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1. Introduction

Since the inception of fuzzy sets by L.A. Zadeh in 1965 [1], many researchers have
focused on incorporating “classic” mathematical concepts and theories into a fuzzy sets
context. Among the first and the most successful fuzzy counterparts are fuzzy topologies,
first introduced by C.L. Chang [2], and fuzzy algebraic structures—fuzzy groups and
groupoids introduced by A. Rosenfeld [3]. Naturally, several researchers were challenged
by the idea to also introduce a fuzzy counterpart of a metric space, especially since one
could expect that fuzzy metrics will have important applications in studying real world
problems. Notable contributions to the field of metrics were provided by I. Kramosil and J.
Michalek [4], A. George and P. Veeramani [5], Z. Deng [6], and O. Kaleva and S. Seikkala [7]
(note the differences between the initial prerequisites used by these authors).

In all the above-mentioned cases, first the abstract definitions of a fuzzy topological
space, fuzzy group, fuzzy metric space, etc. were introduced and basics of the correspond-
ing theories were laid. Only at the second stage were some constructions (e.g., functors)
developed in order to view crisp objects (a topological space, a group, a metric space et al.)
in the framework of their fuzzy counterparts and to study interrelations between the newly
built categories of fuzzy structures and the classical ones. As examples, one can mention
Lowen functor ω interpreting a topological space as a stratified fuzzy topological space,
George and Veeramani construction of the standard fuzzy metric Md from a metric d, etc.

A different approach to obtaining a fuzzy version of a mathematical concept is un-
dertaken by M. Ying in a series of papers [8,9] in the case of a topology. Ying fuzzifies the
definition of a topology by making an analysis of topological axioms by means of the fuzzy
logic tools. The obtained concept was given the name fuzzifying topology and at present is
studied and used by many researchers.

Yet another approach to presenting a fuzzy version of a classical mathematical concept
is to construct an extension using a fuzzy equivalence relation. This approach is realized
for numbers (or points) and functions in [10–12], and studied further in [13].

In our paper, we undertake an approach to build a fuzzy version of a metric by
constructing an extension of a metric by means of a fuzzy equivalence relation. Namely,
the idea is to make a fuzzification of a crisp metric, initially defined on a set X, taking into
account that the set IR+ (the codomain of the metric) is equipped with a fuzzy equivalence E.
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Fuzzy Extension of an Ordinary Metric vs. Classical Fuzzy Metrics

In the literature, most of the authors dealing with fuzzy metrics realize them in the
context of axioms introduced in [5,14]. These axioms are a reformulation of those originally
defined in [4]. In [4], the idea for defining a fuzzy metric comes from the assertion that
the considered value of a crisp metric d(x, y) (which should by fuzzified or approximated)
is smaller than a prior-given real number λ. In other words, the statement d(x, y) < λ is
fuzzified. In our work, we fuzzify d(x, y) = λ, which is going to be useful when dealing
with applications.

In our work, we study the fuzzy extension of crisp metrics and investigate their
connections with classical fuzzy metrics. Thus, our fuzzification of metric concepts means
that each crisp metric is also a fuzzy metric.

Therefore, we define a fuzzy metric as the degree by which the observed crisp distance
between x and y (d(x, y)) is equal to the real number λ in a fuzzy sense. Namely, we
define a fuzzy metric as a membership function M : X × X × [0, ∞) → [0, 1] satisfying
M(x, y, λ) = E(d(x, y), λ), where d : X × X → [0, ∞) is a crisp metric that should be
approximated or fuzzified, λ is a real number that could be equal to the distance between x
and y, and E : IR+× IR+ → [0, 1] is a fuzzy equivalence relation. Moreover, in our approach,
we start from the assertion that we need to fuzzify the statement d(x, y) = λ, where λ is an
a priori real number.

Furthermore, we study examples and properties, specifically topological, of the fuzzy
metric induced by a fuzzy equivalence relation.

Nowadays, interest in the study of the topological properties of fuzzy metrics is
growing, since this, in addition to the idea of a theoretical construction, leads to fixed point
theorems and applications. On the topic of the topological properties of classical fuzzy
metrics, we refer the reader to [14–26]. Fuzzy metrics are successfully used for solving
image processing problems [27–29], but their potential is not fully realized. They can be
used in particular for segmentation, spectralization and compression problems. Fuzzy
metrics have also shown their potential in solving optimization problems [30].

