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Abstract: This study presents a comprehensive analytical modeling technology to model transient
behaviors of multilayered reservoirs with inter-layer pure-planar crossflow induced by multi-stage
hydraulically fractured horizontal well (MHFHW). The objective of this study is to develop an analyt-
ical model for multilayered reservoirs in conjunction with complex MHFHW and to achieve not only
accurate and efficient computation, but also well-organized solutions expressed in a systematically
integrated manner. The consideration of inter-layer crossflow across adjacent layers sets up the
foundation for successful modeling of multilayered reservoirs. Source/sink function method (SSFM)
is applied to describe fluid flow. Unsteady-state pressure or production rate solutions of MHFHW
with the advantages of fast computation, accurate, and stable solutions are achieved. Comparative
and consistent outcomes generated by this work and widely applied industry software have largely
enhanced our technical confidence. More importantly, innovatively defined modified dimensionless
terms that integrate systematic well-reservoir geometry information, as well as rock/fluid properties
of each layer, have been newly applied to regulate the new modified dimensionless rate decline curve.
This new technique sheds light on the reservoir characterization practice for complicated reservoir
systems. Theoretical results in terms of transient pressure and rate were generated by the proposed
multilayered model (SSFM-ML) for five scenarios of general concern, under various reservoir and
well parameters, which were examined and discussed to demonstrate technical robustness. Not
only does this study give solutions to the targeted multiple layered reservoirs, but it also provides
insights into modeling three-dimensional fluid flow in heterogeneous reservoir with complex well
configurations. It is recommended that future research should be conducted for more complicated
two- and three-dimensional reservoirs, using the similar strategy of developing new type curves
through adopting other new forms of modified dimensionless rate and time terms.

Keywords: analytical modeling; source and sink function method; multilayered reservoir; inter-layer
crossflow; pure-plane source; pure-planar crossflow; multistage hydraulically fractured horizontal
well; modified dimensionless rate; modified dimensionless time

MSC: 76S05; 35A35; 76S05; 35A35; 76M99

1. Introduction

Among the proven hydrocarbon resources, unconventional oil/gas stored in tight
sandstone or shale comprises the biggest portion. Tight reservoirs with complicated strati-
fied layers with relatively larger vertically spanned thicknesses, but with poor reservoir
permeability and low porosity, have become the central focus of unconventional reservoir
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engineering. Generally, fluid flow in multilayered reservoir formations is extremely com-
plex in nature due to the diversity of reservoir geological and depositional environment
variation over geological history. Recently, horizontal wells with multi-stage hydraulically
fractured transverse fractures along wellbore trajectory have become a widely accepted and
increasingly implemented technology for unconventional reservoir development, which
further complicated the wellbore and reservoir system. Generally speaking, the forming of
multilayered reservoirs is attributed to the deposition of rock materials over a long geologi-
cal history. A typical setting of such a well-reservoir system is schematically illustrated by
Figure 1, where the artificial fractures, hydraulically initiated and supported by proppant,
are emitting from the horizontal wellbore as shown.

Figure 1. Schematic of a horizontal well with multistage hydraulically fracturing applied in a
multilayered oil/gas reservoir.

Lee et al. [1] pointed out that one of the main challenges reservoir engineers face is
producing oil and gas from multiple vertical layers with different reservoir properties.
They concluded that a simplistic reservoir description for layered reservoir always results
in an overestimated production potential. Frantz et al. [2] also concluded that a proper
description for multi-layered reservoir offers a better evaluation for post-fracture perfor-
mance in comparison with conventional single-layer reservoir description for a complex
tight formation. Establishing a physical-based multilayered reservoir model produced by
multi-stage hydraulically fractured horizontal well (MHFHW) in order to provide a practi-
cal and reliable tool for reservoir engineers to deal with challenging testing or production
data is necessary to help efficiently and economically develop tight oil/gas.

Oil/gas flow problems in porous media are mainly addressed by numerical or ana-
lytical methods. However, they both have their own limitations. Finite difference is the
most commonly used numerical method to solve flow problems in reservoir engineering
by discretizing the reservoir into many grids and its capability to handle complex heteroge-
neous reservoir model has gained popularity. However, because of hydraulic fracturing
applied in a tight formation, the existence of artificial fractures along wellbore causes many
difficulties for numerical solutions. Due to the large difference between fracture width and
length, the gridding system assigned on fractures has to be extremely narrow but long
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when extended (fracture width no wider than 2 cm normally but at least 10 m long in
grid length required). As a result, extensive computation, slow convergence, and solution
stability become common problems confronting reservoir simulation engineers. On the
other hand, analytical solutions, although accurate, stable, fast computing, and able to
deal with fractures comparatively much easier, are mainly derived under the assumption
of homogeneous reservoir and regular-shaped reservoir geometry. Modeling complex
heterogeneous reservoirs analytically in a straight manner is nearly impossible.

For homogeneous reservoir models under various types of initial and boundary con-
ditions, many researchers have established fundamental analytical solutions to describe
fluid flow behaviors. Carslaw and Jaeger [3] applied SSFM to address heat conduction
problems. Gringarten and Ramey [4] first provided instantaneous source functions cor-
responding to various boundary conditions describing transient pressure behaviors in
reservoir engineering. Gringarten et al. [5] extended the point source solution to transient
pressure behaviors of a producing/injecting fractured well with a single vertical fracture
possessing infinite conductivity by integrating point source solution along fracture plane
with respect to time. Ozkan and Raghavan [6] derived point source solution in Laplace
domain with various well configurations. Rbeawi and Tiab [7] formulated an analytical
model describing pressure behaviors of MHFHW with partially-penetrating hydraulic frac-
tures. In addition to pressure behavior, many studies have examined the production rate
response of fractured well in recent years. Mederios et al. [8] developed a semi-analytical
model incorporating key features of hydraulic fractures, naturally fractures (dual-porosity
system) and wellbore flow to explore production-decline characteristics of fractured well
in terms of transient-productivity index. Nobakht et al. [9] provided a simple method of
forecasting production in tight/shale gas reservoirs, which can be applied to MHFHW
based on single fracture linear flow solution. The solution is simple and easy to generate
but may not be able to handle the interference among multiple hydraulic fractures reliably.
Additionally, for heterogeneous reservoirs, many studies have also tried to apply analytical
methods with newly proposed innovative modeling strategies to achieve reliable and accu-
rate analytical modeling outcomes. Zhao and Thompson [10] developed semi-analytical
solutions using SSFM based on imaging principle to model pressure responses and flow
characteristics in reservoirs with complex geometries, such as T-shaped, splay, and linear
composite reservoirs. Medeiros et al. [8] applied Green function methods to develop a
linear heterogeneous model with a horizontal well, intercepting a number of blocks, and
examined transient pressure behaviors of the horizontal well. Although the well-reservoir
system is simplified without the consideration of hydraulic fractures emitting from well-
bore, their pioneering exploration of modeling heterogeneous reservoir is encouraging
due to Green function’s analytical nature in handling the source and boundary. Zhao [11]
applied the SSFM in developing the technology of modeling reservoir heterogeneity with
complicated wellbore and fracture system by enhancing the application of the concept
of source/sink and imaging source/sink extensively. The patented technology greatly
improved the technical capacity of reservoir engineers in dealing with reservoirs with
complicated heterogeneity and geometry. Zhao [12] developed a stimulated reservoir
volume (SRV) model for MHFHW, based on the patented modeling methodology [11],
which confines a horizontal well with multiple stages of hydraulic fractures within SRV
region, using SSFM with solutions implemented in the Laplace domain, and established
type curves of pressure and newly modified dimensionless type curves of production rate
to help diagnose fracture length in a systematic manner.

