
Citation: Huang, Z.; Li, D.; Wu, C.;

Lu, H. Reinforcement Learning-Based

Delay-Aware Path Exploration of

Parallelized Service Function Chains.

Mathematics 2022, 10, 4698. https://

doi.org/10.3390/math10244698

Academic Editor: Liangxiao Jiang

Received: 8 November 2022

Accepted: 8 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Reinforcement Learning-Based Delay-Aware Path Exploration
of Parallelized Service Function Chains
Zhongwei Huang 1 , Dagang Li 1,2,* , Chenhao Wu 3 and Hua Lu 4

1 School of Computer Science and Engineering, International Institute of Next Generation Internet,
Macau University of Science and Technology, Taipa 999078, Macao

2 Zhuhai-M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China
3 Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao
4 Guangdong Communication & Network Institute, Guangzhou 510000, China
* Correspondence: dagang.li@ieee.org

Abstract: The parallel processing of the service function chain (SFC) is expected to provide better
low-delay service delivery, because it breaks through the bottleneck of traditional serial processing
mode in which service delay increases linearly with the SFC length. However, the provision of
parallelized SFC (PSFC) is much more difficult due to the unique construction of PSFCs, inevitable
parallelization overhead, and delay balancing requirement of PSFC branches; therefore, existing
mechanisms for serial SFC cannot be directly applied to PSFC. After a comprehensive review of
recent related work, we find that traffic scheduling mechanisms for PSFCs is still lacking. In this
paper, a delay-aware traffic scheduling mechanism (DASM) for PSFCs is proposed. DASM first
transforms PSFC into several serial SFCs by releasing the upstream VNF constraints so as to handle
them independently while keeping their parallel relations. Secondly, DASM realizes delay-aware
PSFC traffic scheduling based on the reinforcement learning (RL) method. To the best knowledge of
the authors, this is the first attempt to address the PSFC traffic scheduling problem by transforming
them into independent serial SFCs. Simulation results show that the proposed DASM outperforms
the advanced PSFCs scheduling strategies in terms of delay balance and throughput.

Keywords: machine learning; reinforcement learning; parallelized service function chains;
delay-aware traffic scheduling

MSC: 68T01

1. Introduction

Network function virtualization (NFV) technology separates network functions (NF)
from proprietary hardware and moves data processing from proprietary hardware to
virtual network functions (VNFs) running on general-purpose servers, enabling flexible
function deployment and rapid network service upgrade. NFV effectively increases the
flexibility of the operator’s network and significantly lowers operating expenses and capital
expenditures. VNFs are chained in a predefined order to provide services in the form of
service function chain (SFC), such as VPN–traffic monitor (TM)–firewall (FW)–load balance
(LB) [1]. These VNFs are the virtual representation of network functions (NFs) and need to
be mapped to the underlying physical servers for execution. A software-defined network
(SDN) controller with a global view is needed to guide traffic to traverse each VNF in the
right order.

Traditionally, SFCs are constructed and processed in a serial way: each VNF is de-
ployed, and traffic is routed through the VNFs in a predefined order, as shown in Figure 1.
The end-to-end delay increases linearly with SFC length, which may become unacceptable
for time-sensitive applications. For example, for end-to-end 5G services in a URLLC sce-
nario, the delay for this type of services should be less than 5 ms or even less [2]. If the

Mathematics 2022, 10, 4698. https://doi.org/10.3390/math10244698 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244698
https://doi.org/10.3390/math10244698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1889-1791
https://orcid.org/0000-0002-8134-0538
https://doi.org/10.3390/math10244698
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244698?type=check_update&version=2

Mathematics 2022, 10, 4698 2 of 25

delay constraint is exceeded, the service will fail, and the user experience will be impacted.
In order to cope with this problem, previous research [1,3] has proposed the idea of SFC
parallel processing or parallelized SFCs (PSFCs), by parallelization the VNFs without depen-
dency, so the end-to-end SFC delay can be significantly reduced, in some cases by more
than 30% [1]. As demonstrated in Figure 1, the end-to-end SFC delay is reduced by 38 ms
after parallelizing TM and FW.

Parallelized SFC:

VPN FWTM LB

Serial SFC:

90ms 35ms 70ms 20ms

VPN

FW

TM

LB

90ms 70ms 20ms

Delay:215ms

Delay:180ms

ingress egress

ingress egress

Figure 1. Serial and parallel SFC processing comparison adapted from [4]. The number below each
VNF denotes the processing time of that VNF, which is derived from the tests conducted in [1]. Traffic
arrives at the source node, passes through each VNF, and finally reaches the destination node.

A lot of research efforts including our previous works [4,5] have developed architec-
tures and techniques to facilitate the parallel processing of SFC. The provision of PSFC
differs from that of standard serial SFC, and research on the parallel processing mechanism
of SFC is still in its early stages, there are still some open issues:

• Current PSFC processing methods are based on a complex parallel architecture, which
has high VNF dependence between parallel branches (e.g., two branches of PSFC
in Figure 1 have interdependent VNFs of VPN and LB), resulting in complicated
processing and limited optimization space for performance improvement.

• The end-to-end delay of PSFC is determined by the maximum branch. Delay difference
caused by uncoordinated VNF processing between parallel branches of PSFC may
cause packet accumulation in the subsequent node, which degrades the performance
of PSFC.

• Existing parallel processing methods (e.g., reduction of the unreasonable parallelism
of PSFC [4]) only consider VNF processing delay when balancing the parallel branches,
but link delay can also greatly affect the total delay in the subsequent traffic scheduling
process and should be also be considered.

These problems limit the applicability of PSFCs. Therefore, this paper aims to achieve
a better parallel architecture to convert complex PSFCs into simplified forms so that they
can be handled together with traditional serial SFCs in a unified way. We further propose a
delay-aware traffic scheduling method to support delay balanced PSFCs traffic scheduling
that considers all the major delay factors. Overall, the contributions of this paper are listed
as follows:

• A comprehensive review of PSFC research in recent years is presented, as shown
in Figure 2. We find that a traffic scheduling mechanism of PSFCs is still missing;
therefore, a delay-aware traffic scheduling mechanism (DASM) for PSFC is proposed
to fill this gap;

Mathematics 2022, 10, 4698 3 of 25

• DASM transforms PSFCs into multiple serial SFCs with reduced VNF dependency.
This process relaxes half of the dependencies of parallel structures and reduces the
PSFC’s processing difficulties;

• To further maximize the benefits of PSFCs, a reinforcement learning (RL)-based PSFC
scheduling algorithm is proposed, which can effectively minimize the total service
delay by keeping the delay between parallel branches balanced.

Figure 2. Statistics of studies on parallelized SFCs.

The rest of the paper is organized as follows. Section 2 gives a comprehensive overview
of the research on PSFC, which is divided into the deployment and scheduling aspects.
Section 3 introduces the serialization methodology of our scheduling mechanism, as well
as the mathematical description. Section 4 describes the details of our Q-learning-based
mechanism, we verified our proposed scheme by simulation in Section 5, and the full text
is discussed and summarized in Section 6.

2. Systematic Review of Related Works

To date, many researchers have conducted extensive research on the deployment and
scheduling of serial SFC. For example, Santos et al. [6] explored the deployment of SFC in
large-scale network situations and suggested an RL technique that takes into consideration
the availability of SFC, operational expenses, and energy usage. However, they still based
this on the traditional serial SFC architecture. The instances can be deployed in parallel or
distributively because the NFs in an NF chain are seen as logical nodes rather than fixed
nodes. The problem of topology design is brought up by the fact that different NF chain
topologies can express the same service request. In order to dynamically assign processing
and transmission resources, Alhussein et al. [7] considered joint topology design, traffic
routing, and NF placement for unicast NFV-enabled services. It is not easy to determine the
appropriate resource usage for completing user requests in cloud or edge environments;
hence, an effective resource prediction model might be crucial in resource management
to accurately estimate the required resources. Tofighy et al. [8] proposed an ensemble
CPU load prediction model that uses a Bayesian information criterion to select the best
constituent model for each time slot based on the past consumption of cloud resources.
More details in enabling scalable, resilient, and high-performance NFV/SFC deployments
in next-generation networks can be found in a recent survey [9], in which Adoga et al.
provided a thorough analysis of contemporary NFV and serial SFC implementation frame-
works, covering topics including resource allocation and service orchestration, performance

Mathematics 2022, 10, 4698 4 of 25

optimization, resilience, and failure recovery. They also identified the main open research
issues in present SFC research.

Different from the existing research, this paper focuses on the traffic scheduling of par-
allelized SFCs, which has not been well studied in previous works. We will summarize the
related works in terms of SFC parallelized architecture and parallelized SFC deployment.