Our paper is organized as follows. In Section 2, we recall the main notions and results
used throughout our paper, namely regarding triangular norms, fuzzy relations, and
classical fuzzy metrics. In Section 3, we realize the main purpose of our paper. Specifically,
we construct a fuzzy metric from a classical one and call it an extensional fuzzy metric or
an E-d metric. In Section 4, we study this metric’s topological issues. In Section 5, we study
the relations between fuzzy metrics defined by Kramosil–Michalek and George–Veeramani
and E-d metrics defined in our paper. In the last section, the Conclusion, we discuss some
perspectives for continuation of this work.

2. Preliminaries
2.1. Triangular Norms

We start with the definition of a t-norm, which plays the crucial role in defining
transitivity for fuzzy relations:

Definition 1 ([31]). A triangular norm (t-norm for short) is a binary operation T on the unit
interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1] such that for all a, b, c ∈ [0, 1] the following four
axioms are satisfied:

• T(a, b) = T(b, a) (commutativity);
• T(a, T(b, c)) = T(T(a, b), c) (associativity);
• T(a, b) ≤ T(a, c) whenever b ≤ c (monotonicity);
• T(a, 1) = a (a boundary condition).

We list some common t-norms below:

• TM(a, b) = min(a, b) (minimum t-norm);
• TP(a, b) = a · b (product t-norm);
• TL(a, b) = max(a + b− 1, 0) (Łukasiewicz t-norm);
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• TH(a, b) =
{ a·b

a+b−a·b if a2 + b2 6= 0
0 otherwise

(Hamacher t-norm).

A t-norm T is called Archimedean if and only if, for all pairs (a, b) ∈ (0, 1)2, there is
n ∈ N such that T(a, a, . . . , a)

n times
< b.

Product and Łukasiewicz t-norms are Archimedean while the minimum t-norm is not.
Here, we recall an important tool for constructing and studying t-norms involving

only a one-argument real function (additive generator) and addition. Later, we use the
same tool for constructing fuzzy equivalence.

Definition 2 ([31]). Let f : [a, b] → [c, d] be a monotone function, where [a, b] and [c, d] are
closed subintervals of the extended real line [−∞, ∞]. The pseudo-inverse f (−1) : [c, d]→ [a, b] of
f is defined by:

f (−1)(y) =


sup{x ∈ [a, b] | f (x) < y} if f (a) < f (b),
sup{x ∈ [a, b] | f (x) > y} if f (a) > f (b),
a if f (a) = f (b).

In the particular case of a strictly decreasing function f , the pseudo-inverse is:

f (−1)(y) = sup{x ∈ [a, b] | f (x) > y}.

Definition 3 ([31]). An additive generator g : [0, 1] → [0, ∞] of a t-norm T is a strictly de-
creasing function which is also right-semicontinuous at 0 and satisfies g(1) = 0, such that for all
(a, b) ∈ [0, 1]2 we have

g(a) + g(b) ∈ Ran(g) ∪ [g(0), ∞],

T(a, b) = g(−1)(g(a) + g(b)).

where Ran(g) is the range of g.

If a t-norm T has an additive generator g, it is uniquely determined up to a non-zero
positive constant. Each t-norm with an additive generator is Archimedean.

2.2. Fuzzy Relations

We continue with an overview of basic definitions and results regarding fuzzy relations.
L.A. Zadeh first introduced definitions of fuzzy order and fuzzy equivalence relations in
1971 ([32]) under the names of fuzzy ordering and fuzzy similarity relations. In our paper,
we use results on fuzzy orders that were defined with respect to a fuzzy equivalence
relation and studied in [33,34].

Definition 4. A fuzzy binary relation R on a set S is a mapping
R : S× S→ [0, 1].

Definition 5 (see e.g., [33]). A fuzzy binary relation E on a set S is called a fuzzy equivalence
relation with respect to a t-norm T (or T-equivalence), if and only if the following three axioms are
fulfilled for all a, b, c ∈ S:

1. E(a, a) = 1 reflexivity;
2. E(a, b) = E(b, a) symmetry;
3. T(E(a, b), E(b, c)) ≤ E(a, c) T-transitivity.

The following result shows how a fuzzy equivalence relation can be constructed by
means of a pseudo-metric.
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Theorem 1 ([33]). Let T be a continuous Archimedean t-norm with an additive generator g. For
any pseudo-metric d, the mapping

Ed(a, b) = g(−1)(min(d(a, b), g(0))) = g(−1)(d(a, b))

is a T-equivalence.

