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Abstract: In this work, we consider the problem of a semiconductor half-space formed of varying
thermal conductivity materials with and without Kirchhoff’s transforms. Specifically, we deal with
one thermal relaxation time within the context of generalized photothermoelastic theory. It is expected
that the thermal conductivity of the material will vary with temperature. The finite element method
is used to numerically solve this problem. The Laplace transform and the eigenvalues method are
used to determine analytical solutions to the linear problem. Various hypotheses are investigated,
both with and without the use of Kirchhoff’s transformations, to consider the influence of thermal
conductivity change. To verify the accuracy of the proposed approach, we provide a comparison of
numerical and analytical results by ignoring the new parameters and investigating the behaviors of
physical quantities for numerical outcomes.

Keywords: finite element method; variable thermal conductivity; semiconductor materials; thermal
relaxation time

MSC: 35Q81

1. Introduction

The versatility of semiconducting materials in modern technology makes them a vital
topic for study in the sciences. Most of these studies concentrate on investigating various
forms of renewable energy. Semiconductors are a model for the utilization of renewable
energy when they are exposed to sunshine. Neither the internal structures of these materi-
als when subjected to external fields and activated by a laser beam, nor the link between
thermal conductivity and temperature were considered in most previous experiments.
Deformations during the microinertia of the microelement contribute to the body’s temper-
ature rise, in addition to external and internal thermal causes. In many of these uses [1],
the effects of sunlight or laser beams on the surface of semiconductors materials are exam-
ined without considering the media’s internal structures. Different materials, especially
temperature-dependent semiconductor devices, require different thermal load analyses.
The micromechanical structures of thermal, elastic and plasma field in Green and Naghdi
theory has been previously analyzed by Todorovic et al. [2–4]. The theory developed by
Lord and Shulman [5] uses a single relaxation time to compute the motion generated by
a finitely fast thermal field. Marin et al. [6] studied the extensions of the domain of influ-
ences theory for generalized thermoelastic of anisotropic materials with voids. Ezzat and
El-Bary [7] studied the effects of fractional derivatives and magnetic field in thermoelastic
material under phase-lag GN models. Abbas [8] applied eigenvalue approaches to the
fractional order model of thermo-diffusion problems for an unbounded elastic medium
with spherical cavities. Abbas et al. [9] studied the propagations of waves in a generalized
thermoelastic plane by an eigenvalue approach. Alharbi et al. [10] studied the influences of
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initial stresses and varying thermal conductivity on fiber-reinforced magneto-thermoelastic
media under microtemperatures. Shuangquan and Tianhu [11] presented a study on the
transient responses of porous mediums with strain and thermal relaxations. Abouelregal
and Tiwari [12] studied the effects of memory-dependent heat conduction on thermoe-
lastic vibrations of a nano-sized rotating beam with varying thermal properties under
axial load. Several authors [13–20] have proposed solutions to various problems by using
the thermoelasticity theory. Ailawalia and Kumar [21] investigated how photothermal
interactions manifest in semiconductor media due to ramp-type heating. Abbas et al. [22]
looked at photothermal interactions in semiconductors using the DPL model. Heat transfer
in convective fins of varying thermal conductivity and heating generation was studied by
Ghasemi et al. [23]. Energy pile displacement under thermal and mechanical loading was
the subject of a numerical study by Yang et al. [24]. Using photo-thermoelastic excitations,
Lotfy et al. [25] discussed the Thomson and electromagnetic effects of laser pulses on semi-
conductor materials. The effects of ramp-type heating on photo-thermo-elastic waves in a
semi-conductor have been investigated by Hobiny et al. [26]. Mohamed et al. [27] looked
at the absorption illuminations of semi-infinite thermoelastic materials with a rotator in
two dimensions using a modified GL model.