2.1. SFC Parallelized Architecture

A systematic review of SFC parallelized methods and their proposed architecture, evalu-
ation tools, utilized techniques, advantages, and disadvantages is summarized in Table 1.

Zhang et al. [3] first proposed a serial and parallel hybrid SFC structure called ParaBox
for processing packets between VNFs in parallel. The core functions of ParaBox include a
dependency analysis model to determine whether NFs can be parallelized, a copy function
to distribute the copies of data packets to multiple parallel branches, and a merge function
to combine the output results. The architecture can effectively realize parallel processing of
NF and provides an effective research basis for the parallel processing mechanism of SFC.
Sun et al. [1] further studied the operation types of commonly used network functions
(NFs) and designed an NF parallel processing mechanism based on these operation types,
namely NFP. NFP realizes parallel processing of NFs without affecting the correctness of
SFC. Similarly, Baek et al. [10] also parallelized NFs based on the dependency analysis of
NFs as well.

Although SFC can be processed in parallel, existing parallelized SFC works focus on
the strict execution order of VNFs in SFC. Ayoubi et al. [11] studied flexible SFC orches-
tration, and they reorganized the order of VNFs in SFC to better allocate computing and
network resources for SFC provision. Chowdhary et al. [12] focused on the implementation
of parallel SFC and introduced an NF parallelism for open-flow networks. They exploit
the NF parallelism on top of open-flow rules to improve the performance of SFC in cloud
networks. Liu et al. [2] proposed a new two-stage NF parallelization processing framework
named TNP. They divided the deployment problem of PSFC into two sub-problems to
address the SFC parallelization graph design and NFs mapping problems, respectively.
Wang et al. [13] proposed the ParaNF architecture. They first proposed the delay-balanced
SFC parallelism optimization problem to eliminate unnecessary parallelism. However, they
only considered the VNF processing delay, which makes it unsuitable for real deployment
situations. To reduce the redundant processing of modular NFs, Jiang et al. [14] proposed
a new NF framework named SpeedyBox, which innovatively utilizes cross-NF runtime
integration to improve the performance of PSFCs. A reliability evaluation approach and
reliability optimization algorithm of SFC were proposed by Rui et al. [15]. Resource pre-
emption, common-cause failure, failure recovery, and redundancy backup are some of
the elements that are examined in regard to the composition relationship and reliability
influencing factors of serial and parallelized SFCs.

Mathematics 2022, 10, 4698 5 of 25

Table 1. A systematic review of parallelized SFC architecture and methods.

Research Years Proposed
Architecture

Performance
Metrics

Evaluation
Tools

Utilized
Techniques Advantages Disadvantages

Zhang et al.
[3] 2017 Parabox delay,

throughput

DPDK-
enabled

BESS

NF operations
on packet

headers and
payload

the first study to explore parallel packet
processing to reduce SFC latency

its NF parallelism detection remains
preliminary and lacks a comprehensive

analysis on NF action dependency,
introduce larger resource overhead

Sun et al. [1] 2017 NFP delay, load
balance

DPDK in
Linux

containers

NF
parallelism

identification

light-weight packet copying, distributed
parallel packet delivery, and load balanced

packet merging

treats all CPU cores as equal, and allocates
isolated CPU cores to different NFs

Hu et al. [16] 2018 NFcompass
overhead,

load balance,
throughput

DPDK,
container

SFC re-
organization,

graph
partition-

based task
scheduling

reduces aggregated processing overheads
and coexistence interference overheads

uses a limited workload set that is not
enough to represent the whole range of

NFV domains

Engelmann
et al. [17] 2018 -

reliability,
resource
efficiency

Monte Carlo
simulations backup VNFs reliability up to 0.99999 considers the selection of multiple paths to

carry the traffic flow of one SFC

Engelmann
et al. [18] 2019 -

reliability,
service

success, and
overhead

Monte Carlo
simulations

erasure
coding

provides higher service success while
requiring less reliable path segments than

backup protection

splitting large traffic into multiple
sub-flows increases the network node

occupation

Ayoubi et al.
[11] 2018 Khaleesi acceptance

rate; revenue
CPLEX solver,

FNSS tool
relaxed VNF

orderings
studies the potential advantages of flexible

structures over the rigid ones
ILP-based models are faced with high

solution times

Chowdhary
et al. [12] 2019 SFC-NFP delay;

throughput

DPDK
platform with
an OpenFlow

switch

M/M/c
queue model

the solution can seamlessly be integrated
within an infrastructure using SDN

it requires the use of an OpenFlow switch,
which may not be available in all networks

Liu et al. [2] 2019 TNP delay;
throughput unspecified heuristic

algorithm

better utilizes the computing and link
bandwidth resources in the substrate

network
reliability is not taken into consideration

Mathematics 2022, 10, 4698 6 of 25

Table 1. Cont.

Research Years Proposed
Architecture

Performance
Metrics

Evaluation
Tools

Utilized
Techniques Advantages Disadvantages

Wang et al.
[13] 2019 ParaNF delay; balance KVM VMs

pktgen-dpdk
heuristic

algorithm

ParaNF can reduce latency by up to 47%
over traditional SFC while maintaining the

nearly line-speed packet processing
performance

new branches with a processing delay
slightly larger than the maximum

processing delay of the other branches were
not allowed

Jiang et al.
[14] 2019 Speedybox

delay;
eliminate

redundancy

table-based
Match/
Action

technique

cross-NF
runtime

consolidation

low-latency NFV framework eliminates the
redundancy without sacrificing

modularization

relies on dedicated hardware applications
and requires strict update delay

Zhang et al.
[19] 2019 HybridSFC

delay
throughput
multi-server

BESS
Pktgen-dpdk

KVM VMs

heuristic
algorithm

spans multiple machines to achieve high
performance and programmability to

improve SFC performance with
manageable overheads

the modeling and the specification of
parallel SFC in the controller are not

studied

Xie et al. [20] 2020 FlexChain delay accept
flow

VL2 Fat-Tree
BCube

heuristic
algorithm

parallel VNFs are placed on the same node,
thus preventing the loss in copy/merge

latency on different nodes

may not be applicable in
resource-constrained scenarios

Mathematics 2022, 10, 4698 7 of 25

Earlier SFC parallel processing architectures such as ParaBox and NFP mainly consider
the scenario where the entire SFC is deployed on a single server, which greatly reduces
the flexibility of the system. Zhang et al. [19] proposed a parallelization framework,
i.e., HybridSFC, to accelerate the operation of SFC across multi-core servers. To better
investigate traffic-level parallelism, HybirdSFC splits a sequential SFC into many SFC pieces
(i.e., sub-SFC is applied to a part of the traffic flow) and parallelizes NF processing across
multiple cores/servers to achieve NF-level parallelism. Similarly, Xie et al. [20] proposed
a more adaptable and effective SFC parallel system, called FlexChain, which enables
the placement of SFCs on many servers, obviating the need for additional bandwidth
between servers. Due to the NP-hard nature of the problem, they propose a parallel-aware
approximate deployment algorithm with performance guarantees, as well as an efficient
heuristic algorithm especially suitable for large-scale data center networks.

2.2. Parallelized SFC Deployment

Both serial and parallelized SFC need to be mapped to the underlying network nodes
or servers to provide the resources for processing. This process becomes an SFC deploy-
ment problem. The deployment problem of SFC is an NP-hard problem. The additional
packet replication and resource consumption in parallelized SFC further complicates the
problem. A systematic review of parallelized SFC deployment studies, their contributions,
performance metrics, evaluation tools, utilized techniques, advantages, and disadvantages
is summarized in Table 2. We divided the related works into three categories according to
their optimization goals.

Mathematics 2022, 10, 4698 8 of 25

Table 2. A systematic review of PSFC deployment and scheduling methods.