Example 1. Let us consider the set of real numbers S = R and the metric d(a, b) = |a− b| on it.
Taking into account that gL(x) = 1− x is an additive generator of TL (Łukasiewicz t-norm),

gP(x) = −ln(x) is an additive generator of TP (product t-norm), and that gH(x) = 1−x
x is an

additive generator of TH (Hamacher t-norm), we obtain the following fuzzy equivalence relations:

EL(a, b) = max(1− |a− b|, 0);

EP(a, b) = e−|a−b|;

EH(a, b) =
1

1 + |a− b| .

Definition 6 ([34]). A fuzzy binary relation L on a set S is called fuzzy order relation with respect
to a t-norm T and a T-equivalence E (or T-E-order), if and only if the following three axioms are
fulfilled for all a, b, c ∈ S :

1. L(a, b) ≥ E(a, b) E-reflexivity;
2. T(L(a, b), L(b, c)) ≤ L(a, c) T-transitivity;
3. T(L(a, b), L(b, a)) ≤ E(a, b) T-E-antisymmetry.

A fuzzy order relation L is called strongly linear if and only if for all a, b ∈ S :

max(L(a, b), L(b, a)) = 1.

The following theorem states that strongly linear fuzzy order relations are uniquely
characterized as fuzzifications of crisp linear orders. Preliminarily, let us recall the definition
of compactibility:

Definition 7. Let � be a crisp order on S and let E be a fuzzy equivalence relation on S. E is called
compatible with � if and only if the following implication holds for all a, b, c ∈ S : a � b � c⇒
E(a, c) ≤ E(b, c) and E(a, c) ≤ E(a, b).

Theorem 2. Let L be a binary fuzzy relation on S and let E be a T-equivalence on S. Then, the
following two statements are equivalent:

1. L is a strongly linear T-E-order on S;
2. There exists a linear order � the relation E is compatible with, such that L can be represented

as follows:

L(a, b) =

{
1, if a � b
E(a, b), otherwise.

This theorem shows that, if we have a set S, a linear order � on it, and a T-equivalence
on S that is compatible with �, then we can build a fuzzy linear order L, as shown above.

In our paper, we will use a fuzzy equivalence relation on set S = [0, ∞) (the interval
[0, ∞), which will be denoted by IR+) and the linear order ≤. For simplicity of reading, the
elements from the set IR+ will be denoted by letters a, b, c, d, and the elements from set X
will be denoted by x, y, z.

2.3. Fuzzy Metrics

First, we recall the concept of a fuzzy metric on a set X introduced by Kramosil and
Michalek [4] and revised by Grabiec [14]. Here, we call it a KM-fuzzy metric.
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Definition 8 ([4]). A KM-fuzzy metric on a set X is a mapping M : X × X × [0, ∞) → [0, 1]
satisfying the following axioms for all x, y, z ∈ X and all t, s ∈ [0, ∞):

(KM0) M(x, y, 0) = 0;
(KM1) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM2) M(x, y, t) = M(y, x, t);
(KM3) M(x, z, t + s) ≥ T(M(x, y, t), M(y, z, s));
(KM4) M(x, y,−) : (0, ∞)→ [0, 1] is left-continuous.

In [5], George and Veeramani revised the original definition of a fuzzy metric given by
Kramosil and Michalek as follows:

Definition 9 ([5]). A GV-fuzzy metric on a set X is a mapping M : X × X × (0, ∞) → (0, 1]
satisfying the following axioms for all x, y, z ∈ X and all t, s ∈ (0, ∞):

(GV0) M(x, y, t) > 0;
(GV1) M(x, y, t) = 1 if and only if x = y;
(GV2) M(x, y, t) = M(y, x, t);
(GV3) M(x, z, t + s) ≥ T(M(x, y, t), M(y, z, s));
(GV4) M(x, y,−) : (0, ∞)→ [0, 1] is continuous.