It is believed that accurate evaluation of crossflow flux in multilayered reservoir
systems plays a central role in modeling such kind of complicated reservoir systems. In
literature, a great deal of research on multilayered reservoir modeling with the considera-
tion of crossflow had been conducted with various methods. A brief summary of the most
related studies is summarized in Table 1. Due to the comprehensive nature of the studies
in this technical domain, readers are suggested to refer to Table 1 for further details. Most
recently, Lu et al. [13] studied vertical well producing from an infinite two-layer reservoir
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analytically through using Laplace transformation, double Fourier transformation, and
Green’s function method, which is a promising integrated solution system for complicated
well-reservoir systems. The above-mentioned analytical models for heterogeneous reser-
voirs have advanced a significant step in applying SSFM or Green function to describe
fluid flow in oil/gas reservoir, however, clear and organized solutions for MHFHW within
multilayered reservoir with inter-layer crossflow under three-dimensional flow have not
yet been proposed.

Table 1. Literature regarding multilayered reservoir modeling with crossflow consideration.

Author(s) Year Well Type Reservoir Type Documented Solution(s)

Russell and Prats [14] 1962(a) Vertical Two layers P~t, q~t
Russell and Prats [15] 1962(b) Vertical Two layers P~t, q~t

Neuman and Witherspoon [16] 1969 Vertical Two layers PD~tD
Bourdet [17] 1985 Vertical Two layers PD~tD

Prijambodo et al. [18] 1985 Vertical Two layers PD~tD
Gao [19] 1987 Vertical Multiple layers PD~tD, qD~tD

Wijesinghe and Kececioglu [20] 1988 Vertical Multiple layers PD~tD, qD~tD
Gao and Dean [21] 1988 Vertical Multiple layers PD~tD, qD~tD

Onur and Reynolds [22] 1989 Vertical Two layers PD~tD
Ehlig-Economides [23] 1993 Vertical Multiple layers ∆P~t

Kuchuk and Habashy [24] 1996 Horizontal Multiple layers PD~tD
Sun et al. [25] 2003 Vertical Two layers qjD~tD, j = 1, 2

Al-Ajmi et al. [26] 2003 Vertical Multiple layers PD~tD
Wang et al. [27] 2005 Fracture, infinite conductivity Three layers PD~tD

Villanueva-Triana and Civan [28] 2013 Vertical Multiple layers P~t. P~r
Sun et al. [29] 2017 Fracture, finite conductivity Three layers PD~tDA under PSS
Lu et al. [13] 2019 Vertical Two layers PD~tD

This work 2022 MHFHW, infinite conductivity Multiple layers PD~tD, qD~tD, qDM~tDM

The objective of this study is to develop an analytical model for multilayered reservoirs
in conjunction with complex MHFHW and to achieve not only accurate and efficient
computation, but also well-organized solutions expressed in a systematically integrated
manner. The initiation of this study is motivated by the powerful capacity of SSFM to
describe fluid flow induced by fractures in reservoir and by the innovative strategy of
modeling heterogeneous reservoirs analytically [10], and the creative strategy that has
successfully re-organized the general dimensionless rate and dimensionless time type
curve using the uniquely new modified dimensionless rate and modified dimensionless
time [30]. This new technique sheds light on the reservoir characterization practice for
these kinds of complicated reservoir systems.

2. Methodology

Illustrated in Figure 2, to facilitate demonstrating the modeling process, a simplified
layered reservoir consisting of only two vertically stacked layers is exemplified and pro-
duced by a MHFHW with different vertical and horizontal fracture penetration in each
layer with the lower layer wider and extended further. A layered reservoir with more
layers can also be modeled accordingly. The two layers are in hydraulic communication
with each other along their interface. The lower and upper layers are individually homoge-
neous porous mediums with constant vertical thickness he1 and he2 and have rock/fluid
property (k, φ, µ, ct)1 and (k, φ, µ, ct)2, respectively. A horizontal well was placed within
one of the layers, with Nstage number of hydraulic fractures transversely distributed along
the wellbore. The fractures with infinite conductivity are assumed to penetrate into both
layers. Each fracture is assumed to have the same fracture length: 2L f 1 and 2L f 2 in the
lower and upper layer, respectively. Note that non-uniform fracture length can be assumed
if needed. The fracture heights penetrating into each layer are denoted as h f 1 in Layer 1 and
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h f 2 in Layer 2. In this study, the production contribution of horizontal wellbore trajectory
is neglected due to the fact that fluid production from fractures dominates.

Figure 2. Schematic of a fractured horizontal well with Nstage transverse fractures producing from a
two-layer reservoir.

A general multilayered reservoir assumes that multiple rectangular-shaped blocks
with different geometries, stacked on top of one another within each being internally ho-
mogenous, and a no-flow outer boundary constitute the physical reservoir model. The
modeling method consists of decomposing the original layered reservoir into a set of
single-layer homogeneous sub-reservoirs that interact with each other over their hydrauli-
cally contacted interface(s) by fluid transfer (inter-layer crossflow) and pressure conti-
nuity. Hydraulic fractures are assumed to have infinite conductivity (without further
consideration of the effect of fracture width) due to the significant contrast of systemati-
cal properties between hydraulic fracture and formation. SSFM was applied to describe
the pressure drop at any point within each layer by integrating appropriate point source
function spatiotemporally.

In the solution process, pressure drop solution written in real-time domain was con-
verted to Laplace domain using numerical Laplace transformation to help establish the
solution algorithm effectively. The methodology of performing numerical Laplace trans-
formation for source/sink functions [10] plays a critical role in this work for the reason
that pressure drop caused by plane source in real-time domain involves products of source
functions in three dimensions (x, y, z) based on Newman product method [31], and the
analytical Laplace transform for such a complicated procedure is not readily available. Each
reservoir layer is coupled with its adjacent one(s) over the contact interface(s) based on
pressure and flux continuity. The desired pressure response at any point within reservoir,
flux along hydraulic fractures, and inter-layer crossflow are then solved systematically
in the Laplace domain. Finally, pressure and rate solutions are converted to real time
domain numerically.
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2.1. Decomposing of the Layered Reservoir

It is necessary to identify simple homogeneous reservoir components that constitute
this layered heterogeneous reservoir. Firstly, considering the Nstage transverse fractures
stimulated inside the lower Layer 1 only, it behaves as if one well and an inter-layer plane
source exist: the original fractured well with hydraulic fractures that reach the top of this
layer composes only a portion of the original fractures’ vertical penetration, that is, h f 1, and
an injecting planar interface at the conjunction between the two layers. The planar interface
is defined as a pure-plane source because the plane is implemented to account for hydraulic
fluid transfer only and is not associated with any fluid storage-related issue. Therefore,
the inter-layer fluid crossflow from the upper layer to the lower layer, as illustrated by
Figure 3a, is defined according to inter-layer pure-planar crossflow. Similarly, considering the
upper Layer 2 only, it also behaves as if there were one well and an inter-layer pure-plane
source: the original fractured well with hydraulic fractures with vertical penetration h f 2
starting from the bottom of layer 2, and a producing planar interface at the conjunction of
the two layers, also treated as a pure-plane source, illustrated by Figure 3b.