Research Years Contribution Performance
Metrics

Evaluation
Tools

Utilized
Techniques Advantages Disadvantages

Sun et al. [21] 2019

request
splitting; SFC
deployment

in DCNS

delay; load
balance;

acceptance
rate

unspecified heuristic
algorithm

alleviates the problem of hash collision of
elephant flows

splitting large traffic into multiple
sub-flows increases the network node

occupation

Bao et al. [22] 2020
VNF

placement of
PSFCs

delay;
overhead;

load balance

OpenStack,
ONOS, and

XOS

Prune and
Plant (P&P) eliminates the NP-hardness two-stage optimization may lead to

coordination difficult

Cai et al. [5] 2020
VNF

deployment
of PSFCs

delay;
resource

utilization;
acceptance

rate

Matlab match theory a match theory-based method leads to high
resource efficiency

multiple algorithms result in higher
algorithmic complexity

Luo et al. [23] 2020
VNF

deployment
of PSFCs

delay;
acceptance

rate
C/C++ ILP; heuristic

algorithm
use the heuristic algorithm to search for a

near-optimal solution

the computationally expensive DP-based
approach may not be practical for

large-scale networks

Rui et al. [15] 2020
VNF

migration of
PSFCs

VNF
migration;
reliability

OpenStack Petri net
model

VNF migration reduces the impact of
resource preemption and common-cause

failures on service reliability

the difficulty increases when solving
high-order systems

Cai et al. [4] 2021

VNF
deployment;

scheduling of
PSFCs

delay;
parallelism

degree;
resource

utilization,
acceptance

rate

Matlab reinforcement
learning

ML-based method enables an automatic
decision-making

facing the problem of parameters
adjustment and training

Wang et al.
[24] 2021

VNF
Placement &

sub-SFC
backup

delay;
availability;

resource
utilization

BESS, DPDK,
and Alevin

heuristic
algorithm guarantees a high availability (99.999%) the numbers of working and backup

sub-SFCs are fixed

Lin et al. [25] 2021
NF instance

assignment of
PSFCs

delay;
parallelism

degree
C++ heuristic

algorithm
investigated the optimal partial parallelism

problem
did not involve the partial parallel chain

embedding

Mathematics 2022, 10, 4698 9 of 25

Table 2. Cont.

Research Years Contribution Performance
Metrics

Evaluation
Tools

Utilized
Techniques Advantages Disadvantages

Lin and Chou
et al. [26] 2021

dependency-
aware NF
instance

assignment

delay; load
balance unspecified scoring-based

mechanism
avoids detouring any parallel segment and

further balances the loading of instances
only ensures that parallel subpaths are of

roughly the same length

Zheng et al.
[27] 2022

parallelism-
aware VNF
embedding

delay;
resource

utilization
JAVA

two-stage
heuristic

algorithm

near-optimal performance when
computing resources are enough

still focuses on service function chaining
embedding problem

Our proposed
method to date

converts PSFs
to multiple
serial SFCs;

PSFCs
scheduling

delay; delay
balance;
resource

utilization;
acceptance

rate

Pycharm,
python

reinforcement
learning

the proposed method searches for a unified
solution for parallelized SFCs

faces the problem of parameters adjustment
and training

Mathematics 2022, 10, 4698 10 of 25

2.2.1. Studies Aiming to Reduce Service Delay

Baek et al. [10] proposed a PSFC deployment mechanism in a distributed network in
which VNFs in an SFC are deployed on the same node as much as possible to reduce link
delay. In order to solve the problem of long queuing delay caused by elephant flow and
mouse flow on the same path, Sun et al. [21] first split the large flow into multiple sub-flows
and copied the original SFC into several sub-SFCs, i.e., parallelized flow. They propose a
heuristic algorithm for online PSFC orchestration, which determines the VNFs and virtual
link mapping to servers and corresponding physical links. Bao et al. [22] proposed a
two-stage Prune and Plant (P&P) method to realize the optimized parallelization and
deployment of PSFC. First, the dependencies of VNFs were described by a directed acyclic
graph (DAG). In the pruning stage, the DAG was transformed into a serial-parallel graph
(SP graph), and the NP-hardness is eliminated while maintaining the parallelism of VNFs.
In the plant phase, the optimal deployment position of VNFs in the SP-graph is found to
reduce the total latency. Cai et al. [5] proposed an architecture to support SFC parallel
processing and designed an SFC parallel processing algorithm to parallelize two NFs
which can effectively reduce the service delay by more than 30%. Furthermore, a service
chain deployment algorithm based on optimal matching theory was proposed to form
the optimal matching of VNFs and nodes, which can effectively improve the utilization
of node resources. Luo et al. [23] also studied the deployment of PSFCs. First, they
designed an SFC parallel algorithm based on VNF dependencies to convert the original
SFC into a parallelized SFC. Then, the deployment problem was modeled as an integer
linear programming problem and a heuristic method ParaSFC was proposed to obtain
an approximate optimal solution. According to the experimental findings, ParaSFC may
accommodate more SFC deployment requests on networks with limited resources while
parallelizing all installed p-SFCs to minimize their average service latency by roughly 15%.

2.2.2. Studies Aiming to Reduce the Delay Difference and Parallelism Optimization

Although the parallel processing of the SFCs can reduce the service delay to a cer-
tain extent, the Uncoordinated processing speed of sub-SFCs will bring non-negligible
delay differences and packets accumulation between parallel branches, furthermore, the
end-to-end delay of PSFCs is determined by the longest branch. To this end, our previous
work [4] studied the parallelism optimization problem of PSFCs and proposed a parallelism
optimization algorithm, i.e., POA. POA can effectively reduce unreasonable parallelism.
They further studied the optimal scheduling problem of multiple PSFCs and proposed
a Q-learning-based PSFC scheduling method. Compared with traditional heuristic algo-
rithms, it can effectively reduce service delay by more than 30% and improve the resource
utilization rate by more than 25%. The parallel processing of network functions will bring
non-negligible resource consumption and overhead, especially in the case of distributed
deployment of NFs. Lin et al. [25] studied the optimal parallel processing of distributed
NFs under different SFC situations (i.e., long function time, long transmission time, long
processing time), and proposed a partially parallel SFC processing algorithm, i.e., PPC.
In this, NFs are processed in parallel only when PPC can provide latency reduction. The
experimental results show that the algorithm has improved performance compared with
SFC serial processing and SFC fully parallel processing, and significantly reduces service
latency by more than 35%. Lin et al. [26] studied the optimal embedding of PSFC and took
the VNF dependency into consideration. They proposed a VNF embedding method based
on the scoring principle. The scores of VNFs include the order score of functions and the
score of dependencies between NFs. Zheng et al. [27] introduced a new augmented graph
method to address the parallel relationship constraints between SFs and proposed the
parallelism-aware SFC embedding problem. To address this problem, they proposed two
approximately optimal SFC deployment algorithms for when resources are either sufficient
or limited, which jointly optimize processing and propagation delay.

Mathematics 2022, 10, 4698 11 of 25

2.2.3. Studies Aiming to Ensure Service Reliability or Availability

Engelmann et al. [17,18] studied the problem of end-to-end service reliability in paral-
lel service flows. They divided larger flows into smaller sub-flows, and to avoid hash colli-
sion issues in the same link, they analyzed the number of backup VNFs required by paral-
lelized SFCs to achieve the required reliability in both a centralized and distributed manner.
Wang et al. [24], studied the problem of parallelized SFC deployment in data center net-
works and considered the availability guarantees and resource optimization of SFCs. They
separate an SFC into numerous sub-SFCs and offer a backup sub-SFC model to assure the
right processing of services when errors occur instead of attempting to parallelize NF in
an SFC. They also created three placement methods and a hybrid placement methodology
(HPA). The proposed method reduced 40% of the consumption and reduced 30% of the
SFC latency while maintaining a high availability (99.999%), according to their simulation.

It can be seen that there is a relatively mature body of research on the deployment of
parallelized SFCs, reducing service delay and delay difference, parallelism optimization,
and ensuring service reliability or availability by SFCs parallelization. However, only Cai
et al. [4] have studied the scheduling of parallelized SFCs, but their proposed Q-learning-
based scheduling will face the exponential explosion problem in large-scale scenarios.

3. Proposed Method for PSFC Serialization
3.1. Representation of PSFCs

In this study, a directed acyclic graph (DAG) is used to model a PSFC. The directed
edges in the DAG reflect the packet forwarding direction between two VNFs, and the nodes
in the DAG represent the VNFs of an SFC. A serial SFC graph can be converted into a PSFC
graph (PSG) in accordance with the relationship between VNFs [4]. Figure 3a displays
possible PSG combinations. The SFC VNFs can either be fully parallelized using several
VNFs or concatenated into a serial SFC graph. PSG can also be organized with multiple
balanced and unbalanced VNFs in different branches. The packets need to be replicated
and sent to multiple parallel branches for parallel processing, which is performed by the
copy and merge node as shown in Figure 3a. The total number of parallel branches that
need a duplicate of the packet [4] is defined as the parallelism degree of PSG, indicated by
Φ. For example, the parallelism degree of the configurations presented Figure 3a are 1, 3, 2,
and 2, respectively.