Definition 10. A GV-fuzzy metric M is said to be strong if M satisfies for all x, y, z ∈ X and
t > 0 the following stronger version of the triangle inequality:

(GV3’) M(x, z, t) ≥ T(M(x, y, t), M(y, z, t)).

George and Veeramani wrote that “M(x, y, t) can be thought of the degree of nearness
between x and y with respect to t” and introduced examples:

MP(x, y, t) = e−
d(x,y)

t ; MH(x, y, t) = t
t+d(x,y) =

1
1+ d(x,y)

t

, which are now widely used in

the literature. These examples demonstrate the degree of nearness between x and y with
respect to t and we can say even more that these mappings are fuzzy equivalence relations
for each level t. Indeed, MP(x, y, t) for a fixed level t is a fuzzy equivalence relation with
respect to the product t-norm and MH(x, y, t) for a fixed level t is fuzzy equivalence relation
with respect to the Hamacher t-norm (see Example 1). However, if we understand M(x, y, t)
as the degree of nearness between x and y at the level t, interpretations of axioms (KM3)
and (GV3) are unclear. For the above-mentioned examples, we can also prove that they
are strong fuzzy metrics; furthermore, the majority of fuzzy metrics examples used in the
literature are also strong fuzzy metrics. We provide examples of fuzzy metrics that are not
strong using our research.

3. Fuzzy Equivalence Based Fuzzy Metrics

Consider a metric space (X, d). We will define a fuzzy metric as an extension of the
given metric d. We will extend the metric d with respect to a T-equivalence relation E on
the set IR+ (co-domain of the metric d). When defining the fuzzy metric, we will use a
strongly linear T-E order on IR+, defined as:

RE(a, b) =

{
1, if a ≤ b
E(a, b), otherwise

. (1)

We propose to define fuzzy metric as the degree to which the observed distance
d(x, y) between points x and y is equal to the real number λ; equal in a certain fuzzy sense
determined by fuzzy equivalence E. That is, we define a fuzzy metric (called E-d-metric) as
a mapping MEd : X× X× [0, ∞)→ [0, 1]:
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Definition 11. Let d be a crisp metric on a set X, t ∈ [0, ∞) and E be a fuzzy T-equivalence. Let a
mapping MEd : X× X× [0, ∞)→ [0, 1] be defined as:

MEd(x, y, t) = E(d(x, y), t). (2)

The fuzzy set MEd is called an extensional fuzzy metric, which is determined by metric d and fuzzy
equivalence E, or E-d-metric if the following condition is satisfied:

T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s). (3)

The condition T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s) shows that d(x, y) = t
and d(y, z) = s implies d(x, z) ≤ t + s; implied in a certain fuzzy sense. In other words, it is
a fuzzy version of triangular inequality. Note that fulfillment of the condition (3) depends
both on the choice of metric d and equivalence relation E.

Remark 1. Note that the condition (3) is important for studying the topological issues of E-d-
metric.

Remark 2. When defining the E-d-metric, T-equivalence relation E is defined on the set IR+× IR+.
Therefore, we use T-equivalence compatible with standard linear order ≤ on the real line IR.

Remark 3. If we have a crisp fuzzy equivalence relation,

E(a, b) =

{
1, if a = b
0, otherwise,

then

RE(a, b) =

{
1, if a ≤ b
0, otherwise.

Thus, for MEd(x, y, t) = E(d(x, y), t), condition (3) holds for any t-norm T and metric d.

The next proposition states that if T is an Archimedean t-norm and a fuzzy equivalence
relation on the set IR+ is generated with respect to the distance |a− b|, where a, b ∈ IR+,
then the condition (3) is fulfilled for any metric d : X× X → IR+.

Proposition 1. Let T be a continuous Archimedean t-norm with an additive generator g and
T-equivalence be defined by:

E(a, b) = g(−1)(|a− b|),

then the condition T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s) is fulfilled for any metric d.

Proof. T(E(d(x, y), t), E(d(y, z), s)) = T(g(−1)(|d(x, y)− t|), g(−1)(|d(y, z)− s|)) =
g(−1)(g(g(−1)(|d(x, y)− t|)) + g(g(−1)(|d(y, z)− s|))) = g(−1)(|d(x, y)− t|+ |d(y, z)− s|).

