM and MPx = QMx.
(7) Let S := L−1

1 M1 : DS → X 1. Then, DS := {x ∈ DM1 : M1x ∈ imL1} is dense in X .
(8) Let T := M1L−1

1 : DT → Y1. Then, DT := {y ∈ imL1 : L−1
1 y ∈ DM1} is dense in Y .

(9) If L1 ∈ L(X 1;Y1) or M1 ∈ L(X 1;Y1), then S ∈ C l(X 1), and moreover, S ∈ Aα(θ0, a0).
(10) If L−1

1 ∈ L(Y1;X 1) or M−1
1 ∈ L(Y1;X 1), then T ∈ C l(Y1), and aside from that, T ∈

Aα(θ0, a0).

2.2. Nondegenerate Multi-Term Equation

Let m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
l = 1, 2, . . . , n. Some of αl may be negative. Consider the Cauchy problem

Dkz(0) = zk, k = 0, 1, . . . , m− 1, (2)

for a linear multi-term fractional differential equation

Dαz(t) =
n

∑
l=1

Dαl Alz(t) + f (t), t ∈ (0, T], (3)

where the operators Al ∈ C l(X ) have domains DAl , l = 1, 2, . . . , n and f ∈ C([0, T];X ).
A solution to problem (2), (3) is a function z ∈ Cm−1([0, T];X ), for which Dαz, Dαl Alzl ∈
C((0, T];X ), l = 1, 2, . . . , n, and conditions (2) and equality (3) for all t ∈ (0, T] hold.

We denote D :=
⋂n

l=1 DAl , Rλ :=
(

λα I −
n
∑

l=1
λαl Al

)−1
: X → D and endow the set

D with the norm ‖ · ‖D = ‖ · ‖X +
n
∑

l=1
‖Al · ‖X , with respect to which D is a Banach space,

since it is the intersection of the Banach spaces DA1 , DA2 , . . . , DAn with the corresponding
graph norms.

We also denote nk := min{l ∈ {1, 2, . . . , n} : k ≤ ml − 1} for k = 0, 1, . . . , m− 1. If the
set {l ∈ {1, 2, . . . , n} : k ≤ ml − 1} is empty for some k ∈ {0, 1, . . . , m− 1} (it is valid if and
only if αn ≤ k), then we apply nk := n + 1:

Definition 3. A tuple of operators (A1, A2, . . . , An) belongs to the class An
α,G(θ0, a0) at some

θ0 ∈ (π/2, π), a0 ≥ 0 if the following are true:
(1) D is dense in X .

(2) For all λ ∈ Sθ0,a0 , k = 0, 1, . . . , m− 1, there exist operators Rλ ·
(

I −
n
∑

l=nk

λαl−α Al

)
∈

L(X ).
(3) For any θ ∈ (π/2, θ0), a > a0, there exists such a K(θ, a) > 0 that for all λ ∈ Sθ,a,

k = 0, 1, . . . , m− 1,

‖Rλ‖L(X ) ≤
K(θ, a)

|λ− a||λ|α−1 ,

∥∥∥∥∥Rλ

(
I −

n

∑
l=nk

λαl−α Al

)∥∥∥∥∥
L(X )

≤ K(θ, a)
|λ− a||λ|α−1 .

Remark 2. If nk = n + 1, then by the definition,
n
∑

l=nk

λαl−α Al := 0.

Remark 3. In [31], the same class An
α,G(θ0, a0) of tuples of operators is denoted by An,r

α,G(θ0, a0),
since in that case, r operators at a negative αl value were grouped separately.