(1) serial

(3) multiple balanced
parallelized branches

transform

VNF

Virtual link
Shared VNFs

(2) completely parallelized

(4) multiple unbalanced
parallelized branches

Copy / Merge

(a) Possible PSFCs structure (b) PSFC transforms to serial SFCs

(2) serial SFCs with
2 related VNFs

1

1

2 3 5

54

 New added
VNF

(3) serial SFCs with
1 related VNF

1

1

2 3 5

54

1
2 3

4
5

(1) parallelized SFC

Figure 3. Possible PSG structures and PSFC transformation.

3.2. Transforming PSFC into Multiple SFCs

In this paper, we jointly consider PSFCs as well as serial SFCs in our system in order
to find a unified solution. PSFCs are transformed into multiple parallel branches according
to the degree of parallelism. As shown in Figure 3b, the PSFC is transformed into two
branches. Different from normal independent SFCs, the branches transformed from a PSFC
have VNF dependencies between them. For example, for non-parallelized VNF1 and VNF5
of the two parallel branches, they use a shared VNF for traffic processing. Data replication
and merging operations are also required in addition to simple traffic routing, that is, the

Mathematics 2022, 10, 4698 12 of 25

traffic must be copied (performed by copy function) and sent to multiple branches after
being processed by VNF1, and the traffic of different branches must be merged before sent
to the next non-parallelized VNF, i.e., VNF5.

Reducing the related VNFs: There are two ways to deal with these two branches. In
the first case, both VNF1 and VNF5 can be deployed in the same server and use the shared
VNF (indicated by blue circles) to process the traffic, as shown in Figure 3b(2). In this case,
no additional VNF instance in the physical server will be consumed in comparison to the
original PSFC, but these two branches having two related VNF dependencies makes the
scheduling problem more complicated and difficult to coordinate. It is worth mentioning
that it is also possible to utilize the VNF in other servers for non-parallelized VNFs, although
using the newly instantiated VNF instead of sharing the VNF will inevitably bring VNF
instantiation cost and additional server running cost (if it were originally in an off state). We
noticed that because there are no upstream VNFs before VNF1, it is feasible to deploy VNF1
of the two branches on different servers and sent the independent traffic to downstream
VNFs. On the contrary, there are three upstream VNFs (i.e., VNF2, VNF3, and VNF4) before
VNF5, so the arriving traffic must be merged before VNF5 to guarantee the correctness of
the traffic. Because of this reason, VNF5 of the two SFCs must be deployed in the same
server and use the shared instantiated VNF. Overall, the deployment of the two SFCs will
consume one additional instantiated VNF (i.e., VNF1 as indicated by the red circle) in a
physical server.

As shown in Figure 3b(3), although the additional instantiation cost of one VNF is
introduced, the problem is much simplified compared to the first case by reducing the
number of related VNFs from two to one. Moreover, these two parallel branches can be
scheduled separately and regarded as two SFCs with the same destination, i.e., the last
VNF of two SFCs must be scheduled to the same server.

3.3. Traffic Scheduling of PSFCs

For the ease of the following discussion, a schematic diagram of PSFC traffic scheduling
is shown in Figure 4, showing a PSFC consisting of VNF1, VNF2, VNF3, VNF4, and VNF5,
and the processing delay is shown below each VNF. It is assumed that VNF2, VNF3, and
VNF4 can be processed in parallel, based on any of the previous parallelized analysis
methods [1,3]. Because VNF processing delays are different, in order to achieve delay
balance, VNF2 and VNF4 are in the same parallel branch and VNF3 is in another branch.
The traffic enters from the ingress, passes through each parallel branch in turn, traverses
each VNF, and then reaches the service destination node at the egress. The PSFC can be
transformed into two branches, including branch 1: VNF1-VNF2-VNF4-VNF5 and branch
2: VNF1-VNF3-VNF5. The underlying network topology consists of several servers and
switches, as well as links between them. The instantiated VNF types that each server
can carry are shown in the figure. We present two examples to elaborate the two traffic
scheduling methods discussed above, where white and orange represent the idle and
occupied VNF, respectively, as shown in Figure 4.

Traffic scheduling scheme 1: as shown in Figure 4a, both VNF1 and VNF5 use a
shared VNF deployed in the same server. Specifically, VNF1 is deployed in S1, VNF2 is
deployed to S2, VNF3 is deployed to S4, VNF4 is deployed to S5, and VNF5 is deployed to
S7. The numbers between the nodes represent the link delay. The traffic path of serial branch
1 is represented by a blue dotted line, and the traffic path of serial branch 2 is represented
by a red dotted line. At this time, the total end-to-end delay of branch 1 is the sum of

VNF processing delay and link delay, which is
20 + 15 + 18 + 15︸ ︷︷ ︸
processing delay

+
15 + 15 + 25 + 20 + 10︸ ︷︷ ︸

link delay
= 153 ms. Similarly, the end-to-end delay of branch 2 is 155 ms.

Mathematics 2022, 10, 4698 13 of 25

(a) Deployment and scheduling scheme 1 (b) Deployment and scheduling scheme 2

20ms

15ms 18ms

35ms

15ms 20ms

15ms 18ms

35ms

15ms

Figure 4. Traffic scheduling of PSFC. The white, blue, orange, and red boxes represent the idle VNFs,
shared VNFs, occupied VNFs, and additional VNFs, respectively.

Traffic scheduling scheme 2: as shown in Figure 4b, now the two parallel branches
are processing independently. VNF1 is deployed in both in S1 and S2, VNF2 is deployed to
S2, VNF3 is deployed to S4, VNF4 is deployed to S5, and only VNF5 deployed to S7 utilizes
the shared VNF to merge the parallelized flow from the two branches. The end-to-end
delay of PSFC in this case can be obtained similarly, where branch 1 and branch 2 have
end-to-end delays of 153 ms and 155 ms, respectively.

Although these two scheduling strategies result in the same end-to-end delay of PSFC
which is determined by the maximum delay of two parallel branches (i.e., 155 ms), the
first scheme is more difficult to implement with two related VNF among the two branches,
whereas scheme 2 transforms the PSFC into two independent branches, which is much
easier to implement, and the system can support massive service both in parallelized and
serial SFCs. However, it can not be ignored that scheme 2 uses one additional VNF (i.e.,
VNF1) to support the independent processing of the two branches, which will introduce
the additional VNF instantiation cost and running cost of server.

Minimizing the delay difference of parallel branches: Although the service end-
to-end delay depends on the longest branch in PSFCs, the delay difference between
two parallel branches is also crucial. Large delay difference will introduce queuing
delay and packet accumulation at the merge node [4]. The delay difference of two ex-
amples above is 2 ms which is relatively small and does not affect the processing effi-
ciency of the PSFC. Note that, in addition to S4, VNF3 can also be executed on S5 and
S8. The total end-to-end delay of branch 2 when VNF3 is executed on S5 and S8 will be

20 + 15 + 18 + 15︸ ︷︷ ︸
processing delay

+
10 + 15 + 15 + 25 + 20 + 10︸ ︷︷ ︸

link delay
= 165 ms and

20 + 15 + 18 + 15︸ ︷︷ ︸
processing delay

+

10 + 20 + 20 + 22︸ ︷︷ ︸
link delay

= 142 ms, respectively, and the delay difference comparing to branch 1

(which is 153 ms) becomes 12 ms and 11 ms, which is much larger. The current strategy
is obviously optimal. The delay difference of PSFC under different scheduling strategies
and their total delay are summarized in Table 3. It can be seen from the table that different
traffic scheduling strategies have great differences in service delay and optimizing the
traffic scheduling strategy of SFC is particularly important for the service quality.

Mathematics 2022, 10, 4698 14 of 25

Table 3. Performance of different scheduling policies, where oi represents the flow ingress and di

represents the flow egress node.

Policies Branch 1
Delay

Branch 2
Delay Differences e2e Delay If Optimal

oi-S1-S4-S7-di 153 ms 155 ms 2 ms 155 ms yes

oi-S1-S4-S5-S7-di 153 ms 165 ms 12 ms 165 ms no

oi-S1-S4-S8-di 153 ms 142 ms 11 ms 153 ms no

3.4. Real-World Case Study

In this subsection, we provide a real-world case study top obtain a better understand-
ing of our proposed method, as shown in Figure 5a. Take the real-world service of Figure 1
as an example, the number of each VNF can be expressed as the processing time of VNF,
which is derived from the real tests [1]. Because TM and FW are independent NF, the origi-
nal serial SFC is converted into parallel service graph to improve the service processing
speed. In the parallelized service graph, TM and FW process in parallel, receive the traffic
from VPN, and then send the traffic to the LB.