Figure 3. Reservoir (a) from the perspective of Layer 1 and (b) from the perspective of Layer 2.

Accounting the inter-layer pure-planar crossflow fluid transfer rate between the two
layers as qc f , the original reservoir system can then be decomposed into two homogeneous
sub-reservoirs. Decomposing the reservoir components from one another at their junction
is achieved by applying “no-flow boundary” concept. For simple reservoir systems that
contain wells, the no-flow boundary is achieved by applying well-principled images. For
the situation being considered, Layer 1 and Layer 2 are each individually modeled using
this strategy, and the processes are graphically presented in Figure 4a,b. The decomposed
Layer 1 and Layer 2 systems are subsequently coupled using pressure and rate continuity
at their contact interface through the application of the pure-plane concept proposed.
This original methodology modeling heterogeneous reservoir was devised by Zhao and
Thompson [10].

2.2. Solutions to Layer 1 and Layer 2

For Layer 1 as illustrated by Figure 4a, where (x, y, z) is defined as the sub-coordinate
system, pressure drop at any location, ∆p1, can be formulated by applying superposition
principle. Appendix A gives the mathematical derivation of a plane source solution in detail,
and the plane source solution is expressed as Equation (A7). With the same discretizing
process of plane source as shown in Figure A2, each original hydraulic fracture plane source
is discretized into m× n sub-plane sources, and the injecting inter-layer pure-plane source
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is divided into M× N sub-plane sources (Figure 5), respectively. Therefore, the pressure
drops in Layer 1 can be written as

∆p1(x, xe1, y, ye1, z, 2he1, t) =

1
(φct)1

Nstage

∑
k=1

∫ t
0

n
∑

i=1

m
∑

j=1

q f 1
k,i,j(τ)dτ

2L f 1h f 1/mn


Ipsx

(
x f ,i−1, x f ,i, x, xe1, τ, t

)
·Ipsz

(
z f ,j−1, z f ,j, z, 2he1, τ, t

)
·psy(yk, y, ye1, τ, t)

+

1
(φct)1

Nstage

∑
k=1

∫ t
0

n
∑

i=1

m
∑

j=1

q f 1
k,i,j(τ)dτ

2L f 1h f 1/mn


Ipsx

(
x f ,i−1, x f ,i, x, xe1, τ, t

)
·Ipsz

(
−z f ,j,−z f ,j−1, z, 2he1, τ, t

)
·psy(yk, y, ye1, τ, t)

−
1

(φct)1

∫ t
0

N
∑

i=1

M
∑

j=1

2qc f
i,j (τ)dτ
xe1ye1

MN

 Ipsx(xl,i−1, xl,i, x, xe2, τ, t)
·Ipsy

(
yl,j−1, yl,j, y, ye2, τ, t

)
·psz(0, z, 2he1, τ, t)

.

(1)

Figure 4. (a) Layer 1 discretized from reservoir, (b) Layer 2 discretized from reservoir, by applying
the pure-plane concept to integrate SSFM.

The first term on the right-hand side of Equation (1) accounts for the original fractured
well in the lower layer, the second term accounts for its image well, and the third term
accounts for the injecting plane source. Note that in this study, producing is recognized as
“+” while injecting is recognized as “-”. In Equation (1), q f 1

k,i,j represents production rate of a
sub-plane from the k-th hydraulic transverse fracture along horizontal wellbore in Layer 1,
and qc f

i,j denotes the production rate of a sub-plane from injecting pure-plane source.
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Figure 5. Division of the inter-layer pure-plane source.

Similarly for Layer 2, as illustrated in Figure 4b, where (ξ, ν, ζ) is defined as the
sub-coordinate system, the pressure drop in Layer 2 can also be generated using the
superposition principle. Each original hydraulic fracture plane source is also divided into
m × n sub-plane sources for the purpose of demonstrating the modeling strategy (the
sub-plane source number can be different) and the inter-layer pure-plane source is the same
as in Layer 1. It is important to note that the inter-layer pure-plane in Layer 1 acts as an
injecting plane source, whereas the inter-layer pure-plane in Layer 2 acts as a producing
plane source. The pressure drop in Layer 2 can be written as

∆p2(ξ, xe2, ν, ye2, ζ, 2he2, t) =

1
(φct)2

Nstage
∑

k=1

∫ t
0

n
∑

i=1

m
∑

j=1

q f 2
k,i,j(τ)dτ

2L f 2h f 2/mn


Ipsx

(
ξ f ,i−1, ξ f ,i, ξ, xe2, τ, t

)
·Ipsz

(
ζ f ,j−1, ζ f ,j, ζ, 2he2, τ, t

)
·psy(νk, ν, ye2, τ, t)

+

1
(φct)2

Nstage
∑

k=1

∫ t
0

n
∑

i=1

m
∑

j=1

q f 2
k,i,j(τ)dτ

2L f 2h f 2/mn


Ipsx

(
ξ f ,i−1, ξ f ,i, ξ, xe2, τ, t

)
·Ipsz

(
−ζ f ,j,−ζ f ,j−1, ζ, 2he2, τ, t

)
·psy(νk, ν, ye2, τ, t)

+
1

(φct)2

∫ t
0

N
∑

i=1

M
∑

j=1

2qc f
i,j (τ)dτ

xe2ye2/MN

 Ipsx(ξl,i−1, ξl,i, ξ, xe2, τ, t)
·Ipsy

(
νl,j−1, νl,j, ν, ye2, τ, t

)
·psz(0, ζ, 2he2, τ, t)

,

(2)

where q f 2
k,i,j represents the production rate of a sub-plane from the k-th hydraulic fracture.