Remark 4. It is easy to show that in the case αl = 0 for some l ∈ {0, 1, . . . , n} the condition
(0, . . . , 0, Al , 0, . . . , 0) ∈ An

α,G(θ0, a0) is satisfied if and only if Al ∈ Aα(θ0, a0).
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We denote at t > 0 that

Zk(t) =
1

2πi

∫
Γ

Rλ

(
λα−k−1 I −

n

∑
l=nk

λαl−k−1 Al

)
eλtdλ, k = 1, 2, . . . , m− 1,

Z(t) :=
1

2πi

∫
Γ

Rλeλtdλ,

where Γ := Γ+ ∪ Γ− ∪ Γ0, Γ0 := {λ ∈ C : |λ− a| = r0 > 0, arg λ ∈ (−θ, θ)}, Γ± := {λ ∈
C : arg(λ− a) = ±θ, |λ− a| ∈ [r0, ∞)}, θ ∈ (π/2, θ0), a > a0 and r0 > 0.

In [31], it is shown that there exist resolving families of operators {Zk ∈ L(X ) : t ≥ 0},
k = 0, 1, . . . , m− 1 of the homogeneous Equation (3) ( f ≡ 0) if and only if (A1, A2, . . . , An) ∈
An

α,G(θ0, a0). Therein, the following unique solvability theorem was proved for the Cauchy
problem in the inhomogeneous equation:

Theorem 2. [31]. Let m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤
ml ∈ N, l = 1, 2, . . . , n, (A1, A2, . . . , An) ∈ An

α,G(θ0, a0), zk ∈ D, k = 0, 1, . . . , m − 1 and
f ∈ C([0, T]; D). Then, there exists a unique solution to problem (2), (3), and it has the form

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Z(t− s) f (s)ds. (4)

In the case of bounded operators A1, A2, . . . , An, an analogous result was obtained
in [30]:

Theorem 3. [30]. Let m− 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
l = 1, 2, . . . , n, A1, A2, . . . , An ∈ L(X ), zk ∈ X , k = 0, 1, . . . , m − 1 and f ∈ C([0, T];X ).
Then, there exists a unique solution to problem (2), (3), and it has form (4).

3. An Initial Value Problem for a Degenerate Equation

Suppose that n ∈ N, M1, M2, . . . , Mn−1 ∈ L(X ;Y) and Mn, L ∈ C l(X ;Y) and that
DMn and DL are domains of the operators Mn, L, respectively, with the respective graph
norms ker L 6= {0}.

Let Banach spaces X and Y be reflexive, (L, Mn) ∈ Hα(θ0, a0), α1 < α2 < ... < αn < α,
m− 1 < α ≤ m, ml − 1 < αl ≤ ml , l = 1, 2, . . . , n and g ∈ C([0, T];Y). Some of αl may be
negative. Consider the initial value problem

Dkx(0) = xk, k = 0, 1, . . . , mn − 1, DkPx(0) = xk, k = mn, mn + 1, . . . , m− 1, (5)

for a multi-term fractional linear inhomogeneous equation

DαLx(t) =
n

∑
l=1

Dαl Ml x(t) + g(t), (6)

which is called degenerate in the case where ker L 6= {0}. The projector P is defined in
Theorem 1.

A solution to problem (5), (6) is a function x : [0, T] → DL ∩ DMn such that
x ∈ Cmn−1([0, T];X ), Px ∈ Cm−1([0, T];X ), DαLx, Dαl Ml x ∈ C((0, T];Y), l = 1, 2, . . . , n,
equality (6) for all t ∈ (0, T] and conditions (5) are valid.
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Lemma 1. Let (L, Mn) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), where a0 ≥ 0 and α > αn ≥ 0.
Then, for every θ ∈ (π/2, θ0), a > max{1, aα/(α−αn)

0 }, there exists K1(θ, a) > 0 such that

max{‖(µαL− µαn Mn)
−1L‖L(X ), ‖L(µαL− µαn Mn)

−1‖L(Y)} ≤
K1(θ, a)

|µ− a||µ|α−1 .