Now consider two cases: when d(x, z) ≤ t + s and when d(x, z) > t + s.
If d(x, z) ≤ t + s then T(E(d(x, y), t), E(d(y, z), s)) ≤ RE(d(x, z), t + s) since
RE(d(x, z), t + s) = 1. If d(x, z) > t + s then RE(d(x, z), t + s) = E(d(x, z), t + s) =
g(−1)(|d(x, z)− (t + s)|) = g(−1)(d(x, z)− (t + s)).

Now it is sufficient to prove that |d(x, y) − t| + |d(y, z) − s| ≥ d(x, z) − (t + s) if
d(x, z) > t + s.

Let us consider four cases:

1. If d(x, y) > t and d(y, z) > s, then |d(x, y)− t|+ |d(y, z)− s| = d(x, y)− t + d(y, z)−
s ≥ d(x, z)− (t + s);

2. If d(x, y) ≤ t and d(y, z) ≤ s, then d(x, z) ≤ d(x, y)+ d(y, z) ≤ t+ s, which contradicts
d(x, z) > t + s;
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3. If d(x, y) ≤ t and d(y, z) > s, then 2d(x, y) ≤ 2t and d(x, y) ≤ 2t− d(x, y). Hence,
taking into account the latest, d(x, z) ≤ d(x, y) + d(y, z) ≤ 2t− d(x, y) + d(y, z) and
thus d(x, z)− t− s ≤ t− d(x, y) + d(y, z)− s, which means |d(x, y)− t|+ |d(y, z)−
s| ≥ d(x, z)− (t + s);

4. If d(x, y) > t and d(y, z) ≤ s, then the proof is similar to the previous case.

From this proposition, we obtain the following result, which is important for our work:

Theorem 3. Let T be a continuous Archimedean t-norm with an additive generator g and T-
equivalence be defined by:

E(a, b) = g(−1)(|a− b|),

then MEd is an E-d-metric for any metric d.

Considering the previous theorem, we have the following examples:

Example 2. Let d be a crisp metric, t ∈ [0, ∞). Then, we have the following examples of
fuzzy metrics:

• MELd(x, y, t) = EL(d(x, y), t) = max(1− |d(x, y) − t|, 0) in case T is the Łukasiewicz
t-norm;

• MEPd(x, y, t) = EP(d(x, y), t) = e−|d(x,y)−t| in case T is the product t-norm;
• MEHd(x, y, t) = EH(d(x, y), t) = 1

1+|d(x,y)−t| in case T is the Hamaher t-norm.

4. Topological Issues of E-d-Metrics
4.1. Topologies Generated by E-d-Metrics

In this section we study the topology induced by E-d-metrics. For topological issues,
we additionally assume that the fuzzy equivalence E : IR+ × IR+ → [0, 1] is a lower-
semicontinuous function. Given a metric d on a set x and a fuzzy equivalence E : IR+ ×
IR+ → [0, 1], we consider a fuzzy set Bx,r : X → [0, 1], where x ∈ X and r ∈ IR+, as follows:

Bx,r(y) =

{
1, if d(x, y) < r
E(d(x, y), r), otherwise.

(4)

These fuzzy sets will play a significant role in our investigation and, thus, we visualize
them in Figure 1.

−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

−1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

Figure 1. A figure demonstrates the fuzzy sets Bx,r(y), where X = IR, x = 2, r = 1, d(x, y) = |x− y|,
E is the fuzzy equivalence relation with respect to the Łukasiewicz t-norm (on the left) and product
t-norm (on the right).

Definition 12. For a given E-d-metric space (X, MEd), we define the ball B(x, r, α) with center
x ∈ X, radius r ∈ (0, ∞), and level α ∈ (0, 1) as the strict α-cut of the fuzzy set Bx,r defined by
formula (4).
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Recall that a strict α-cut of a fuzzy set A : Y → [0, 1] is the set {y ∈ Y : A(y) > α}.
Referring to formula (1), it is obvious that the above definition is equivalent to each

one of the following two definitions:

Definition 13. For a given E-d-metric space (X, MEd), we define the ball B(x, r, α) with center
x ∈ X, radius r ∈ (0, ∞), and level α ∈ (0, 1) as

B(x, r, α) = {y ∈ X : d(x, y) < r} ∪ {y ∈ X : MEd(x, y, r) > α}.