Laplace transforms, with respect to time, were taken for Equations (1) and (2). Let L[]
denote Laplace operator, according to convolution theorem, and the pressure responses in
Layer 1 and Layer 2 in Laplace domain can be written as

L[∆p1(x, xe1, y, ye1, z, 2he1, t)] =

1
(φct)1

Nstage

∑
k=1

mn
2L f 1h f 1

L
[
q f 1

k,i,j(t)
]

L


Ipsx

(
x f ,i−1, x f ,i, x, xe1, τ, t

)
·Ipsz

(
z f ,j−1, z f ,j, z, 2he1, τ, t

)
·psy(yk, y, ye1, τ, t)

+

1
(φct)1

Nstage

∑
k=1

mn
2L f 1h f 1

n
∑

i=1

m
∑

j=1
L
[
q f 1

k,i,j(t)
]

L


Ipsx

(
x f ,i−1, x f ,i, x, xe1, τ, t

)
·Ipsz

(
−z f ,j,−z f ,j−1, z, 2he1, τ, t

)
·psy(yk, y, ye1, τ, t)

−
1

(φct)1

MN
xe1ye1

N
∑

i=1

M
∑

j=1
L
[
2qc f

i,j (t)
]

L

 Ipsx(xl,i−1, xl,i, x, xe2, τ, t)
·Ipsy

(
yl,j−1, yl,j, y, ye2, τ, t

)
·psz(0, z, 2he1, τ, t)

 ,

(3)
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and

L[∆p2(ξ, xe2, ν, ye2, ζ, 2he2, t)] =

1
(φct)2

Nstage

∑
k=1

mn
2L f h f 2

n
∑

i=1

m
∑

j=1
L
[
q f 2

k,i,j(t)
]

L


Ipsx

(
ξ f ,i−1, ξ f ,i, ξ, xe2, τ, t

)
·Ipsz

(
ζ f ,j−1, ζ f ,j, ζ, 2he2, τ, t

)
·psy(νk, ν, ye2, τ, t)

+

1
(φct)2

Nstage

∑
k=1

mn
2L f h f 2

n
∑

i=1

m
∑

j=1
L
[
q f 2

k,i,j(t)
]

L


Ipsx

(
ξ f ,i−1, ξ f ,i, ξ, xe2, τ, t

)
·Ipsz

(
−ζ f ,j,−ζ f ,j−1, ζ, 2he2, τ, t

)
·psy(νk, ν, ye2, τ, t)

+
1

(φct)2

MN
xe2ye2

N
∑

i=1

M
∑

j=1
L
[
2qc f

i,j (t)
]

L

 Ipsx(ξl,i−1, ξl,i, ξ, xe2, τ, t)
·Ipsy

(
νl,j−1, νl,j, ν, ye2, τ, t

)
·psz(0, ζ, 2he2, τ, t)

.

(4)

Zhao and Thompson [10] devised a nontrivial fast and highly accurate method of
generating numerical Laplace transformation, and it is implemented in this work. The
complicated Laplace transforms of Equation (3) or Equation (4), thereby, can be obtained.

2.3. Coupling of the Multilayered Reservoir System

Equations (3) and (4) were evaluated at the midpoint of each sub-plane of hydraulic
fractures, which gives

(
2·m·n·Nstage

)
pressure expressions in Laplace domain. Since pro-

duction from horizontal wellbore is ignored in this study, the pressure along wellbore was
assumed to be uniform, and thereby pressures at interceptions of wellbore and fractures
are equal to one another. By equating the pressure at the midpoint of each sub-plane source
of hydraulic fractures and equating pressures at interceptions of fractures and wellbore, it
yields (2·m·n·Nstage− 1) linear equations. Layer 1 and Layer 2 interact with each other by
fluid transfer through pure-plane (inter-layer pure-planar crossflow) and pressure continu-
ity. Pressure continuity is achieved by equating pressure at midpoint of each sub-plane of
the planar injection/production source from Equations (3) and (4), which yields (M× N)
linear equations in Laplace domain. In addition to pressure continuity, material balance
must be satisfied as well. The sum of rates from every sub-plane of hydraulic fractures
amounts to the well production rate, which yields the last linear equation to be solved.

The above coupling conditions of the 2-layer reservoir-well system yield (2·m·n·Nstage
+M·N) linear equations in the unknown sub-plane rates of hydraulic fractures and of inter-
layer pure-planar injection/production source. Each sub-plane rate can be obtained in the
Laplace domain and substituted back into Equation (3) or Equation (4) so that the pressure
at any desired location can be calculated, including pressure at any horizontal wellbore
position. The Duhamel principle can then be readily applied to generate a rate solution in
the Laplace domain [12]. Rates or pressures in the Laplace domain can then be inverted to
the real-time domain by applying the Stehfest inversion algorithm [32]. For commingling
well (without inter-layer pure-planar crossflow), it can be easily modeled by setting the
inter-layer pure-plane source rate equaling zero.

3. Model Validity and Result Discussion

To validate the multilayered heterogeneous reservoir model by the proposed SSFM-
ML model and examine transient behaviors of such a complex well-reservoir system, the
solutions generated by the proposed model in the form of type curves in terms of pressure
under constant well rate production or well rate under constant pressure production were
checked against various scenarios. Dimensionless groups are defined in Appendix B. Five
scenarios are examined in this study. The first four scenarios address 2-layer reservoir
under various well-reservoir systems and the fifth scenario addresses a 3-layer reservoir.
Solutions generated from commercial well-testing software Kappa (V5.20) and numerical
simulation software CMG under some cases are also presented for comparison.
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The purposes of the five scenarios are as follows. The first scenario focuses on testing
solution stability and serving as a limiting case by setting the fracture length to be extremely
short, which makes the fractured well ultimately approach a vertical well, so that the
generated solution should also approach that of a corresponding vertical well. The second
scenario investigates the effect of mobility ratio of the two layers on pressure and rate
behaviors of fractured well and inter-layer crossflow response. Outcomes from comparable
two-layer reservoir models of CMG, Kappa’s analytical, Kappa’s numerical, and our
work using SSFM-ML were compared to enhance our technical confidence. The crossflow
flux profile across the inter-layer pure-plane, generated by SSFM-ML model, was fully
investigated. The third scenario conducts sensitivity analysis of fracture length for fractured
well response under a 2-layer reservoir model. In light of fostering the field application
of the technique, this was performed to demonstrate how the re-organized modified
dimensionless rate decline curves appear graphically. The fourth scenario is to examine the
behaviors of fractured well under two-layer reservoir model without the effect of inter-layer
crossflow by setting inter-layer crossflow rate equaling zero in the model. This simulates
the general commingled flow of two-layer reservoirs as a special case. The fifth scenario
addresses a three-layer reservoir with a sensitivity analysis of storativity among the three
layers to showcase the applicability of the generalized modified dimensionless rate decline
type curve of qDM vs. tDM.

Scenario 1: Limiting case of approaching vertical well solutions for 2-layer model
with inter-layer pure-planar crossflow. Assuming that there is only one transverse fracture
along the horizontal wellbore with a very short fracture length, the fracture height is
comparatively much greater. The result generated by the model must then approach the
behavior of a partially penetrating vertical well or a horizontal well, because the fracture
geometry is closely approaching a line source due to the extremely short fracture length.

Figure 6 shows the transient pressure derivative of a one-stage fractured well with
various dimensionless fracture half-lengths of L f 1D = L f 2D = 1, 2.5, 5 (with rwD = 1),
and both layers are identical in terms of fluid/rock properties. Additionally presented is a
standard solution of a vertical well with limited entry in a homogeneous reservoir from
Kappa. When the dimensionless fracture half-length equals 1, the one-stage fractured well
behaves closely similar to a vertical well with the same level of vertical penetration as its
pressure derivative curve almost overlaps that of the vertical well and the flow regimes
are clearly exhibited: early in time, the pseudo-radial flow is presented with a flat pressure
derivative; after pressure-transient reaches horizontal boundaries (x-axis), the linear flow
(channel flow) with pressure derivative displaying half a slope is evolved and finally the
pseudo-steady state (PSS) flow is shown after all boundaries are felt. When dimensionless
fracture half-length reaches 5, an early formation linear flow with pressure derivative
displaying half a slope in reflecting fracture production behavior is successfully exhibited
but lasts only a short period of time. Fracture length is still considered very short, and the
pressure derivative starts to show a pseudo-radial flow behavior.