Most thermoelastic studies consider thermal conductivity independent of temper-
ature, which is only the case for some situations. At higher temperatures, as common
in pipes conveying hot flow, missiles, nuclear reactors, etc., material properties may not
remain constant. In the view of variable thermal conductivity with Kirchhoff’s transforms,
Youssef et al. [28] looked at the temperature dependence of the thermal conductivity and
elastic modulus of a material in an unbounded medium containing spherical cavities.
In [29], Sherief and Hamza model a thermoelastic hollow cylinder with variable thermal
conductivity. Khoukhi et al. [30] evaluated the impact of varying thermal conductivity
inside wall-encased insulations. Zenkour and Abbas [31] used a finite element model to
analyze the nonlinear thermal transient stress of a temperature-dependent hollow cylin-
der. Mahdy et al. [32] studied the influences of variable thermal conductivity on wave
propagations for ramp-type heating semiconductors in magneto-rotator hydrostatic stress
media during photo-excited micro temperature processes. Abbas et al. [33] investigated
the photothermal interaction in semiconductor media with cylindrical holes and varying
thermal conductivity. In addition, the authors [34–41] applied Kirchhoff’s transforms to
solve nonlinear problems as linear problems.

The purpose of this study is to investigate how variations in thermal conductivity
influence the transmission of waves through semiconductors. The nonlinear issue was
solved using the finite element approach (without the use of Kirchhoff’s transform). The
linear problem (with Kirchhoff’s transform) was solved using the Laplace transform and
the eigenvalues technique. All physical quantities have numerical outcomes that are
graphically shown. The accuracy of the suggested technique is confirmed by comparing
the numerical solution to previously obtained analytic solutions by others while neglecting
the new parameters, and by exploring the behavior of the solutions.

2. Mathematical Model

For homogeneous and isotropic semiconductor materials, the basic formulations are
as follows, assuming the absence of any external heat source and body force [42–44]:

µui,jj + (λ + µ)uj,ij − γnN,i − γtT,i = ρ
∂2ui
∂t2 . (1)

(
KT,j

)
j +

Eg

τ
N =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γtTo
∂uj,j

∂t

)
, (2)

DeN,jj −
N
τ
+

k
τ

T =
∂N
∂t

. (3)

σij = µ
(
ui,j + uj,i

)
+ (λuk,k − γnN − γtT)δij, (4)
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where ρ is the density of material, N = n − no, no refer to the carrier concentration
at equilibrium, i, j, k = 1, 2, 3, ce points to the heat specific at constant strain, λ, µ are
the Lame’s constants, γn = (3λ + 2µ)dn, dn is the coefficient of electronic deformation,
γt = (3λ + 2µ)αt, αt refers to the coefficients of linear thermal expansion, To is the reference
temperature, t refers to the time, De refers to the carrier diffusion coefficient, ui refers to
the components of displacement, σij are the stresses components, T = T∗ − To, T∗ is the
increment of temperature, k = ∂no

∂T is the coupling parameter of thermal activation [42],
and τ is the photo-generated carrier lifetime. Considered to be temperature-dependent,
K denotes thermal conductivity. We shall analyze the linear expression for the thermal
conductivity as in [45]:

K(T) = Ko(1 + KsT), (5)

where Ko is the thermal conductivity when T = To and Ks ≤ 0 points to the non-positive
parameter. Considering the case of infinite isotropic semiconductor mediums whose states
may be represented as functions of the spatial variable x and the time variable t leads to
the formulation of the Equations (1)–(4) by [29]:

(λ + 2µ)
∂2u
∂x2 − γt

∂T
∂x
− γn

∂N
∂x

= ρ
∂2u
∂t2 , (6)

Ko(1 + KsT)
∂2T
∂x2 + KoKs

(
∂T
∂x

)2
+

Eg

τ
N =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γtTo
∂2u
∂t∂x

)
, (7)

∂N
∂t

= De
∂2N
∂x2 +

k
τ

T − N
τ

, (8)

σxx = (λ + 2µ)
∂u
∂x
− γtT − γnN. (9)

3. Application

The starting condition should be homogenous, and the boundary conditions at x = 0
are given by

u(0, t) = 0, (10)

T(0, t) = T1H(t), (11)

De
∂N(x, t)

∂x

∣∣∣∣
x=0

= s1N(0, t), (12)

where T1 is the constant temperature, s1 is the surface recombination velocity and H(t) is the
Heaviside unit function. The non-dimensional parameters may be conveniently stated as:(

x′, u′
)
= ηc(x, u), K′s = ToKs, N′ =

N
no

, T′ =
T
To

, σ′xx =
σxx

λ + 2µ
,
(
t′, τ′, τ′o

)
= ηc2(t, τ, τo), (13)

where η = ρce
K and c =

√
λ+2µ
ρ .