Definition 14. For a given E-d-metric space (X, MEd), the ball B(x, r, α) with center x ∈ X,
radius r ∈ (0, ∞), and level α ∈ (0, 1) is built as:

B(x, r, α) = {y ∈ X : RE(d(x, y), r) > α}.

We visualize our obtained ball as the strict α-cut of the fuzzy set Bx,r(y) by Figure 2.

−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Figure 2. A figure demonstrates the ball obtained as the strict 0.8-cut of the fuzzy set B2,1(y), where
d(x, y) = |x− y|. X = IR, E is the fuzzy equivalence relation with respect to the product t-norm.

Now we would like to demonstrate that a fuzzy set Bx,r, defined by formula (4), is
an extension of a crisp open ball from the metric space (X, d) with center x and radius r
by means of a fuzzy equivalence relation E. We recall that (see, e.g., Refs. [10,35]) a fuzzy
set A : Y → [0, 1] is called extensional with respect to a fuzzy equivalence relation E if
T(A(x), E(x, y)) ≤ A(y) for any x, y ∈ Y. If a fuzzy set is not extensional, it is possible
to construct its extensional hull, which is the least extensional fuzzy set that contains
the initial set. Naturally, an extensional hull of an extensional fuzzy set is the fuzzy set
itself. The extensional hull of a fuzzy set A : Y → [0, 1] may be constructed as follows:
EH(A)(x) =

∨
y∈Y T(A(y), E(x, y)).

It is easy to verify that if A is an interval (a, b) ⊂ IR or a fuzzy set

A(x) =

{
1, if a < x < b
0, otherwise,

then the extensional hull of the fuzzy set A is:

EH(A)(x) =


1, if a ≤ x ≤ b
E(b, x), if x > b.
E(a, x), if x < a.
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Let us observe an open ball O(x, r) with a center x and radius r in a classical metric
space (X, d). Then, the extensional hull of O(x, r), viewed as a fuzzy set, will be the fuzzy
set Bx,r defined by formula (4).

Now we will prove that a ball B(x, r, α) is an open set in the following sense. Let
us interpret a ball B(x, r, α) as a neighborhood of the point x. In the next proposition we
show that a ball B(x, r, α) is an open set in the sense that each element of it is included
in it together with a neighborhood; that is, for every x1 ∈ B(x, r, α) there exists a level β
and a radius r1 such that B(x1, r1, β) ⊂ B(x, r, α). Therefore, we will call balls B(x, r, α)
open balls.

Theorem 4. A ball B(x, r, α) is an open set.

Proof. Let us consider a ball

B(x, r, α) = {y ∈ X : d(x, y) < r} ∪ {y ∈ X : MEd(x, y, r) > α},

and let x1 ∈ B(x, r, α). Then, we prove that there exists a level β and radius r1 such that:

B(x1, r1, β) ⊂ B(x, r, α)

or, in other words, if x0 ∈ B(x1, r1, β), then x0 ∈ B(x, r, α). Notice that x1 ∈ B(x, r, α) if and
only if (by definition) d(x, x1) < r or MEd(x, x1, r) > α. Let us consider both cases:

1. If d(x, x1) < r, then for r1 = r− d(x, x1) and every x0 ∈ B(x1, r1, α), we also have two
cases:

(a) If d(x0, x1) < r1, then d(x0, x) ≤ d(x0, x1)+ d(x1, x) < r− d(x, x1)+ d(x, x1) =
r. This means x0 ∈ B(x, r, α);

(b) If d(x0, x1) ≥ r1, then MEd(x0, x1, r1) > α since x0 ∈ B(x1, r1, α). If d(x, x0) < r,
then obviously x0 ∈ B(x, r, α). Let us consider the case when d(x, x0) ≥ r; we
are going to prove that MEd(x, x0, r) > α:
MEd(x, x0, r) = E(d(x, x0), r) = E(d(x, x0), d(x, x1)+ r1) because r = d(x, x1)+
r1. Taking into account d(x, x0) ≥ d(x, x1) + r1 and condition (3) for E-d metric
MEd, MEd(x, x0, r) = E(d(x, x0), d(x, x1) + r1) = RE(d(x, x0), d(x, x1) + r1) ≥
T(E(d(x, x1, d(x, x1)), E(d(x1, x0), r1)) = T(1, E(d(x1, x0), r1)) =
E(d(x1, x0), r1) = MEd(x0, x1, r1) > α. Note that, in this case, β can be taken
as α.