Proof. Take θ ∈ (π/2, θ0), a > max{1, aα/(α−αn)
0 }, µ ∈ Sθ,a and λ = µ1−αn/α in the sense of

the principal branch of the power function. Then, λ ∈ Sθ0,a0 , since 1− αn/α ∈ (0, 1). Hence,
we have

‖(µαL− µαn Mn)
−1L‖L(X ) = |µ|−αn‖RL

µα−αn (Mn)‖L(X ) = |µ|−αn‖RL
λα(Mn)‖L(X ) ≤

≤ K(θ, a)
|λ− a||λ|α−1|µ|αn

=
K(θ, a)

|µ1−αn/α − a||µ|(1−αn/α)(α−1)|µ|αn
≤ K1(θ, a)
|µ− a||µ|α−1 .

Analogously, we can obtain a similar inequality for ‖L(µαL− µαn Mn)−1‖L(Y).

For a negative αn, we can obtain a similar result:

Lemma 2. Let (L, Mn) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), where a0 ≥ 0 and α > 0 > αn >
α(1− 2θ0/π). Then, for every θ ∈ (π/2, αθ0/(α− αn)), where a > max{1, a0}, there exists
K1(θ, a) > 0 such that

max{‖(µαL− µαn Mn)
−1L‖L(X ), ‖L(µαL− µαn Mn)

−1‖L(Y)} ≤
K1(θ, a)

|µ− a||µ|α−1 .

Proof. Since 1− αn/α > 1, for θ ∈ (π/2, αθ0/(α− αn)), a > max{1, a0} and µ ∈ Sθ,a, we
have λ = µ1−αn/α ∈ Sθ0,a0 . The remaining part of the proof is the same as for the previous
lemma.

We denote for brevity that P0 := I − P, Q0 := I − Q, Lr (Ml,r) is the restriction of L
(Ml) on DLr := DL ∩ X r (on DMl,r := DMl ∩ X

r for l = 1, 2, . . . , n), where r = 0, 1. Due
to Theorem 1 LP = QL for x ∈ DL, MnPx = QMnx for x ∈ DMn , and hence Mn,r ∈
C l
(
X r;Y r) and Lr ∈ L

(
X r;Y r), where r = 0, 1. That aside, there exist M−1

n,0 ∈ L
(
Y0;X 0)

and L−1
1 ∈ C l

(
Y1;X 1).

Theorem 4. Let X and Y be reflexive Banach spaces, (L, Mn) ∈ Hα(θ0, a0), Ml ∈ L(X ;Y),
l = 1, . . . , n− 1, L−1

1 ∈ L(Y1;X 1), α1 < α2 < · · · < αn < α and αn > α(1− 2θ0/π). Then,
(M1,1L−1

1 , M2,1L−1
1 , . . . , Mn,1L−1

1 ) ∈ An
α,G(θ1, a1) for some θ1 ∈ (π/2, θ0], a1 ≥ a0.

Proof. Since L−1
1 ∈ L(Y1;X 1), by Theorem 1 (10), we have Ml,1L−1

1 ∈ L(Y1), where
l = 1, 2, . . . , n − 1. Due to Lemma 1 for αn ≥ 0 or Lemma 2 in the case where αn ∈
(α(1− 2θ0/π), 0) for some θ1 ∈ (π/2, θ0], a1 ≥ a0 and µ ∈ Sθ,a, we have(

µα I −
n

∑
l=1

µαl Ml,1L−1
1

)−1

=

= (µα I − µαn Mn,1L−1
1 )−1

(
I −

n−1

∑
l=1

µαl Ml,1L−1
1 (µα I − µαn Mn,1L−1

1 )−1

)−1

,

∥∥∥∥∥n−1

∑
l=1

µαl Ml,1L−1
1 (µα I − µαn Mn,1L−1

1 )−1

∥∥∥∥∥
L(Y1)

≤

≤
n−1

∑
l=1
|µ|αl‖Ml,1L−1

1 ‖L(Y1)

∥∥∥L(µαL− µαn Mn)
−1
∥∥∥
L(Y)

≤
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≤

n−1
∑

l=1
|µ|αl−α+1‖Ml,1L−1

1 ‖L(Y)K1(θ, a)

|µ− a| < q < 1

for some q ∈ (0, 1), and hence∥∥∥∥∥∥
(

µα I −
n

∑
l=1

µαl Ml,1L−1
1

)−1
∥∥∥∥∥∥
L(Y1)

≤ K2(θ, a)
(1− q)|µ− a||µ|α−1 .