Parallelized SFC:

VPN FWTM LB

Serial SFC:

90ms 35ms 70ms 20ms

VPN

Firewall

Monitor

Load Balance

90ms 70ms 20ms

Total:215ms

Total:180ms

source

source

destination

destination

VPN

FW

TM

LB

source destination

VPN FW

TM

LB

VPN LB

VPN Firewall

MonitorVPN

(a)original parallelized SFC

(b)convert to multiple serial
SFCs, with two shared VNFs

LB

LB

(c)reduced the dependency among two
serial SFC, with one shared VNF

Source or destination node

Traffic scheduling direction

Shared VNF

New added VNF

Figure 5. Case study of real-world parallelized SFC.

In our proposed approach, the parallelized SFC will first be converted into two parallel
branches (-VPN-FW-LB- and -VPN-TM-LB- shown in Figure 5b) where VPN and LB can
use the shared VNF. These two branches still have two interdependent VNFs. According to
the analyses in Section 3.2, to reduce the dependency of the two serial SFC, we can relax the
VPN dependency by adding a new VPN, so the PSFC will be converted to -VPN-TM-LB-
and -VPN-FW-LB-, where only the LB uses the shared VNF. In this case, these two branches
only have one interdependent VNFs, as shown in Figure 5c.

In the original parallelized graph, in order to maintain delay balance, the delay
of the two parallel branches is only determined by one VNF and two links, e.g., the
processing delay of FW and its connected two links, whereas in Figure 5c, the delay of
two parallel branches are determined by two VNFs and three links. More space of delay
optimization and traffic scheduling make it easier to balance delays during actual traffic
scheduling process.

In the following section, we will introduce in detail how to implement the schedul-
ing of the PSFCs based on the RL method and ensure the delay balance between the
parallel branches.

Mathematics 2022, 10, 4698 15 of 25

3.5. Mathematical Formulation

Assuming that the set of SFC requests is S, si ∈ S indicates the ith SFC request, the jth
VNF of si is presented by fij ∈ F. Define a binary variable xk

ij = {0, 1}, with 1 indicating the

jth VNF of si is processed by the server k, and 0 otherwise. Another variable yk,k′
j,j+1 = {0, 1}

is also introduced, where 1 indicates the traffic flow from jth VNF instance on server k will
be sent to j + 1th instance on server k′, and 0 otherwise.

In the traditional serial SFCs, the total end-to-end delay of SFCs is the sum of VNF
processing delay, transmission delay, and link propagation delay:

De2e = ∑(φij +
vi
bl
)xk

ij + ∑ Dl(k,k′)y
k,k′
j,j+1, i ∈ S, j, j + 1 ∈ F, k, k′ ∈ N, (1)

where φij indicates the processing delay of jth VNF of si, Dl(k,k′) represents the link delay
between server k and k′, vi is the data size of si, bl is link transmissibility, which is often
defined by link bandwidth of link l connected server k and k′; therefore, vi

bl
represents the

data transmission delay.

Theorem 1. Assuming there are p parallel branches in total in a PSFC. The service end-to-end
delay De2e of the PSFC is determined by the parallel branch p∗ with the maximum delay, called the
critical branch with critical delay Dc

e2e, with the delay of other branches being Dp
e2e and Dp

e2e ≤ Dc
e2e.

Based on Theorem 1, the end-to-end delay of a PSFC is defined as:

De2e = Dc
e2e = max

p
{ ∑

j∈p
(φij +

vi
bl
)xk

ij + ∑
j,j+1∈p

Dl(k,k′)y
k,k′
j,j+1},

i ∈ S, j, j + 1 ∈ F, k, k′ ∈ N.
(2)

In traditional serial SFCs, the sole objective is to minimize to total end-to-end delay by
efficient traffic routing strategy, whereas in PSFCs, the delay mismatch between parallel
branches could bring packet accumulation due to the different processing speed, resulting
in performance degradation [4]. Furthermore, resources of non-critical parallel branches
that do not determine the service end-to-end delay can be allocated to other services,
which may improve the resource utilization and service throughput. Thus, minimizing the
delay difference between parallel branches with reasonable traffic scheduling is also crucial
in PSFCs.

The delay difference D f
e2e of a PSFC is defined as the total difference between its

non-critical parallel branches (p 6= p∗) and its critical parallel branch (p = p∗):

D f
e2e = ∑

p 6=p∗
(Dc

e2e − Dp
e2e)

= ∑
p 6=p∗

(Dc
e2e − (∑

j∈p
(φij +

vi
bl
)xk

ij + ∑
j,j+1∈p

Dl(k,k′)y
k,k′
j,j+1)),

i ∈ S, j, j + 1 ∈ F, k, k′ ∈ N.

(3)

In this paper, the optimization objective is to jointly minimize the end-to-end delay of
PSFCs as well as minimize the delay difference between parallel branches of PSFCs using a
reasonable scheduling action at, which will be defined in the next section:

O = min
{at}

∑
i∈S

(αDe2e + βD f
e2e), (4)

where α and β are the coefficients of the two optimization objectives.
In order to ensure that the resources meet the existing network conditions when

processing service requests, the constraints are represented by Equations (5) through (7).

∑(xk
ij + ξk

ij) = 1, ∀i ∈ S, j ∈ F, k, k′ ∈ N, (5)

Mathematics 2022, 10, 4698 16 of 25

τij−1 + ∑ vi
bl

xk
ij−1 + ∑

uv∈E
Dl(k,k′)y

k,k′
j−1,j ≤ Tij,

∀i ∈ S, ∀j− 1, j ∈ F, ∀k, k′ ∈ N.
(6)

Tij + ∑ φijxk
ij ≤ τij, ∀i ∈ S, ∀j ∈ F, ∀k ∈ Nk. (7)

Among them, (5) ensures that the VNF can be either deployed in a new server
k (xk

ij = 1) or reusing the shared VNF which has been already instantiated in server

k′ (ξk
ij = 1). τij represents the time when the server deploying the jth VNF starts to forward

the service flow, Tij represents the time when the jth VNF starts to process traffic, and
Nk is a set of candidate servers that can instantiate the jth VNF. Constraint (6) ensures
that the downstream VNF processing start time must be after the upstream VNF’s data
transmission and propagation has completed, and constraint (7) ensures that the service
flow can be transmitted to the downstream VNF after the previous VNF is processed.

4. Reinforcement Learning-Based PSFC Scheduling
4.1. Q-Learning Method

Traditional exact and heuristic algorithms can find the optimal and near-optimal
solution of the above problem in small-scale network scenarios, but in large-scale network
scenarios, especially in the face of real-time online network services, traditional methods
have difficulty achieving fast decision. Reinforcement learning (RL) is an autonomous
decision-making algorithm in which an agent continuously interacts with its environment
and adjusts the strategy through feedback to learn the best actions that maximizes the
long-term cumulative reward.

This paper employs a lightweight RL method called the Q-learning algorithm. It is
critical in the Q-learning algorithm to learn and maintain a state–action matrix Q, known
as the Q-table. A state–action pair is represented by each Q-table element. The best action
a of the current state st that satisfies the following relation is chosen based on the Q-table:

Q(st, a) = max
a∈A

Q(st, a). (8)

The ε-greedy strategy is used to select actions to prevent the RL algorithm from
falling into a local optimum. The algorithm selects the best action according to (8) with
a probability of (1− ε) for each time step or randomly explores a new action that is not
present in the Q-table with a probability of small ε. ε changes dynamically with the number
of learning cycles in the Q-learning algorithm, e.g., ε = 10

ω , where ω denotes the number
of learning cycles. Actions are initially chosen in a more random manner, suggesting that
the RL algorithm initially explores the environment through novel actions. The actions are
mostly determined by the Q-table as it fills and converges.

When an action is chosen and executed, the system advances to the next state st+1 and
returns r(st, at). The Q-table is then updated by:

Q(st, at) = Q(st, at) + θ[r(st, at) + γ max
at+1

Q(st+1, at+1 −Q(st, at))], (9)

where (st, at) and r(st, at) denote the state–action pair and instant reward at time t, st+1 is
the upcoming state at time t + 1, and θ and γ indicate the learning rate and discount factor
of the RL agent, respectively.

4.2. Markov Decision Process

The RL agent continuously interacts with the environment and selects the optimal
strategy according to the immediate reward s(st, at) of the environment, called the Markov
decision process. The basic elements of the Markov decision process are defined as:

State space st: the network state at time t, represented by the matrix
st = {x11, x12, x13...xij} where the diagonal elements xij, (i = j) represent the resource

Mathematics 2022, 10, 4698 17 of 25

capacity of the ith server, and xij, (i 6= j) represents the link delay between servers i and
server j.