2. If d(x, x1) ≥ r but MEd(x, x1, r) > α, then there exists r′ < r, such that E(d(x, x1), r′) >
α because E is lower-semicontinuous . Let r1 = r− r′ and let us consider a point x0.

If d(x, x0) < r, then obviously x0 ∈ B(x, r, α). Consider the case when d(x, x0) ≥ r; we
are going to prove that a level β exists such that, if x0 ∈ B(x1, r1, β), then x0 ∈ B(x, r, α),
which means MEd(x, x0, r) > α:

MEd(x, x0, r) = E(d(x, x0), r) = E(d(x, x0), r′ + r1) since r = r′ + r1. Taking into
account that d(x, x0) ≥ r, we conclude that MEd(x, x0, r) = E(d(x, x0), r′ + r1) =
RE(d(x, x0), r′ + r1) ≥ T(E(d(x, x1), r′), E(d(x1, x0), r1)).
Further, there exists β such that T(α′, β) > α, where E(d(x, x1), r′) = α′ > α and
MEd(x1, x0, r1) > β. Hence, T(E(d(x, x1), r′), E(d(x1, x0), r1)) = T(α′, β) > α.

Thus the theorem is proved.

Remark 4. George and Veeramani [5] revised the definition of a KM-fuzzy metric to make studies
of the induced topological structure more convenient. However, when George and Veeramani defined
GV-fuzzy metrics, they not only formally changed the original definition but also indirectly changed
the meaning of a fuzzy metric. Specifically, discussing open balls B(x, t, r) = {y : M(x, y, t) >
1− r}, where x is the center and r is the radius, the radius is from the interval [0, 1] and t is
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interpreted as the level. Thus, according to this interpretation of a GV-fuzzy metric, the equality
M(x, y, t) = r characterizes the distance between points at level t, while in the case of KM-fuzzy
metric value t in the equality, M(x, y, t) = r describes the distance between points with the belief
level r. In our investigations, the value MEd(x, y, t) = r describes the belief level of the fact that the
distance between points is t.

Proposition 2. For a given extensional fuzzy metric space (X, MEd) and an open ball B(x, r, α)
in this space, where x ∈ X, r ∈ (0,+∞), α ∈ (0, 1), there exists an r′ ∈ (0,+∞) such that open
ball O(x, r′) = {y ∈ X : d(x, y) < r′} is equal to B(x, r, α), that is, B(x, r, α) = O(x, r′).

Proof. Let us consider a ball

B(x, r, α) = {y ∈ X : d(x, y) < r} ∪ {y ∈ X : MEd(x, y, r) > α}.

Then, for
r′ = sup

y∈B(x,r,α)
d(x, y)

we have B(x, r, α) = O(x, r′):
If x′ ∈ O(x, r′), then d(x, x′) < supy∈B(x,r,α) d(x, y) by the definition of r′. Thus,

x′ ∈ B(x, r, α).
If x′ ∈ B(x, r, α), then d(x, x′) < supy∈B(x,r,α) d(x, y) because B(x, r, α) is an open set.

Thus, x′ ∈ O(x, r′) by the definition of r′ and O(x, r′).
Thus the proposition is proved.

Taking into account Theorem 4 and Proposition 2, we have the following proposition:

Proposition 3. For a given metric space (X, d) and an open ball O(x, r) = {y ∈ X : d(x, y) < r}
in this space, where x ∈ X, r ∈ (0,+∞), there exists r′ ∈ (0,+∞) and α ∈ (0, 1) such that
O(x, r) = B(x, r′, α).

Proposition 4. For a given E-d-metric space (X, MEd), the family

{B(x, r, t) : x ∈ X, r ∈ (0,+∞), t ∈ (0, 1)}

is a base of some topology τM on the set X. We call it the topology induced by the E-d-metric MEd.

Corollary 1. The family of open balls defined by E-d-metric ME,d coincides with the family of open
balls defined by metric d. In particular, the topologies induced by MEd and d coincide.

Corollary 2. The topology induced by E-d-metric is metrizable.