Finally, we have(
µα I −

n

∑
l=1

µαl Ml,1L−1
1

)−1(
I −

n

∑
l=nk

µαl−α Ml,1L−1
1

)
=

= µ−α

I +

(
µα I −

n

∑
l=1

µαl Ml,1L−1
1

)−1 nk−1

∑
l=1

µαl Ml,1L−1
1

,

∥∥∥∥∥∥
(

µα I −
n

∑
l=1

µαl Ml,1L−1
1

)−1(
I −

n

∑
l=nk

µαl−α Ml,1L−1
1

)∥∥∥∥∥∥
L(Y1)

≤

≤ |µ|−α

(
1 +

K2(θ, a)
(1− q)|µ− a||µ|α−1 .

nk−1

∑
l=1
|µ|αl‖Ml,1L−1

1 ‖L(Y1)

)
≤ K3(θ, a)
|µ− a||µ|α−1 .

Theorem 5. Let X and Y be reflexive Banach spaces, (L, Mn) ∈ Hα(θ0, a0), Ml ∈ L(X ;Y),
Ml P = QMl + Q0Nl P for some Nl ∈ L(X 1;Y), l = 1, 2, . . . , n − 1, L−1

1 ∈ L(Y1;X 1),
α1 < α2 < · · · < αn < α, αn > α(1− 2θ0/π), g ∈ C([0, T];Y), Qg ∈ C([0, T]; DMn,1L−1

1
),

xk ∈ DMn,1+̇X 0 for k = 0, 1, . . . , mn − 1 and xk ∈ DMn,1 for k = mn, mn + 1, . . . , m− 1. Then,
there exists a unique solution to problem (5), (6).

Proof. Note that Ml P0 = Ml(I − P) = Ml − QMl − Q0Nl P = Q0(Ml − Nl P) for l =
1, 2, . . . , n− 1. Establish that P0x(t) := w(t), y(t) := Lx(t) = L1Px(t) + L0w(t) = L1Px(t),
and then x(t) = Px(t) + w(t) = L−1

1 y(t) + w(t). Thus, for l = 1, 2, . . . , n − 1, we
have Ml x = Ml(L−1

1 y(t) + w(t)) = (QMl + Q0Nl P)L−1
1 y(t) + Q0(Ml − Nl P)w(t) =

(QMl + Q0Nl)L−1
1 y(t) + Q0Mlw(t).

Using the operator M−1
n,0Q0 ∈ L(Y0;X 0), problem (5), (6) can be written as the system

Dαy(t) =
n

∑
l=1

Dαl QMl,1L−1
1 y(t) + Qg(t), (7)

Dαn w(t) = −
n−1

∑
l=1

Dαl M−1
n,0Q0Ml,0w(t)−

n−1

∑
l=1

Dαl M−1
n,0Q0Nl L−1

1 y(t)−M−1
n,0Q0g(t), (8)

with the initial conditions

Dky(0) = L1Pxk, k = 0, 1, . . . , m− 1, (9)

Dkw(0) = P0xk, k = 0, 1, . . . , mn − 1. (10)

In the considered case D :=
n⋂

l=1
DMl,1L−1

1
= DMn,1L−1

1
with the graph norm of the opera-

tor DMn,1L−1
1

, since xk ∈ DMn,1+̇X 0, then L1Pxk ∈ DMn,1L−1
1

for k = 0, 1, . . . , mn − 1. Hence,
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through Theorem 2, there exists a unique solution to problem (7), (9). Problem (8), (10) have
a unique solution due to Theorem 3, since the operators M−1

n,0Q0Ml,0, l = 1, 2, . . . , n− 1 are

bounded and
n−1
∑

l=1
Dαl M−1

n,0Q0Nl L−1
1 y + M−1

n,0Q0g ∈ C([0, T];X 0) is a known function.