A vertical well-producing reservoir with multiple layers or a horizontal well producing
reservoir with multiple linear blocks with distinct properties characterized from well logs
is commonly seen in field practice. Figure 7 provides typical pressure derivative responses
accounting for a vertical well with limited entry in a reservoir with 2 layers, through
using a fracture half-length of L f 1D = L f 2D = rwD = 1, produced from a 2-layer reservoir
under 3 cases: (1) wellbore fully penetrates only the upper layer/block; (2) wellbore goes
into the lower layer/block with 50% partial penetration; (3) wellbore fully penetrate both
layers/blocks. Solutions generated from the 2-layer model of a vertical well by Kappa are
also presented in Figure 7. The two sets of solutions show very good agreement, which,
to a large degree, demonstrates solution accuracy. One may realize that this scenario also
approaches the work of Medeiros et al. [8] for horizontal well intercepting a few blocks.
Testing data of vertical or horizontal wells in field practice often show these types of
pressure derivative responses. With better understanding of the pressure and production
performance features of the existing numerous multilayered wells, more accurate reservoir
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characterization with less uncertainty could be achieved by applying the analytical strategy
of this study.

Figure 6. Dimensionless pressure derivative response under various fracture lengths from 2-layer
SSFM-ML model illustrated by the three curves with h f 1D = h f 2D = 250, Nstage = 1; he1D = he2D = 500,
xe1D = xe2D = 50, ye1D = ye2D = 1000, and M2/M1 = 1, Cs2/Cs1 = 1. The yellow dots represent the
pressure derivative of a vertical well with limited entry generated from commercial software Kappa
by its homogeneous reservoir model and partially penetrating vertical well model with rwD = 1.
They both have the same reservoir geometry and properties.

Figure 7. Effect of well penetration level in a 2-layer reservoir on dimensionless pressure derivative
response. The dots are solutions generated by the SSFM-ML model using very short fracture length
closely approaching a vertical well with L f 1D = L f 2D = 1, Nstage = 1. The curves represent solutions
generated by Kappa using its 2-layer reservoir model and partially penetrating well model with
rwD = 1. They both have identical reservoir geometry and properties with xe1D = xe2D = 1000,
ye1D = ye2D = 5000, he1D = 70, he2D = 30, and M2/M1 = 0.2, CS2/CS1 = 1.

Scenario 2: Effect of heterogeneity under various M2/M1 ratios for 2-layer reser-
voir with inter-layer pure-planar crossflow by MHFHW. The influence of mobility ratio
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between the two layers is examined in this scenario, with 10-stage fractures penetrating
both layers. Figure 8 shows pressure derivative behaviors of the well under various levels
of heterogeneities as M2/M1 = 100, 10, 1, 0.1, and the solutions generated by CMG are
presented as well. As illustrated in Figure 8, the early formation linear flow, with half a
slope pressure derivative, marks the first flow regime, implying that each fracture is pro-
duced within its own individual linear-flow-expanding drainage area. Pressure derivative
is followed by a sharp rise, with the slope almost reaching units, which is caused by the
intense interference among fractures, and the unit slope accounts for the SRV boundary
influence. The work of Zhao [12] has indicated the strong multiple fracture interference
right after the early time period, and the phenomena of the sharp rise of derivative has also
been noticed by Chen and Raghavan [33].

Figure 8. Dimensionless pressure derivative response of MHFHW with Nstage = 10 in a 2-layer
reservoir under various M2/M1 ratios with fractures near-fully penetrating reservoir width as
2L f 1D=2L f 2D

xe1D=xe2D
= 0.98. Fracture height is set to be small in order for pseudo-radial to be evolved

with h f 1D = h f 2D = 5; xe1D = xe2D = 100, ye1D = ye2D = 100, he1D = he2D = 50 and Cs2/Cs1 = 1.
Solutions from commercial numerical simulation software CMG are also provided for comparison
(curves). They both have the same reservoir-well system geometry and reservoir properties.

In this scenario, where the fracture vertical penetration is comparatively much smaller
than the whole reservoir vertical thickness, the pressure-transient before hitting the nearest
boundaries is likely to travel far into the reservoir based on the effective system flowing
diffusivity. Therefore, the system behaves as if the well was producing from an overall
single-layer homogeneous reservoir. Figure 8 exhibits the flat pressure derivative val-
ues during the pseudo-radial flow regime. Zhao and Thompson [10] and Spivey and
Lee [34] have pointed out that the stabilizing pressure derivative during pseudo-radial
flow in such two-region heterogeneous reservoir should approach the value given by the
following formula,

dPD
dlntD

→ 1

1 + M2
M1

(5)

Additionally, to compare solution accuracy from the SSFM-ML model against Kappa’s
numerical solutions of the pressure and its derivative for one case of M2/M1 = 1, i.e., a
homogeneous reservoir, the comparison is provided in Figure 9. However, it turns out
that Kappa’s numerical provides a solution, with reduced accuracy for cases of MHFHW
produced in a 2-layer reservoir with inter-layer pure-planar crossflow, as indicated by the
red lines. Note that the solution from Kappa’s numerical solution requires more vertically
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stacking layers to simulate the designed reservoir case properly, with limited vertical
fracture penetration. For the solutions presented as the red lines, 20 sub-layers were
integrated in Kappa’ numerical model to generate the reliable solution, which costs much
longer computing time than SSFM-ML model does. The solutions from Kappa’s analytical
model of homogeneous reservoir are also presented for reference. One can conclude that the
solutions generated by these three models are consistent, and thus enhance our technical
confidence in applying them. However, generally speaking, the advantages of SSFM-ML
modeling are that the MHFHW can be defined and, most importantly, computed accurately
in a three-dimensional multilayered reservoir. Because the crossflow flux can be accounted
for more accurately on the inter-layer crossflow pure-plane in the SSFM-ML model, it offers
solutions with higher accuracy.

Figure 9. Comparison of SSFM-ML model (black dots) with Kappa’s numerical model (red curves) for a
2-layer reservoir under M2/M1 = 1, with 2L f 1D=2L f 2D

xe1D=xe2D
= 0.98, h f 1D = h f 2D = 5, Nstage = 10; xe1D = 100,

ye1D = ye2D = 100, he1D = he2D = 50 and Cs2/Cs1 = 1. Additionally, solutions of a homogeneous
reservoir with MHFHW are also provided from Kappa’s analytical model (green curves). The three
cases have the same reservoir-well system geometry and reservoir properties.