Now, if we ignore the dashes, we may write out the governing equations in a non-
dimensional form using parameters (13).

∂2u
∂x2 − a1

∂N
∂x
− a2

∂T
∂x

=
∂2u
∂t2 , (14)

∂2N
∂x2 −

a3

τ
N +

α

τ
T = a3

∂N
∂t

, (15)
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(1 + KsT)
∂2T
∂x2 + Ks

(
∂T
∂x

)2
+

a4

τ
N =

(
1 + τo

∂

∂t

)(
∂T
∂t

+ a5
∂2u
∂t∂x

)
, (16)

σxx =
∂u
∂x
− a1N − a2T, (17)

u(0, t) = 0, T(0, t) = T1H(t),
∂N(x, t)

∂x

∣∣∣∣
x=0

= a6N(0, t), (18)

where a1 = γnno
λ+2µ , a2 = γtTo

λ+2µ , a3 = 1
ηDe

, a4 =
Egno
Toρce

, a5 = γt
ρce

, a6 = s1
Deηc and α = Tok

noc2Deη2 .

4. Numerical Solution (Finite Element Method)

In this section, we establish the fundamental forms of the equations, which are nonlin-
ear partial differential equations. The potential solutions to this problem are investigated
using the finite element technique (FEM). Similar to [46,47], this strategy employs the stan-
dard weak formulation techniques. The weak formulations of the essential equations are
fixed in a non-dimensional setting. The sets of independent weight functions are presented,
which include the carrier density N, temperature T, and displacement u. Integrating across
the spatial domain involves multiplying the basic equations by the independent weight
functions, as dictated by the problem’s boundary conditions. So, we may express the carrier
density, temperature, and displacement values at each node as follows:

T =

m

∑
j=1

MjTj(t), N =

m

∑
j=1

MjNj(t), u =

m

∑
j=1

Mjuj(t), (19)

where m denotes the node’s number of elements, and M refers to the shape functions, where the
shape functions and weight function are identical to Galerkin’s standard methods. Therefore,

δT =

m

∑
j=1

MjδTj, δN =

m

∑
j=1

MjδNj, δu =

m

∑
j=1

Mjδuj. (20)

The implicit techniques should be used to derive the time derivatives of the unknown
variables in the following phase. The weak formulations for FEM that correspond to
(14)–(16) are now as follows:

∫ L

0

∂δu
∂x

(
∂u
∂x
− a1N − a2T

)
dx +

∫ L

0
δu
(

∂2u
∂t2

)
dx = δu

(
∂u
∂x
− a1N − a2T

)L

0
, (21)

∫ L

0

∂δN
∂x

(
∂N
∂x

)
dx +

∫ L

0
δu
(

a3

τ
N − α

τ
T + a3

∂N
∂t

)
dx = δu

(
∂N
∂x

)L

0
. (22)

∫ L

0

∂δT
∂x

(1 + KsT)
∂T
∂x

dx +
∫ L

0
δT
(
− a4

τ
N +

(
1 + τo

∂

∂t

)(
∂T
∂t

+ a5
∂2u
∂t∂x

))
dx = δT

(
(1 + KsT)

∂T
∂x

)L

0
, (23)

5. Linear Cases (with Kirchhoff’s Transforms)

In order to change the basic equations from a nonlinear form into a linear one, we use
Kirchhoff’s transforms mapping [45] to varying thermal conductivity, which is shown in
the equation. This allows us to convert the essential forms (5)

θ =
1

Ko

∫ T

0
K(T)dT, (24)
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where the recently added function represents the conduction of heat. We may get [45] by
substituting from Equation (24) in (5), then integrating.

θ = T +
1
2

KsT2. (25)

The following may be concluded from Equations (24) and (25):

Koθ,i = K(T)T,i, Koθ,ii = (K(T)T,i),i, Ko
∂θ

∂t
= K(T)

∂T
∂t

. (26)

Consequently, the governing Equations (14)–(18), may be stated in the linear form:

∂2u
∂x2 − a1

∂N
∂x
− a2

∂θ

∂x
=

∂2u
∂t2 , (27)

∂2N
∂x2 −

a3

τ
N +

α

τ
θ = a3

∂N
∂t

, (28)

∂2θ

∂x2 +
a4

τ
N = (1 + τo

∂

∂t
)(

∂θ

∂t
+ a5

∂2u
∂t∂x

), (29)