Remark 5. The proof of Theorem 5 implies that the Cauchy problem x(l)(0) = xl , l = 0, . . . , m− 1
for Equation (6) has a unique solution under the additional conditions P0xl = Dlw(0), l =
mn, mn + 1, . . . , m− 1 only. Here, w is a unique solution to problem (8), (10).

4. Some Initial Value Problems for Viscoelastic Media Systems

Consider the initial boundary value problem

Dk
t v(s, 0) = vk(s), s ∈ Ω, k = 0, 1, . . . , m− 1, (11)

v(s, t) = 0, (s, t) ∈ ∂Ω× (0, T], (12)

Dα
t v(s, t) = χDβ

t ∆v(s, t) + νDγ
t ∆v(s, t) + κDδ

t ∆v(s, t)− r(s, t) + h(s, t), (s, t) ∈ Ω× (0, T], (13)

∇ · v(s, t) = 0, (s, t) ∈ Ω× (0, T], (14)

in a bounded region Ω ⊂ Rd with a smooth boundary ∂Ω, χ, ν, κ ∈ R, m− 1 < α ≤ m ∈ N,
α > β > γ > δ, where some of numbers α, β, γ, δ may be negative. Here, Dε

t is a fractional
Gerasimov–Caputo derivative of the order ε ≥ 0 (or fractional Riemann–Liouville integral
of the order−ε > 0 in the case where ε < 0) with respect to t, the velocity v = (v1, v2, . . . , vd)
and the pressure gradient r = (r1, r2, . . . , rd) = ∇p are unknown, and h : Ω× [0, T]→ Rd

is a given function.
If α = β = 1, γ = 0 and δ < 0, then the system of Equations (13) and (14) is the

linearization for the generalized Oskolkov system of the viscoelastic fluid dynamics with
the kernel h(s, t) = κ(t− s)−δ−1/Γ(−δ) in the integral operator (see system (2.1.1), (2.1.2)
in [33]). With α = 1, β > 0, γ = 0 and κ = 0, it will be the linearized Kelvin–Voigt fluid
system [34,35]. If, moreover, ν = 0, then (13), (14) is the linearized system of the Scott-Blair
fluid dynamics.

With L2 := (L2(Ω))n, H1 := (H1(Ω))n, H2 := (H2(Ω))n, the closure of the subspace
L := {z ∈ (C∞

0 (Ω))n : ∇ · z = 0} in the norm of the space L2 will be denoted by Hσ,
and in the norm of H1, it will be denoted by H1

σ. We denote H2
σ := H1

σ ∩ H2, where
Hπ is the orthogonal complement for Hσ in L2 and Σ : L2 → Hσ, Π = I − Σ are the
corresponding orthoprojectors.

The operator B := Σ∆, extended to a closed operator in Hσ with the domain H2
σ, has a

real negative discrete spectrum with finite multiplicities, which is condensed only at −∞ [36].
The system of Equations (13) and (14) is equivalent to the equation

Dα
t v(s, t) = χDβ

t Bv(s, t) + νDγ
t Bv(s, t) + κDδ

t Bv(s, t) + Σh(s, t), (s, t) ∈ Ω× (0, T], (15)

since

r(s, t) = χDβ
t Π∆v(s, t) + νDγ

t Π∆v(s, t) + κDδ
t Π∆v(s, t) + Πh(s, t), (s, t) ∈ Ω× (0, T].