Application of the modified dimensionless terms. In addition to studying the pres-
sure responses, the rate responses of the fractured well producing at constant bottom
pressure are generated and provided in Figure 10a. It can be seen that, in general practice, a
full comparison and understanding of the rate outcomes is hard to reach, because of the fact
that MHFHW configuration can be complex and reservoir heterogeneity is heavily involved.
Zhao et al. [30] devised a technique to systematically analyze the sequence of flow regimes
of 2-dimensional homogeneous reservoirs in MHFHW rate response by defining new terms
of the modified dimensionless production rate qDM and the modified dimensionless time
tDM, which, in a general physical sense, integrate the geometry of fracture and reservoir
system for data analysis in a systematic manner. In this study, further improvement has
been achieved by extending this novel concept to 3-dimensional multilayered reservoir and
integrating heterogeneous reservoir characteristics, including mobility (k/µ) and storativity
(φct) of each layer, into the definition of qDM defined in Equation (A20) and tDM defined
in Equation (A21). Therefore, a multilayered system can be evaluated systematically with
fracture geometry, reservoir geometry, and rock/fluid properties information integrated.
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Figure 10. (a) Dimensionless rate qwD vs. dimensionless time tD and (b) modified dimensionless rate
qDM vs. modified dimensionless time tDM , under various M2/M1 ratios, with 2L f 1D=2L f 2D

xe1D=xe2D
= 0.98,

h f 1D = h f 2D = 5, Nstage = 10; xe1D = xe2D = 100, ye1D = ye2D = 100, he1D = he2D = 50 and
Cs2/Cs1 = 1.

The production rate responses presented in Figure 10a are plotted again in Figure 10b
by applying the newly defined modified dimensionless terms of qDM and tDM. It can be
seen clearly in Figure 10b that all curves merge together in early linear and late boundary-
dominated flow (BDF) periods. This outcome greatly facilitates the comparison, under-
standing, and application of the MHFHW rate solutions and offers an obvious advantage
in rate decline analysis. This technique can be applied in oil and gas reservoir engineering
worldwide to help improve the understanding of MHFHW practice effectively and globally,
because the solutions under various scenarios become systematically comparable. The
mathematical descriptions of qDM vs. tDM under early linear and late time BDF conditions
are given by Equations (6) and (7) below, which are also plotted in Figure 10b as Line 1 and
Line 2 accordingly. One needs to realize the fact that the amalgamation of these two lines
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forms a consolidated reference base for systematical rate decline analysis and universally
applicable reservoir characterization strategy.

qDM, Linear =
1√

0.5π3tDM
, (6)

qDM,BDF =
1

2πtDM
. (7)

Figure 11 presents the production rate from each layer (layered rates) and an inter-
layer pure-planar crossflow rate (from the less permeable layer underneath to the more
permeable upper layer) when the well is producing under constant rate conditions. General
observations from this figure indicate that the layered rates that display flow characteristics
can be categorized into four phases that are strongly influenced by dynamic flow regime
evolvement, as shown in Figure 10, and that the overall production rate from the more
permeable upper layer is always higher than that of the less permeable layer underneath,
i.e., q f 2

D > q f 1
D . It is also observable that the evolving flow regimes around the fractures

affect the inter-layer pure-planar crossflow, qc f
D , along with time, causing it to steadily

increase until a full PSS flow regime is reached. Further scrutinization of Figure 11a
reveals that the mathematical expressions of q f 1

D and q f 2
D during early time Phase 1 can be

formulated as Equations (8) and (9). The red dash lines of 1 and 2 are plotted according
to Equations (8) and (9) with M2/M1 = 10, respectively, and similarly, the red dash lines of
3 and 4 are plotted with M2/M1 = 100.

q f 1
D (tD) =

1

1 +
L f 2Dh f 2D
L f 1Dh f 1D

√
Cs2 M2
Cs1 M1

(8)

q f 2
D (tD) =

1

1 +
L f 1Dh f 1D
L f 2Dh f 2D

√
Cs1 M1
Cs2 M2

(9)

Scenario 3: Effect of various levels of horizontal fracture extension to the width
of 2-layer reservoir with inter-layer pure-planar crossflow for MHFHW. This scenario
explores wellbore pressure and rate responses that correspond to various ratios of
2L f 1D
xe1D

=
2L f 2D
xe2D

= 0.05, 0.2, 0.4, 0.8 and 1, with the fixed fracture height partially pene-
trating both layers under M2/M1 = 10.

Figure 12a provides pressure derivative behaviors under the above-mentioned
fracture length to reservoir width ratios. For the one with the shortest fracture length

(
2L f 1D
xe1D

=
2L f 2D
xe2D

= 0.05), it shows that spherical flow is clearly evolved with −1/2 slope
when 0.1 < tD < 100, because the fracture vertical penetration and reservoir vertical thick-
ness ratio is as small as 0.02. For production rate decline analysis, Figure 12b shows the
modified dimensionless rate qDM versus modified dimensionless time tDM. One of the
advantages of presenting the rate profile in the manner of qDM vs tDM is that by plotting it
this way, the early- and late-time rate responses corresponding to various reservoir and
fracture geometry can be systematically compared as shown in this figure, which is very
useful and meaningful when matching field data.

Scenario 4: Effect of reservoir heterogeneity under various M2/M1 and CS2/CS1 for
2-layer commingled fractured vertical well without inter-layer pure-planar crossflow.
In this scenario, the lower layer has larger reservoir length, width, and thickness, and
the fracture extends horizontally twice longer in the lower layer than in the upper layer.
Figure 13a presents pressure derivative behaviors of the fractured vertical well, producing
two vertically stacked non-communicating layers under various mobility and storativity
ratios from the proposed SSFM-ML model without inter-layer pure-planar crossflow. The
solutions under the same 2-layer reservoir and well model by Kappa are provided in
Figure 13a for comparison. The solutions from these two methods are consistent. It is



Mathematics 2022, 10, 4680 16 of 26

noticeable that derivative behaviors for M2/M1 = 10 and 50 increase sharply after early time
when the ratio of CS2/CS1 = 1, which is not seen for homogeneous case, and in particular
a unit slope is clearly evolved for the case of M2/M1 = 50. This is because production is
mainly provided by the upper layer (with better flowing properties) and the lower layer
cannot transfer fluid to the upper layer due to the non-existence of inter-layer pure-planar
crossflow. The commingled well acts as if it was effectively produced in a bounded reservoir
with the same size as the upper layer. When the pressure drops near wellbore it becomes
greater and greater, the lower layer starts to increase its production share, and pressure
derivative behavior starts to deviate away from the PSS-like feature. In field practice,
when testing data of wells produced from two layers with great distinction in flowing
properties showing PSS-like features, careful analysis is required to confirm whether the
response reflects the volumetric flow of both layers or if it mainly reflects the layer with
better flowing properties.