Action space at the action taken by the agent at time t, at = {xk
ij, yk,k′

j,j+1}, where

xk
ij = {0, 1}, xk

ij = 1 indicates that the jth VNF of si is processed by the server k, and 0

otherwise. yk,k′
j,j+1 = {0, 1}, yk,k′

j,j+1 = 1 indicates that the traffic flow from the jth VNF instance
on server k will be sent to the j + 1th instance on server k′, and 0 otherwise.

Reward function Rt: the RL method aims to find an optimal policy to maximize
the cumulative reward R(t) = ∑T

t=1 r(t) while following the policy. This paper jointly
optimizes the service end-to-end delay and the difference between parallel branches, and
the instant reward consists of two parts, which is the weighted sum of the service end-to-
end delay and the difference between parallel branches:

rt = M− αDe2e + βD f
e2e, (10)

where M is a sufficiently large integer. It can be seen that the smaller the total end-to-
end delay and delay difference between different parallel branches, the larger the reward
function, where α and β are the coefficients of two optimization objectives.

The specific learning process is as follows: First, the agent initializes the Q-table and
the initial state s0. For each VNF in an SFC, the agent randomly selects actions based on
the current state according to the e-greedy strategy or selects the current optimal strategy
according to the current Q-table (lines 7–16). The learning processing will stop automatically
if it exceeds the large exploration period max_episodes or the Q-table converges (line 8). In
the early stage of the agent’s exploration, the Q-table is still empty, and it is more inclined
to explore random actions. When it learns to the later stage, it selects the server and traffic
scheduling path according to the action value function. After selecting a server, it calculates
the performance of traffic scheduling to this server, that is, the total service delay and delay
difference (lines 17–20) and updates the Q-table. If the selected server has insufficient
resource capacity or is already occupied by other services, a negative reward is returned
(line 22). Finally, the agent selects the best action and updates time_table (lines 27–28). After
executing the action, the system will enter the next state and update the system state to the
current state (line 29). The detailed learning process is shown in Algorithm 1.

4.3. Algorithm Complexity

The training process of the RL agent will stop when the Q-table converges or reaches
the max_episode, assuming E = max_episode. In the training phase of Algorithm 1, lines
7–26 run up to 10 E times, assuming the number of network function of each service is M.
Then, lines 4–30 running 6 M + 10 ME operations, assuming there is a total of S services, the
total running operations of lines 3–31 are 6 SM + 10 SME; therefore, the total complexity of
Algorithm 1 is 6 SM + 10 SME +2. In real-world network services, the number of network
functions of each service generally does not exceed 7 [4], so M can be ignored. In the
simulation experiment, we set E = 500 due to the considerable convergence effect. In short,
the complexity of the algorithm is O(SE) which indicates that the proposed algorithm has
relatively low algorithm complexity. A specific running time comparison of the algorithm
will be given in Section 5.3.5.

Mathematics 2022, 10, 4698 18 of 25

Algorithm 1: Delay-aware traffic scheduling algorithm based on reinforcement
learning.

Data: st, α, β, θ, γ, ε

Result: xk
ij, yk,k′

j,j+1

1 Initialize: Q-table ;
2 Initialize state: s0 ;
3 for si ∈ S do
4 for j = 1 to |si| do
5 Current state: st;
6 max_episode = 500;
7 for ω = 1 to max_episodes do
8 if ω > max_episode or Q-table is converged then
9 break;

10 else
11 λ← randomly generate from [0, 1];
12 if λ ≥ ε then
13 a← randomly select an action;
14 else
15 a← select action a according to (8);
16 end
17 if selected server can host the VNF then
18 De2e ← calculate end-to-end delay based on (2);

19 D f
e2e ← calculate delay difference based on (3);

20 rt ← calculates the instant reward according to (10);
21 else
22 rt ← -100;
23 end
24 update Q-table according to (9);
25 end
26 end
27 select the best action ā = {xk

ij, yk,k′
j,j+1} according to Q-table to scheduling fij;

28 add running time of fij into time_table of node ā;
29 st ← st+1; // update current state
30 end
31 end

5. Simulation Results and Discussions
5.1. Parameter Settings

We adopt four real-world network topologies with scales from 25 to 100 nodes from
the Internet Topology Zoo [28] to verify the performance in different network scales. Each
node is regarded as a host server, the resource capacity of each server is set to 100–250 units,
the bandwidth between two servers is set to 5–10 Gbps, and 1–3 types of VNFs were
instantiated in each server. SFC requests with lengths of 3–6 VNFs are randomly generated,
PSFCs have all the possible architecture as defined in Figure 3a, and the processing delay
of each VNF is randomly generated from 10 to 100 ms. The link delay is set to 25–30 ms
according to the physical distance between two nodes. The average data rate of SFC is
set to 0.1–1 Gbps, assuming that the resource requirement of VNF is proportional to the
data rate. The learning rate θ and discount factor γ are set to 0.9 and 0.6 based on the best
convergence performance, and the coefficients of α and β are set to 0.6 and 0.4, respectively.
The specific setup of our simulation is listed in Table 4.

Mathematics 2022, 10, 4698 19 of 25

Table 4. Simulation Setting.

Parameter Setting

topology 25–100 nodes

node resource capacity 250–300 units

link bandwidth capacity 5–10 Gbps

link delay 25–30 ms

SFC length 3–6 VNFs

VNF resource request 5–10 units/Gbps

VNF processing time 10–100 ms

average data rate 0.1–1 Gbps

learning rate θ 0.9

discount factor γ 0.6

De2e coefficient α 0.6

D f
e2e coefficient β 0.4

5.2. Baseline Algorithms

We compared our proposed DASM method with the current advanced PSFC schedul-
ing mechanism and two greedy traffic scheduling methods, listed as follows:

Joint deploying and scheduling mechanism of PSFCs based on reinforcement learning
(JoRL) [4]: JoRL is a two-stage optimization method. In the first stage, it uses a parallelism
optimization algorithm (POA) based on a bin-packing problem to optimize the paral-
lelism degree of PSFC and then uses the Q-learning algorithm to determine the optimal
deployment and scheduling strategy.

Greedy best availability algorithm (GBA): GBA schedules traffic to the best available
server that has smallest queuing delay in the current queue.

Greedy shortest path algorithm (GSP): The GSP algorithm greedily chooses the shortest
path to route the traffic, but the delay balance between differences is ignored.

This paper compares the scheduling benefits of different algorithms, including to-
tal SFC delay, delay difference between parallel branches, resource utilization, service
acceptance rate, and algorithm running time, defined as follows:

• SFC end-to-end delay: including VNF processing delay and link propagation delay.
In a distributed network, the data transmission delay can be ignored in comparison to
the processing delay and link delay.

• Delay difference: defined as the sum of the delay differences between different paral-
lel branches.

• Resource utilization: the resource utilization of a node is defined as the ratio of the
used resources in the node to the total resources;

• Bandwidth utilization: the bandwidth utilization is defined as the ratio of the used
bandwidth to the total bandwidth.

• Service acceptance rate: defined as the percentage of successful SFCs of all 100 SFCs.
• Running time: defined as the running time for the algorithm to deploy and schedule

100 SFCs from ingress to egress node.

5.3. Simulation Results

The simulation results are shown as follows. In order to avoid the accidental cir-
cumstance of service which may cause the indeterminacy of experimental results, we
deployed 100 SFCs in each episode, repeated the experiments up to 500 episodes (as shown
in Algorithm 1), and took the average as the output.

Mathematics 2022, 10, 4698 20 of 25

5.3.1. SFC End-to-End Delay

Figure 6 shows the service end-to-end delay of four algorithms under different network
scales, i.e., from 25 nodes to 100 nodes. As expected, GSP has the smallest end-to-end
delay, because the GSP algorithm greedily selects the path with the smallest delay for traffic
scheduling each time, but ignores the delay balance between different parallel branches,
which is not the optimal strategy in our proposed scenario. The proposed DASM method
has a lower SFC delay than the GSP algorithm. Although the PSFC can be converted
into serial SFCs, the traffic can still be scheduled according to the shortest path, but the
proposed method also considers the delay balance between multiple branches, so it is not
solely the pursuit of the lowest delay. The JoRL algorithm has a slightly higher latency than
the DASM because when the JoRL selects the traffic scheduling path, it can only schedule
the traffic based on the previous deployment. This solution may cause the traffic to be far
away from the destination node and cause delay imbalance, whereas the GBA algorithm
chooses the most available server for traffic scheduling each time, effectively reducing the
queuing delay but also bringing traffic detour.

25 42 70 100

Number of physical nodes

300

350

400

450

500

550

A
v
e

ra
g

e
 S

F
C

 d
e

la
y
(m

s
)

DASM

JoRL

GBA

GSP

Figure 6. Average SFC delay with the increasing topology scales.