Therefore, we need to study problem (11), (12), (15). If α > β > γ > δ, m− 1 < α ≤
m ∈ {1, 2}, β > −α, χ > 0 and ν, κ ∈ R. Due to incompressibility Equation (14) take
X = Hσ, A1 = κB, A2 = νB and A3 = χB are closed, densely defined operators. Then,
by Lemma 3 from [31], (A1, A2, A3) ∈ A3

α,G, and by Theorem 2, for any v0, v1 ∈ D = H2
σ,

Σh ∈ C([0, T];H2
σ), there exist a unique solution to problem (11), (12), (15). Therefore,

problem (11)–(14) also have a unique solution.
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If β > α > γ > δ, m− 1 < α ≤ m ∈ N and χ, ν, κ ∈ R, we rewrite Equation (15) into
the form

Dβ
t v(s, t) = χ−1Dα

t B−1v(s, t)− χ−1νDγ
t v(s, t)− χ−1κDδ

t v(s, t)− B−1Σh(s, t)

for (s, t) ∈ Ω × (0, T]. By setting X = Hσ, A1 = χ−1Dα
t B−1, A2 = −χ−1νI and A3 =

−χ−1κ I, and by Theorem 3, since A1, A2, A3 are bounded operators, for any v0, v1 ∈ Hσ,
B−1Σh ∈ C([0, T];Hσ), there exist a unique solution to problem (11)–(14).

Now, consider the initial boundary value problem

v(s, 0) = v0(s), (m− 1)D1
t v(s, 0) = (m− 1)v1(s), s ∈ Ω, (16)

τ(s, 0) = τ0(s), (m− 1)D1
t τ(s, 0) = (m− 1)τ1(s), s ∈ Ω, (17)

v(s, t) = 0, τ(s, t) = 0, (s, t) ∈ ∂Ω× (0, T], (18)

for the linearized system of the thermoconvection in the same medium

Dα
t v(s, t) = χDα

t ∆v(s, t) + ν∆v(s, t) + κDδ
t ∆v(s, t)− r(s, t) + h(s, t), (s, t) ∈ Ω× (0, T], (19)

∇ · v(s, t) = 0, (s, t) ∈ Ω× (0, T], (20)

Dα
t τ(s, t) = $4τ(s, t) + ςvn(s, t) + f (s, t), (s, t) ∈ Ω× (0, T]. (21)

where m− 1 < α ≤ m ∈ {1, 2}, δ < 0, χ, ν, κ, $, ς ∈ R and4 is the Laplace operator with
the domain H2

0(Ω) := {w ∈ H2(Ω) : w(x) = 0, x ∈ ∂Ω}, which is dense in L2(Ω).

Remark 6. If χ = 0, then system of Equations (19)–(21) is the linear approximation of the
thermoconvection in viscous media and not in viscoelastic media. In part, for χ = 0, α = 1 and
κ = 0, we have the linearization of the Boussinesq system, which models the thermoconvection in
viscous media. Operator methods close to the methods of this work are used for studying an initial
boundary value problem and some control problems of the linearized Boussinesq system in [37].

Set

X = H2
σ ×Hπ × L2(Ω), Y = L2 × L2(Ω) = Hσ ×Hπ × L2(Ω), (22)

L =

 I − χB O O
−χΠ∆ O O

O O I

, M1 =

 κB O O
κΠ∆ O O
O O O

, M2 =

 νB O O
νΠ∆ −I O
ςPn O $4

, (23)

g(t) =

 Σh(·, t)
Πh(·, t)

f (·, t)

, t ∈ [0, T].

Here, Pn is the projector (v1, v2, . . . , vn)→ vn. Then, L, M1 ∈ L(X ;Y), M2 ∈ C l(X ;Y)
and DM2 = H2

σ ×Hπ × H2
0(Ω). We have x(t) ∈ X , where x(t) = (v(·, t), r(·, t), τ(·, t)).