Figure 11. (a) Production rates of fractures in Layer 1, q f 1
D , and in Layer 2, q f 2

D , and (b) inter-layer

pure-planar crossflow rate qc f
D , under various M2/M1 ratios with 2L f 1D=2L f 2D

xe1D=xe2D
= 0.98, h f 1D = h f 2D = 5,

Nstage = 10; xe1D = xe2D = 100, ye1D = ye2D = 100, he1D = he2D = 50 and Cs2/Cs1 = 1. For the case
M2/M1 = 1, the dimensionless fracture rate of each layer sums to 0.5 and inter-layer pure-planar
crossflow rate equals 0 because this case equivalently accounts for a homogeneous reservoir and the
two layers are identical in both geometry and properties.
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Figure 12. (a) Dimensionless pressure derivative dpD/dln(tD) vs. dimensionless time tD and
(b) modified dimensionless rate qDM vs. modified dimensionless time tDM , under various fracture
length extension ratios with h f 1D = h f 2D = 2, Nstage = 10; xe1D = xe2D = 100, ye1D = ye2D = 200,
he1D = he2D = 100, and M2/M1 = 10 , CS2/CS1 = 1. Fractures assume an identical length in
both layers.

Figure 13b shows the production behaviors of the 2-layer commingled fractured well
in terms of qDM vs. tDM. Early and late time responses for all cases also hold together on
their respective stems, similar to the previous scenario, in which inter-layer pure-planar
crossflow exists. The time duration between the end of the linear flow stem and the start of
fully developed PSS flow stem reflects the complex flow regime dynamics. More complex
geometries of the reservoirs and the fracture systems cause variation during this period.

Scenario 5: Effect of storativity (φct) among 3-layer reservoir with inter-layer pure-
planar crossflow for MHFHW. Figure 14 presents the pressure derivatives of the MHFHW
with six stages of fractures for the three situations with different storativity ratio com-
binations among the three layers, while mobility is assumed to be uniform throughout
all three layers. Overall, Figure 14 shows that smaller storativity ratios in the upper two
layers, relative to the bottom layer, yield a greater pressure drop along the entire life of the
well. It also shows that early linear flow ends later for reservoir with greater storativity.
It is because of the fact that a greater storativity leads to a smaller diffusivity, causing the
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pressure-transient to travel more slowly, thus also leading to the later arrival of the PSS flow.
As described by Zhao and Thompson [10] and Spivey and Lee [34], pressure derivatives
should approach 0.5 once the flow regime enters pseudo-radial flow regime regardless of
storativity distribution, as long as mobility throughout the reservoir is homogeneous.

Figure 13. (a) Dimensionless pressure derivative dpD/dln(tD) vs. dimensionless time tD and
(b) modified dimensionless rate qDM vs. modified dimensionless time tDM , under various M2/M1 and
CS2/CS1 ratios. Each layer has different reservoir length and width as well as different fracture length
and fracture height, with 2L f 1D = 20, 2L f 2D = 10, Nstage = 1; xe1D = ye1D = 100, xe2D = ye2D = 50,
he1D = h f 1D = 60, he2D = h f 2D = 40.

Figure 15a presents the corresponding rate profiles of the well and illustrates that a
greater storativity supports a better production rate for the entire well life. By applying
material balance time, the production rates from reservoirs with different storativity ratio
combinations of the three layers all decline following a unit slope trend during BDF.
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Replotting the production behaviors of Figure 15a in the manner of qDM vs tDM on
Figure 15b, all curves again merge together during the early time linear flow regime and
late time PSS flow regime, respectively. It also can be seen that qDM vs. tDM curves almost
overlap each other during the entire production, offering a valuable characteristic for the
analysis of this type of reservoir setting. In fact, it is expected that if field data are accurate
enough the changing trend of nearby layered reservoir properties can be further deduced,
which may become necessary if quality data from a comparative set of field cases with
multilayered reservoir structure are collected.

Figure 14. Dimensionless pressure derivative dpD/dln(tD) vs. dimensionless time tD under vari-
ous storativity ratio among layers with 2L f 1D

xe1D
=

2L f 2D
xe2D

= 1, h f 1D = h f 2D = h f 3D = 5 , Nstage = 6;
xe1D = xe2D = 100 , ye1D = ye2D = 100 , he1D = he3D = 47.5 , he2D = 5 and M2/M1 = 1, M3/M2 = 1.

Figure 15. Cont.
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Figure 15. (a) Dimensionless production rate qwD vs. material balance time tMBD and (b) modified
dimensionless production rate qDM vs. modified dimensionless time tDM, under various storativity
ratio among layers, with 2L f 1D

xe1D
=

2L f 2D
xe2D

= 1, h f 1D = h f 2D = h f 3D = 5, Nstage = 6; xe1D = xe2D = 100,
ye1D = ye2D = 100, he1D = he3D = 47.5, he2D = 5, and M2/M1 = 1, M3/M2 = 1.

4. Conclusions and Recommendation

Based on the study, the following conclusions can be drawn.
SSFM was applied to analyze multilayered reservoirs produced by complex well

configuration, and solutions with a high level of accuracy were achieved. The proposed
analytical modeling strategy holds advantages in many aspects compared to commer-
cial software—accurate solutions and computing efficiency, for example. The powerful
modeling technology allows reservoir flow models to closely conform to reservoir charac-
terization based on field information interpreted from well logging, sedimentology, and
stratigraphy sources.

The new concept of pure-plane source defined in this work serves the purpose of
accounting for the hydraulic fluid transfer for flow in porous media, thus helping to
establish a consolidated general theoretical framework for the modeling methodology. The
inter-layer fluid crossflow between adjacent layers is defined accordingly as inter-layer
pure-planar crossflow to support a more rigorous description for the commonly encountered
crossflow phenomena in multilayered reservoirs.

Theoretical solutions from the proposed SSFM-ML multilayered model show that
vertical/horizontal well (line source) solution can be closely approached by pure-plane
source with smaller vertical penetration and/or horizontal extension, being pro-
perly stretched to approximate wellbore diameter, and that vertical well or horizontal
well intercepting multiple blocks can also be addressed by the proposed analytical
multilayered model.

The newly proposed dimensionless modified rate and time, qDM vs. tDM, advances
the innovative concept originally proposed by Zhao et al. for homogeneous 2-dimensional
reservoir to 3-dimensional multilayered reservoir successfully. This methodology offers
a unique way to reduce the uncertainty in matching system parameters. The application
of this technique greatly helps organize standard production decline solutions and assist
analyzing field production data for MHFHW producing from multi-layered reservoir in a
systematically integrative manner.

Because of the unique features of the modified dimensionless type curves of qDM vs.
tDM and its potential for analyzing and characterizing real reservoirs in field practice, it is
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highly recommended that future research should be conducted for more complicated two-
and three-dimensional reservoirs using a similar strategy of adopting other new forms of
modified dimensionless rate and time terms.
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Nomenclature

B formation volume factor, m3/m3

ct total compressibility of reservoir, pa−1

Cs storativity, pa−1

G original gas in place, m3

he reservoir vertical thickness, m
h f fracture height, m
k reservoir permeability, m2

L f fracture half-length, m
M mobility, m2/pa·s
p pressure, pa
pw f bottom flowing pressure, pa
q rate, m3/s
qc a constant rate, m3/s
qw production rate of well, m3/s
qDM modified dimensionless rate
q̃ flux of fracture plane or of inter-layer pure-plane per unit length, m/s
rw wellbore radius, m
t time, s
tMB material balance time, s
tDM modified dimensionless time
x horizontal coordinate, m
xe reservoir width, m
y horizontal coordinate, m
ye reservoir length, m
z vertical coordinate, m
φ porosity, fraction
Nlayer number of reservoir layers
Nstage number of fracture stages crossing horizontal wellbore
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Superscripts
D dimensionless term
i initial state; the i-th discretized sub-pure-plane source
j the j-th layer of reservoir; the j-th discretized sub-pure-plane source
1 parameter of Layer 1
2 parameter of Layer 2
Subscripts
cf inter-layer pure-planar crossflow
f fracture

Appendix A. Plane Source Solution in Homogeneous & Rectilinear Reservoir with
No-Flow Outer Boundary

Figure A1 illustrates a system of a plane source in a homogeneous rectilinear reservoir
with no-flow outer boundary, and the coordinate system is assigned accordingly.