σxx =
∂u
∂x
− a1N − a2

Ks

(
−1 +

√
1 + 2Ksθ

)
, (30)

u(0, t) = 0, θ(0, t) = T1H(t) +
1
2

Ks(T1H(t))2,
∂N(x, t)

∂x

∣∣∣∣
x=0

= a6N(0, t), (31)

6. Analytical Solution

For the g(x, t) function, Laplace transforms were written as

g(x, s) = L[g(x, t)] =
∞∫

0

g(x, t)e−stdt, (32)

where s is the Laplace transformation parameter. Thus, the essential equations may be
rewritten in the following ways:

d2u
dx2 = s2u + a1

dN
dx

+ x2
dθ

dx
, (33)

d2N
dx2 = a3

(
s +

1
τ

)
N − β

τ
θ, (34)

d2θ

dx2 = s(1 + τos)θ − a4

τ
N + a5s(1 + τos)

du
dx

, (35)

σxx =
du
dx
− a1N − a2

Ks

(
−1 +

√
1 + 2Ksθ

)
, (36)

u(0, t) = 0,
dN(x, t)

dx

∣∣∣∣
x=0

= x6N(0, t), θ(0, t) =
T1

s

(
1 +

1
2s

T1Ks

)
, (37)

Now, using the eigenvalue approach provided in [48–50], we will get the solutions of
the coupled differential system (33)–(35) with the boundary conditions (37). We may get
the matrices and vectors from Equations (33)–(35) as

dV
dx

= AV, (38)
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where V =
[
u N φ du

dx
dN
dx

dφ
dx

]T
and A =

[
aij
]

6×6 with aij = 0, expect a14 = 1,

a25 = 1, a36 = 1, a41 = s2, a45 = a1, a46 = a2, a52 = a3

(
s + 1

τ

)
, a53 = − β

τ , a62 = − a4
τ ,

a63 = s(1 + τos), a64 = s(1 + τos)a5.

The equations that characterize matrix A are given

ω6 − b1ω4 + b2ω2 + b3 = 0, (39)

where b1 = a52 + a63 + a41 + a46a64, b3 = a41a62a53 − a63a41a52, b2 = −a64a45a53 + a41a63 +
a64a46a52 + a52a41 + a63a52 − a53a62. The six roots of Equation (40) are the six eigenvalues
of matrix A, which are written as ±ω1, ±ω2 and ±ω3. Thus, the eigenvectors Y are com-
puted as: Y1 =

(
a52 −ω2)a46ω− a45a53ω, Y2 = a53

(
a41 −ω2), Y3 =

(
a52 −ω2)(ω2 − a41

)
,

Y4 = ωY1, Y5 = ωY2 , Y6 = ωY3.

The solutions of Equation (40) have the following form:

V(x, s) =
3

∑
i=1

(
AiYie−ωix + Ai+1Yi+1eωix

)
(40)

The rising exponential nature of the variable x has been removed to infinity due to the
regularity constraint of the solution. Hence, the general solutions (40) may be shown as

V(x, s) =
3

∑
i=1

AiYie−ωix (41)

where A1, A2 and A3 are constants which can be calculated through the use of the problem’s
boundary conditions. To get the final solutions of displacement, temperature, carrier
density, and stresses distributions, the Fourier series approximation [51] may be employed
as a numerical inversion approach.

7. Discussion of Numerical Results

The results are theoretically investigated using the physical constants and physical
characteristics of silicon as an elastic semiconductor material. Calculations and explanations
of results from numerical simulations are made possible using constants derived from
silicon (Si). The constants of Si are [52]:

λ = 3.64× 1010 N
m2 , Eg = 1.11 eV, µ = 5.46× 1010N

m2 , To = 300 k, Ts = 1,

ce = 695 J/kgk, dn = −9× 10−31m3, αt = 3× 10−6k−1, τ = 5× 10−5s,

s f = 2
m
s

, ρ = 2330 kg/m3, no = 1020m−3, De = 2.5× 10−3m3/s.