Lemma 3. Let α ∈ (0, 2), χ, ν, ς ∈ R, χ 6= 0, χ−1 /∈ σ(B), $ > 0, spaces X and Y have
form (22), and operators L and M2 be defined by (23). Then, (L, M2) ∈ Hα(θ0, a0) for some a0 ≥ 0,
θ0 ∈ (π/2, π), and in this case, we have

P =

 I O O
νΠ∆(I − χB)−1 O O

O O I

, Q =

 I O O
−χΠ∆(I − χB)−1 O O

O O I

,

where X 0 = {0} × Hπ × {0}, X 1 = {(z, νΠ∆(I − χB)−1z, w) : z ∈ H2
σ, w ∈ L2(Ω)},

Y0 = {0} ×Hπ × {0} and Y1 = {(z,−χΠ∆(I − χB)−1z, w) : z ∈ Hσ, w ∈ L2(Ω)}.
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Proof. The Banach spacesX andY are reflexive since they are Hilbert spaces. The operators
(I − χB)−1 : Hσ → H2

σ, (I − χB)−1B = B(I − χB)−1 : Hσ → Hσ and (I − χB)−1B =
B(I − χB)−1 : H2

σ → H2
σ are bounded. Therefore, we can choose θ1 ∈ (π/2, π), a0 > 0 such

that the disc {µ ∈ C : |µ| ≤ 2−1/α|ν|1/α max{‖(I − χB)−1B‖1/α
Hσ

, ‖(I − χB)−1B‖1/α
H2

σ
}} is

situated outside the sector Sθ1,a0 . Then, for µ ∈ Sθ1,a0 , using the Neumann series, we obtain

‖(µα I − ν(I − χB)−1B)−1‖Hσ
≤ 1
|µ|α − |ν|‖(I − χB)−1B‖Hσ

≤ 2
|µ|α . (24)

‖(µα I − ν(I − χB)−1B)−1‖H2
σ
≤ 1
|µ|α − |ν|‖(I − χB)−1B‖H2

σ

≤ 2
|µ|α . (25)

Now, we take α ∈ [1, 2), δ ∈ (0, π(1/α − 1/2)) and θ0 = min{θ1, π/2 + δ}. Then,
(µα I − $4)−1 ∈ L(Hσ) for all µ ∈ Sθ0,a0 , since | arg µα| ∈ (π/2, π) and the spectrum of the
operator $4 is real and negative. Moreover, for w ∈ L2(Ω), we have

‖(µα I − $4)−1w‖2
L2(Ω) =

∞

∑
k=0

|〈w, ϕk〉|2
|µα − $λk|2

≤
‖w‖2

L2(Ω)

sin2 θ0|µ|2α
, (26)

where 〈·, ·〉 is the inner product in L2(Ω), {λk} is the eigenvalues of 4 and {ϕk} is the
orthonormal system of the corresponding eigenfunctions.

Thus, for µ ∈ Sθ0,a0 , we have

µαL−M2 =

 µα(I − χB)− νB O O
−µαχΠ∆− νΠ∆ I O

−ςPn O µα I − $4

,

(µαL−M)−1 =

=

 (µα I − ν(I − χB)−1B)−1(I − χB)−1 O O
(µαχΠ∆ + νΠ∆)(µα I − ν(I − χB)−1B)−1(I − χB)−1 I O
ς(µα I − $4)−1Pn(µα I − ν(I − χB)−1B)−1(I − χB)−1 O (µα I − $4)−1

,

RL
µα(M) =

 (µα I − ν(I − χB)−1B)−1 O O
(µαχΠ∆ + νΠ∆)(µα I − ν(I − χB)−1B)−1 − χΠ∆ O O

ς(µα I − $4)−1Pn(µα I − ν(I − χB)−1B)−1 O (µα I − $4)−1

 =

=

 (µα I − ν(I − χB)−1B)−1 O O
νΠ∆(I − χB)−1(µα I − ν(I − χB)−1B)−1 O O

ς(µα I − $4)−1Pn(µα I − ν(I − χB)−1B)−1 O (µα I − $4)−1

,

LL
µα(M)=

 (µα I − νB(I − χB)−1)−1 O O
−χΠ∆(I − χB)−1(µα I − νB(I − χB)−1)−1 O O

ς(µα I − $4)−1Pn(I − χB)−1(µα I − νB(I − χB)−1)−1 O (µα I − $4)−1

.