We further verified the traffic scheduling delay of four algorithms under different SFC
lengths. The simulation was implemented on a 100-node network topology, and the SFC
length was set from three to six VNFs. The simulation results are shown in Figure 7, which
has similar trends as Figure 6. The service end-to-end delay of the GSP algorithm is the
smallest. However, DASM is still second only to the GSP algorithm, and the performances of
the JoRL and GBA algorithms have changed significantly with the increase in SFCs length.

3 4 5 6

SFCs length

300

400

500

600

700

A
v
e

ra
g

e
 S

F
C

 d
e

la
y
(m

s
)

DASM

JoRL

GBA

GSP

Figure 7. Average SFCs delay with the increasing SFCs lengths.

Mathematics 2022, 10, 4698 21 of 25

5.3.2. Delay Difference between Parallel Branches

In a serial SFC, the sole optimization goal is to minimize the latency, but in paral-
lelized SFC, minimizing the delay difference between different parallel branches is equally
important because the service delay is determined by the highest parallel branch, and if
the delay difference between parallel branches is too large, the processing speed between
parallel branches will be inconsistent, resulting in performance degradation of parallelized
SFCs and resource wasting. As shown in Figure 8, our proposed DASM algorithm has
the lowest delay difference between the different parallel branches, because reducing the
delay difference between two serial SFCs is easier than reducing them in a parallelized
SFC with fixed ingress and egress nodes. JoRL is second to our proposed scheme, with the
network topology scale increasing the optimize performance of our proposed scheme is
more obviously than JoRL algorithm. The GBA and GSP algorithms have the highest delay
difference because GBA and GSP algorithms aim to minimize the queuing delay and link
delay, and neither of these two algorithms involve optimization of delay balance.

25 42 70 100

Number of physical nodes

40

60

80

100

120

140

D
e

la
y
 d

if
fe

re
n

c
e

s
 (

m
s
)

DASM

JoRL

GBA

GSP

Figure 8. Delay difference of parallel branches.

5.3.3. Resource Utilization

The resource utilization rate is shown in Figure 9. The resource utilization rates
are gradually decreased with the increasing of topology scales, due to increasing server
resource capacity. The GBA algorithm tends to select the idlest server for traffic scheduling,
resulting in the lowest resource utilization rate. This is followed by JoRL, and the resource
utilization rate of DASM is slightly higher than that of JoRL. This is because the conversion
process of DASM brings additional cost and resource consumption, especially because
elimination of the dependency of the upstream serial VNF in PSFCs requires the additional
instantiation consumption of VNFs, whereas there is no such process in JoRL algorithm.
Furthermore, the GSP algorithm tends to selects the short path for traffic scheduling,
resulting the most centralized VNF deployment; hence, the GSP has the highest resource
utilization rate.

While bandwidth consumption has the same trend with increasing topology as the re-
source utilization rate (as shown in Figure 10), GSP has the lowest bandwidth consumption
due to the centralized VNF deployment and traffic scheduling, and GBA tends to schedule
the traffic to the idlest server at the expense of traffic path; thus, GBA has the highest
bandwidth consumption. DASM has the second-highest bandwidth consumption, and
DASM has a higher bandwidth consumption when compared to JoRL due to the additional
VNF instantiation and traffic routing path.

Mathematics 2022, 10, 4698 22 of 25

25 42 70 100

Number of physical nodes

0

0.2

0.4

0.6

0.8

1

R
e
s
o
u
rc

e
s
 u

ti
liz

a
ti
o
n
(%

)

DASM

JoRL

GBA

GSP

Figure 9. Resource utilization rate.

25 42 70 100

Number of physical nodes

0

0.5

1

1.5

2

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
(%

)

DASM

JoRL

GBA

GSP

Figure 10. Bandwidth consumption rate.

5.3.4. Service Acceptance Rate

We verified the service acceptance rate of algorithms in different network topologies.
In general, as the scale of the network topology increases, the service acceptance rates
of all algorithms gradually increase because the number of nodes available for selection
increases and more services can be satisfied. The service acceptance rate is shown in
Figure 11. Both DASM and JoRL algorithms have a relatively high service acceptance
rate, which can even approach 90%. With an increase in network topology, GBA and GSP
algorithm cannot achieve the considerable acceptance rates of JoRL and DASM. Both JoRL
and DASM realize the traffic scheduling based on the reinforcement learning method;
however, DASM still has a relatively higher acceptance rate than JoRL, which indicates
that the proposed DASM scheme indeed improves the service throughput by reducing the
dependency of parallel branches.

Mathematics 2022, 10, 4698 23 of 25

DASM JoRL GBA GSP

Algorithms

0

20

40

60

80

100

A
c
c
e

p
ta

n
c
e

 r
a

te
(%

)

25 nodes

42 nodes

70 nodes

100 nodes

Figure 11. Service acceptance rate.

5.3.5. Running Time

The complexity of the algorithm reflects the adaptability and application feasibility of
the algorithm, which is verified by the running time of the algorithm. The result is shown
in Figure 12. The GSP algorithm has the highest running time due to the complex shortest
path searching. Especially with an increase in network scale, it is not appropriate to find
the shortest path globally, whereas the greedy algorithm has the relatively low algorithm
complexity due to the near-optimal result searching. Our proposed DASM and JoRL realize
traffic scheduling based on reinforcement learning method, but DASM still has a relatively
lower running time compared to JoRL, which indicates that the proposed DASM scheme
indeed reduces the complexity of the original problem.

25 42 70 100

Number of physical nodes

1

1.5

2

2.5

3

3.5

4

R
u

n
n

in
g

 t
im

e
(s

e
c
)

DASM

JoRL

GBA

GSP

Figure 12. Algorithm running time.

6. Discussions

This paper first systematically summarizes previous studies and finds that the current
research on traffic scheduling of parallelized SFC is still in an open stage. The current
research on serialized SFCs is not suitable for PSFCs scenario, due to the special structural
and VNF dependencies of parallelized SFC. Moreover, although some researchers and our
previous studies have made some attempts, there is still a lack of a general methods for
supporting PSFC traffic scheduling.

To this end, we propose a delay-aware traffic scheduling mechanism (DASM) for
PSFCs. In order to support low-delay and delay-balanced traffic scheduling, PSFCs are first

Mathematics 2022, 10, 4698 24 of 25

converted into multiple serial SFCs. Then, we convert multiple serial SFCs into independent
serial SFCs by reducing the dependence of VNF between parallel branches. The delay-
aware traffic scheduling of multiple parallel branches is implemented based on RL, i.e.,
the Q-learning method, which jointly considers the service end-to-end delay and delay
difference between parallel branches. The simulation results show that the proposed DASM
in this paper can effectively reduce the complexity of the problem and significantly improve
the throughput of the service when compared to greedy-based and current advanced PSFC
scheduling methods.

Although the RL-based method proposed in this paper has shown good performance
in the current simulation experiments, there are still aspects that can be further improved.
For example, (1) the dimension of the Q-table will increase with the increase in the scale
of the network, which may require further optimization in very large networks. (2) Other
aspects in a real-world deployment, such as energy efficiency, need to be further studied in
future work. To tackle these limitations, deep reinforcement learning (DRL)-based methods
can be promising candidates. DRL methods can fit the Q-table based on a neural network
to solve the problem of dimensional explosion, thus improving the algorithm’s efficiency.

7. Conclusions

The parallel processing of SFC (i.e, PSFC) breaking through the delay bottleneck of
traditional serial SFC, is expected to become a key technology for low-latency delivery in
future networks. To support efficient PSFC provision, this paper proposes a delay-aware
traffic scheduling mechanism (DASM)/ DASM first converted the PSFC into multiple serial
SFCs with minimum VNF dependency to search for a unified solution for PSFCs. DASM
further proposed a delay-aware traffic scheduling method based on the RL for converted
parallel branches, which jointly considers the total end-to-end delay as well as the delay
difference between parallel branches. Simulation results showed that the DASM of PSFCs
proposed in this paper can reduce the complexity of the original problem and outperform
the current advanced PSFCs scheduling method in terms of delay performance and system
throughput. Further work is in progress to consider DRL-based traffic scheduling in
larger-scale IoT scenarios.

Author Contributions: Conceptualization, methodology: Z.H. and D.L.; software, validation, formal
analysis, visualization, writing—original draft preparation: Z.H. and C.W.; writing—review and
editing, project administration: D.L.; supervision, funding acquisition: D.L. and H.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China No. 2019YFB1804400,
and MUST Faculty Research Grants No. FRG-21-031-IINGI.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Sun, C.; Bi, J.; Zheng, Z.; Yu, H.; Hu, H. NFP: Enabling network function parallelism in NFV. In Proceedings of the 2017

Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 43–56.
2. Liu, M.; Feng, G.; Zhou, J.; Qin, S. Joint two-tier network function parallelization on multicore platform. IEEE Trans. Netw. Serv.