Using these values, we can do numerical simulations of the physical variables over
the distance x to evaluate the effect of varying thermal conductivity within the context
of the coupled photothermal theory with one relaxation time (see Figures 1–16). The
field distributions, such as carrier density distributions (plasma waves), stress distributions
(mechanical wave distributions), displacement distributions (strain wave distributions), and
thermal wave distributions (thermal temperature distribution), are used in the numerical
calculations. For the time t = 0.8, a numerical calculation is performed. Figure 1 predicts
the increment of temperature along the distance x. For the generalized photo-thermal
theory, it has been observed that the temperature begins at its maximum value, according
to the applied boundary condition, then decreases with increasing x. It then decreases
gradually as the distance x increases until it approaches zero beyond a wavefront.
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Figure 2 shows how the displacement changes with respect to the distance x. It was
observed that the displacement of the zero values, according to the applied boundary
condition, then rises with rising x, reaches a peak at a certain point relatively near to the
surface, and then gradually falls to zero. Different carrier densities are shown as a function
of x distance in Figure 3. At x = 0, where the surface is located, the carrier density is at its
highest. As x increases, the carrier density slowly decreases until it is close to zero.

Figure 4 shows how the stress changes as x gets farther away. It is clear that the stress
reaches some negative values, then slowly goes up until it reaches a peak of negative values,
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and then slowly goes back down to zero. A comparison of the Kirchhoff transforms (WKT)
and non-Kirchhoff transforms (NKT) results are shown in Figures 5–16. When Ks = −1,
temperature, displacement, carrier density, and stress are all shown to vary along x. The
usage of the Kirchhoff transforms (WKT) is shown by the solid line, whereas the absence
of the transforms in the nonlinear situation is denoted by the dotted line (NKT). Figure 4
shows that the curves coincide at the surface since the temperature boundary condition is
T1 = 1. After that, the difference ratio grows with distance until x = 0.74, before falling to
zero at x = 2.55. Figures 5–16 show the difference between using the Kirchhoff transforms
(WKT) and not using the Kirchhoff transforms (NKT).

Figures 5–8 display how the temperature, displacement, carrier density, and stress
change with respect to the distance x when Ks = −1. The solid line depicts the case when
Kirchhoff transforms (WKT) are used, while the dotted line show the case when Kirchhoff
transforms are not used (NKT). As shown in Figure 5, the curves are the same at the
surface because the temperature boundary condition is T1 = 1. After that, the difference
ratio goes up as the distance goes up until x = 1, and then it goes down until it reaches
zero at x = 3.15. Figure 6 depicts the displacement variation with and without Kirchhoff
transforms. The curves coincide at the surface under the displacement boundary condition
(u = 0), where the difference ratio grows with distance until x = 1, and then reduces to
zero at x = 2.5.

Figure 7 shows the carrier density variation with Kirchhoff transforms (WKT) and
without Kirchhoff transforms (NKT), in which the curves have the ratio of a maximum
difference on the surface x = 0. Figure 8 shows the variations of stress with Kirchhoff
transforms (WKT) and without Kirchhoff transforms (NKT), where on the surface x = 0,
the curves have the greatest difference ratio. When Ks = −0.5, the changes in temperature,
displacement, carrier density, and stress along x are shown in Figures 9–12. It was discov-
ered that, when comparing results obtained with and without Kirchhoff transforms (WKT),
the differences are striking (NKT).

When Ks = 0, the analytical solutions (Laplace transforms and eigenvalue method
with Kirchhoff transforms) are shown to be superior to the numerical solutions (finite
element method without Kirchhoff transforms) in Figures 13–16. The analytical data
strongly agree with the numerical results of temperature change, displacement variation,
carrier density variation, and stress variation over x. As expected, the variable thermal
conductivity parameter has significant effects on the speed of the wave propagation of all
studied fields.

8. Conclusions

In this paper, the mathematical implications of changing thermal conductivity in semi-
conductor media with and without Kirchhoff’s transformations are investigated. Without
using Kirchhoff’s transformations, the finite element approach yields numerical solutions
for nonlinear equations. For nonlinear equations using Kirchhoff’s transformations, the
eigenvalue approach is used to provide an analytical solution. It was determined that the
variable thermal conductivity has a considerable effect on the deformation behaviors of
various physical field components. The numerical results and findings reported in this
study should be helpful for scholars working on the advancement of solid mechanics as
well as those in scientific and technical domains. Numerous thermodynamics problems
may be solved by using the approaches presented in this article. The theoretical conclusions
presented here can be of interest for experimental scientists and researchers working on
this topic.
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