Thus, RL
µα(M) ∈ L(X ) and LL

µα(M) ∈ L(Y). Using inequalities (24)–(26), we obtain
that (L, M) ∈ Hα(a0, θ0).

For α ∈ (0, 1), the proof is similar..
The projectors P and Q and subspaces X 0 = ker P, X 1 = imP, Y0 = ker Q and

Y1 = imQ can be calculated using Theorem 1 (2):

Remark 7. It is evident that in this case, L−1
1 ∈ L(Y1;X 1).

Theorem 6. Let α ∈ (0, 2), δ < 0, χ, ν, κ, ς ∈ R, χ 6= 0, χ−1 /∈ σ(B), $ > 0, v0 ∈ Hσ and
τ0 ∈ H2(Ω) for α ∈ (0, 1], and v0, v1 ∈ Hσ, τ0, τ1 ∈ H2(Ω) for α ∈ (1, 2); h ∈ C([0, T];L2),
Σh ∈ C([0, T];H2

σ) and f ∈ C([0, T]; H2(Ω)). Then, there exist a unique solution to problem
(16)–(21).
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Proof. We reduce problem (16)–(21) to problem (5), (6) with n = 2, using operators (23)
in spaces (22). Note that in this case, α1 = δ < 0, α2 = 0 and m2 = 0. Hence, conditions
(5) have the form Px(0) = x0 for α ∈ (0, 1], Px(0) = x0 and D1Px(0) = x1 for α ∈ (1, 2),
which are equivalent to conditions (16) and (17) due to the form of the projector P (see
Lemma 3). Here, m = 1 for α ∈ (0, 1] and m = 2 for α ∈ (1, 2). Therefore, for m = 1, the
second condition in (16) and in (17) is absent.

According to Remark 7, L−1
1 ∈ L(Y1;X 1), and moreover, DMn,1L−1

1
= L[DMn ] = Hσ ×

Hπ × H2
0(Ω). Hence, (v0, νΠ∆(I − χB)−1v0, τ0), (v1, νΠ∆(I − χB)−1v1, τ1) ∈ DMn,1L−1

1
un-

der the conditions of the present theorem. We also have Qg(t) = (Σh(·, t),−χΠ∆(I −
χB)−1Σh(·, t), f (·, t)) ∈ C([0, T]; DMn,1L−1

1
). Finally, we have

M1P−QM1 =

 O O O
κΠ∆(I − χB)−1 O O

O O O

 := N1 ∈ L(X ;Y).

It is obvious that N1 = Q0N1P. Under Theorem 5, we obtain the required statement.

5. Conclusions

An initial value problem for a class of degenerate multi-term linear equations in
Banach spaces with Gerasimov–Caputo derivatives was studied by the methods of pairs of
invariant subspaces. Under the conditions of the operators at the two oldest derivatives,
by implying the existence of pairs of invariant subspaces and analytic resolving families
of operators for the linear homogeneous equation with these two operators, we reduced
the degenerate equation to a system of two nondegenerate equations in the subspaces.
This allowed us to prove the existence of a unique solution. The obtained abstract unique
solvability theorem was used for the research of the initial boundary value problems for
the systems of the dynamics and of the thermoconvection of the Kelvin–Voigt-type media.

As for the development of the results obtained and their significance, we note that the
results for the solvability of initial problem (5), (6) will further allow us to consider other
problems for Equation (6) (boundary value problems on a segment, nonlocal problems, etc.).
Aside from that, the proof of the solvability theorem (Theorem 5), coupled with solution
formula (4) for the nondegenerate equation, gives the form of a solution to the degenerate
equation, which can become a starting point for finding new methods for the numerical
solutions of initial boundary value problem (16)–(21).
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