Manag. 2019, 16, 990–1004. [CrossRef]
3. Zhang, Y.; Anwer, B.; Gopalakrishnan, V.; Han, B.; Reich, J.; Shaikh, A.; Zhang, Z.L. Parabox: Exploiting parallelism for virtual

network functions in service chaining. In Proceedings of the 2017 Symposium on SDN Research, Santa Clara, CA, USA, 3–4 April
2017; pp. 143–149.

4. Cai, J.; Huang, Z.; Liao, L.; Luo, J.; Liu, W.X. APPM: Adaptive parallel processing mechanism for service function chains. IEEE
Trans. Netw. Serv. Manag. 2021, 18, 1540–1555. [CrossRef]

5. Cai, J.; Huang, Z.; Luo, J.; Liu, Y.; Zhao, H.; Liao, L. Composing and deploying parallelized service function chains. J. Netw.
Comput. Appl. 2020, 163, 102637. [CrossRef]

http://doi.org/10.1109/TNSM.2019.2920012
http://dx.doi.org/10.1109/TNSM.2021.3052223
http://dx.doi.org/10.1016/j.jnca.2020.102637

Mathematics 2022, 10, 4698 25 of 25

6. Santos, G.L.; Endo, P.T.; Lynn, T.; Sadok, D.; Kelner, J. A reinforcement learning-based approach for availability-aware service
function chain placement in large-scale networks. Future Gener. Comput. Syst. 2022, 136, 93–109. [CrossRef]

7. Alhussein, O.; Zhuang, W. Dynamic Topology Design of NFV-Enabled Services Using Deep Reinforcement Learning. IEEE Trans.
Cogn. Commun. Netw. 2022, 8, 1228–1238. [CrossRef]

8. Tofighy, S.; Rahmanian, A.A.; Ghobaei-Arani, M. An ensemble CPU load prediction algorithm using a Bayesian information
criterion and smooth filters in a cloud computing environment. Softw. Pract. Exp. 2018, 48, 2257–2277. [CrossRef]

9. Adoga, H.U.; Pezaros, D.P. Network Function Virtualization and Service Function Chaining Frameworks: A Comprehensive
Review of Requirements, Objectives, Implementations, and Open Research Challenges. Future Internet 2022, 14, 59. [CrossRef]

10. Baek, H.; Jang, I.; Ko, H.; Pack, S. Order dependency-aware service function placement in service function chaining. In
Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju,
Republic of Korea, 18–20 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 193–195.

11. Ayoubi, S.; Chowdhury, S.R.; Boutaba, R. Breaking service function chains with Khaleesi. In Proceedings of the 2018 IFIP
Networking Conference (IFIP Networking) and Workshops, Zurich, Switzerland, 14–16 May 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 64–72.

12. Chowdhary, A.; Huang, D. Sdn based network function parallelism in cloud. In Proceedings of the 2019 International Conference
on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 486–490.

13. Wang, R.; Luo, J.; Dong, F.; Shen, D. ParaNF: enabling delay-balanced network function parallelism in NFV. In Proceedings of
the 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), Porto, Portugal,
6–8 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 392–397.

14. Jiang, Y.; Cui, Y.; Wu, W.; Xu, Z.; Gu, J.; Ramakrishnan, K.; He, Y.; Qian, X. Speedybox: Low-latency NFV service chains with
cross-NF runtime consolidation. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 68–79.

15. Rui, L.; Chen, X.; Gao, Z.; Li, W.; Qiu, X.; Meng, L. Petri net-based reliability assessment and migration optimization strategy of
SFC. IEEE Trans. Netw. Serv. Manag. 2020, 18, 167–181. [CrossRef]

16. Hu, Y.; Li, T. Enabling efficient network service function chain deployment on heterogeneous server platform. In Proceedings of
the 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 24–28 February
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 27–39.

17. Engelmann, A.; Jukan, A. A reliability study of parallelized VNF chaining. In Proceedings of the 2018 IEEE International
Conference on Communications (ICC), Chengdu, China, 19–21 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

18. Engelmann, A.; Jukan, A.; Pries, R. On coding for reliable VNF chaining in DCNs. In Proceedings of the 2019 15th International
Conference on the Design of Reliable Communication Networks (DRCN), Coimbra, Portugal, 19–21 March 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 83–90.

19. Zhang, Y.; Zhang, Z.L.; Han, B. HybridSFC: Accelerating service function chains with parallelism. In Proceedings of the 2019
IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Dallas, TX, USA, 12–14
November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7.

20. Xie, S.; Ma, J.; Zhao, J. FlexChain: Bridging parallelism and placement for service function chains. IEEE Trans. Netw. Serv. Manag.
2020, 18, 195–208. [CrossRef]

21. Sun, G.; Chen, Z.; Yu, H.; Du, X.; Guizani, M. Online parallelized service function chain orchestration in data center networks.
IEEE Access 2019, 7, 100147–100161. [CrossRef]

22. Bao, W.; Yuan, D.; Zhou, B.B.; Zomaya, A.Y. Prune and plant: Efficient placement and parallelism of virtual network functions.
IEEE Trans. Comput. 2020, 69, 800–811. [CrossRef]

23. Luo, J.; Li, J.; Jiao, L.; Cai, J. On the effective parallelization and near-optimal deployment of service function chains. IEEE Trans.
Parallel Distrib. Syst. 2020, 32, 1238–1255. [CrossRef]

24. Wang, M.; Cheng, B.; Wang, S.; Chen, J. Availability-and traffic-aware placement of parallelized SFC in data center networks.
IEEE Trans. Netw. Serv. Manag. 2021, 18, 182–194. [CrossRef]

25. Lin, I.C.; Yeh, Y.H.; Lin, K.C.J. Toward Optimal Partial Parallelization for Service Function Chaining. IEEE/ACM Trans. Netw.
2021, 29, 2033–2044. [CrossRef]

26. Lin, K.C.J.; Chou, P.L. VNF Embedding and Assignment for Network Function Parallelism. IEEE Trans. Netw. Serv. Manag. 2022,
19, 1006–1016. [CrossRef]

27. Zheng, D.; Shen, G.; Cao, X.; Mukherjee, B. Towards Optimal Parallelism-Aware Service Chaining and Embedding. IEEE Trans.
Netw. Serv. Manag. 2022, 19, 2063–2077. [CrossRef]

28. Knight, S.; Nguyen, H.X.; Falkner, N.; Bowden, R.; Roughan, M. The internet topology zoo. IEEE J. Sel. Areas Commun. 2011,
29, 1765–1775. [CrossRef]

http://dx.doi.org/10.1016/j.future.2022.05.021
http://dx.doi.org/10.1109/TCCN.2021.3139632
http://dx.doi.org/10.1002/spe.2641
http://dx.doi.org/10.3390/fi14020059
http://dx.doi.org/10.1109/TNSM.2020.3045705
http://dx.doi.org/10.1109/TNSM.2020.3047834
http://dx.doi.org/10.1109/ACCESS.2019.2930295
http://dx.doi.org/10.1109/TC.2020.2967661
http://dx.doi.org/10.1109/TPDS.2020.3043768
http://dx.doi.org/10.1109/TNSM.2021.3051903
http://dx.doi.org/10.1109/TNET.2021.3075709
http://dx.doi.org/10.1109/TNSM.2021.3125619
http://dx.doi.org/10.1109/TNSM.2022.3142184
http://dx.doi.org/10.1109/JSAC.2011.111002

	Introduction
	Systematic Review of Related Works
	SFC Parallelized Architecture
	Parallelized SFC Deployment
	Studies Aiming to Reduce Service Delay
	Studies Aiming to Reduce the Delay Difference and Parallelism Optimization
	Studies Aiming to Ensure Service Reliability or Availability

	Proposed Method for PSFC Serialization
	Representation of PSFCs
	Transforming PSFC into Multiple SFCs
	Traffic Scheduling of PSFCs
	Real-World Case Study
	Mathematical Formulation

	Reinforcement Learning-Based PSFC Scheduling
	Q-Learning Method
	Markov Decision Process
	Algorithm Complexity

	Simulation Results and Discussions
	Parameter Settings
	Baseline Algorithms
	Simulation Results
	SFC End-to-End Delay
	Delay Difference between Parallel Branches
	Resource Utilization
	Service Acceptance Rate
	Running Time

	Discussions
	Conclusions
	References