Figure A1. Schematic of a plane source in a rectilinear reservoir with no-flow outer boundaries.

Based on the point source function and applying the Newman product method [31],
the pressure drop caused by the plane source at an arbitrary point within the system,
M(x, y, z), can be formulated as

∆p(x, xe, y, ye, z, ze, t) =
∫ t

0
dτ
φct
·psy(y0, y, ye, τ, t)·∫ z0+h f

z0

∫ x0+2L f
x0

q̃(x′, z′, τ)psx(x′, x, xe, τ, t)dx′psz(z′, z, ze, τ, t)dz′

=
∫ t

0

{
∑∞

n=−∞ exp

[
− (y−y0+2nye)

2

4ηy(t−τ)

]
+∑∞

n=−∞ exp

[
− (y+y0+2nye)

2

4ηy(t−τ)

]}
(φct)·8[π(t−τ)]

3
2√ηxηyηz

·
∫ z0+h f

z0

∫ x0+2L f
x0

q̃(x′, z′, τ)·
{

∞
∑

n=−∞
exp

[
− (x−x′+2nxe)

2

4ηx(t−τ)

]
+

∞
∑

n=−∞
exp

[
− (x+x′+2nxe)

2

4ηx(t−τ)

]}
dx′

·
{

∞
∑

n=−∞
exp

[
− (z−z′+2nze)

2

4ηz(t−τ)

]
+

∞
∑

n=−∞
exp

[
− (z+z′+2nze)

2

4ηz(t−τ)

]}
dz′dτ.

(A1)

The flux distribution over source domain, q̃(x′, z′, τ), however, is a continuous func-
tion of position over the plane, i.e., along the x- and z- axes, and of time. To obtain numerical
solution, the spatial flux distribution over source plane is approximated to be piecewise
function by dividing plane source into sub-sources or sub-planes where individual flux is
treated as a uniform quantity (uniform per unit area). Figure A2 illustrates the division of
the plane source whose horizontal and vertical extension is evenly divided into n and m
segments, respectively, i.e., the source plane consists of n×m sub-sources.



Mathematics 2022, 10, 4680 23 of 26

Figure A2. Division of a plane source.

Let the rate from the sub-plane, located at xi−1 ≤ x′ ≤ xi (i ∈ [1, n]) and zj−1 ≤ z′ ≤ zj
(j ∈ [1, m]), be denoted as qi,j, and the flux of this sub-plane q̃i,j is approximated as

q̃
(

x′, z′, τ
)
≈ q̃i,j(τ) =

qi,j(τ)

∆x∆z
, xi−1 ≤ x′ ≤ xi , zj−1 ≤ z′ ≤ zj , (A2)

where,

∆x =
2L f

n
and ∆z =

h f

m
. (A3)

With the approximation shown in Equation (A2), the pressure behavior of the plane
source is

∆p(x, xe, y, ye, z, ze, t) = 1
φct
·∫ t

0

n
∑

i=1

m
∑

j=1

qi,j(τ)dτ

∆x∆z
∫ xi

xi−1
px(x′, x, xe, τ, t)dx′·psy(y0, y, ye, τ, t)

·
∫ zj

zj−1
pz(z′, z, ze, τ, t)dz′.

(A4)

The spatial integration of point source function can be analytically evaluated, which is
(e.g., x-axis)∫ xi

xi−1
psx(x′, x, xe, τ, t)dx′ =

1
2

∞
∑

n=−∞


erf
[
(xi−x+2nxe)

2
√

ηx(t−τ)

]
− erf

[
(xi−1−x+2nxe)

2
√

ηx(t−τ)

]
+erf

[
(xi+x+2nxe)

2
√

ηx(t−τ)

]
− erf

[
(xi−1+x+2nxe)

2
√

ηx(t−τ)

]
 ,

(A5)

where “erf” denotes the error function.
The integral of point source function can be denoted by a simple notation defined as

Ipsx(xi−1, xi, x, xe, τ, t) =
∫ xi

xi−1
psx(x′, x, xe, τ, t)dx′ . (A6)
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With this analytical evaluation of spatial integration of source function, the plane
source solution described by Equation (A4) can be expressed as

∆p(x, xe, y, ye, z, ze, t) = 1
φct

∫ t
0

n
∑

i=1

m
∑

j=1

qi,j(τ)
∆x∆z ·

Ipsx(xi−1, xi, x, xe, τ, t)·psy(y0, y, ye, τ, t)·Ipsz
(
zj−1, zj, z, ze, τ, t

)
dτ.

(A7)

Appendix B

Dimensionless terms for multilayered reservoir and well geometries are defined as

xejD =
xej

l
, (A8)

yejD =
yej

l
, (A9)

hejD =
hej

l
, (A10)

h f jD =
h f j

l
, (A11)

L f jD =
L f j

l
, (A12)

where “j” represents the j-th layer of reservoir.
Dimensionless pressure pD under the constant well production rate is defined based

on the bottom layer as

pD =
2πk1het

qcB1µ1
∆p , (A13)

where,

het =

Nlayer

∑
j=1

hej . (A14)

Dimensionless rate is defined as

qD =
q
qc

. (A15)

The dimensionless production rate of well under constant bottom pressure and di-
mensionless time are also defined based on the properties of the bottom layer as

qwD =
qwB1µ1

2πk1het∆p
. (A16)

tD =
k1t

φ1µ1ct1l2 . (A17)

The mobility and the storativity for the j-th layer are defined as follows

Mj =
k j

µj
, (A18)

Csj = φjctj , (A19)

Based on Zhao et al. [30], a new set of dimensionless terms for the definitions of
the modified dimensionless rate, qDM, the modified dimensionless time, tDM, and the
“Scaler” term are advanced in this study for the new application, from two-dimensional
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homogeneous reservoir to three-dimensional reservoirs, with multiple layers possessing
inter-layer pure-planar crossflow, with the following expressions

qDM =
qwD·Scaler

Nstage
, (A20)

tDM =
tMBD(

∑
Nlayer
j=1

√
Csj Mj
Cs1 M1

2L f jDh f jD

)2
·scaler2

·h2
tD , (A21)

where the “Scaler” term is defined as

Scaler =
∑

Nlayer
j=1

Csj
Cs1

xejDyejDhejD(
∑

Nlayer
j=1

√
Csj Mj
Cs1 M1

2L f jDh f jD

)2
·Nstage

·htD . (A22)
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