4.2. Fuzzy Topologies Generated by E-d-Metrics

In Proposition 2, we have proved that a ball B(x, r, α) = {y ∈ X : d(x, y) < r} ∪ {y ∈
X : MEd(x, y, r) > α} is an open ball in space (X, d). However, in Theorem 4 we have
proved something more, namely: for every x1 ∈ B(x, r, α) there exists a level β and radius
r1 such that:

B(x1, r1, β) ⊂ B(x, r, α).

On the other hand, notice that:

r ≤ s =⇒ B(x, r, α) ⊂ B(x, s, α) and α ≤ δ =⇒ B(x, r, δ) ⊂ B(x, r, α).

The above statements say that we could adjust both level and radius to make a ball
small enough.
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It is also clear that dealing only with crisp topologies we could have for each level α
the same set of open balls. So, we lose some information contained in the E-d-metric ME,d
speaking only about crisp topologies. In order to take into account the separate role of a
level and a radius we turn to the use of fuzzy topologies.

For the convenience of the reader, we recall basic concepts related to fuzzy topology.

4.2.1. Some Notions on Fuzzy Topologies

The first approach to the study of topological-type structures in the context of fuzzy
sets was undertaken in 1968 by C.L. Chang [2]. According to this approach, a fuzzy
topology on a set X is a subfamily of the family [0, 1]X of fuzzy subsets of X satisfying
certain counterparts of the usual topological axioms.

Definition 15 ([2]). A Chang fuzzy topology on X is a family τ ⊆ [0, 1]X , that is, a subfamily of
the family of fuzzy subsets of X, satisfying axioms:

1. τ contains 0X(x) = 0 ∀x ∈ X and 1X(x) = 1 ∀x ∈ X;
2. τ is closed under finite meets, that is: U ∧V ∈ τ for all U, V ∈ τ;
3. τ is closed under arbitrary joins, that is:

∨
i Ui ∈ τ for all {Ui : i ∈ I} ⊆ [0, 1]X .

Lowen, in [36], proposed to enrich Chang fuzzy topology with all constant fuzzy sets,
thus the condition 1. is replaced by condition 1.*:

1.* τ contains all constant functions cX : X → [0, 1], c ∈ [0, 1].
Here, we use this Lowen definition and, following [37], call such fuzzy topology

stratified Chang fuzzy topology.

Definition 16 ([37]). Let (X, τ) be a fuzzy topology and τ0 ⊆ τ. τ0 is called a base of fuzzy
topology τ if τ = {∨U : U ⊆ τ0}.

Definition 17 ([38]). A fuzzy point on X is a fuzzy set xa ∈ [0, 1]X , where x ∈ X and α ∈ (0, 1)

are defined as : xa(y) =

{
a, if y = x
0, if y 6= x.

For a fuzzy set A and fuzzy point xa, xa is said to be in A (in symbols xa∈̃A) if xa(y) < A(y)
for all y ∈ suppA, where suppA = {y ∈ X : A(y) > 0}.

Theorem 5. Let τ0 be a family of fuzzy subsets of X. Then, τ0 is a base for some fuzzy topology τ
if and only if the following two properties are satisfied.

1. For every fuzzy point xa on X, there exists B ∈ τ0 such that xa∈̃B;
2. For every two B1, B2 ∈ τ0 and every xa∈̃B1 ∧ B2 there exists U ∈ τ0 such that xa∈̃U ≤

B1 ∧ B2.

4.2.2. Fuzzy Topologies Generated by E-d-Metrics

In this subsection, we will construct fuzzy open balls, and thus fuzzy topology induced
by an E-d-metric, taking into account all the prerequisites mentioned in the beginning of
the section.

Defining a fuzzy topology induced by an E-d-metric, the first idea might be to use a
family of fuzzy sets Bx,r : X → [0, 1] defined by formula (4) as the base for a fuzzy topology.
Unfortunately it is not possible to prove that it is a base since, for arbitrary two open balls
Bx1,r1 and Bx2,r2 and a fuzzy point xa from the intersection, we cannot always find a ball
Bx3,r3 such that xa∈̃Bx3,r3 ≤ Bx1,r1 ∧ Bx2,r2 .

Figure 3 demonstrates the example, when for a point xa from the intersection of
two open balls we could not find a ball which contains the point xa and is a subset of
the intersection.
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Figure 3. A figure demonstrates that for two fuzzy sets B2,1 and B5,1 and a point xa, where x = 3.5
and a = 0.3, from the intersection, we cannot find a ball Bx3,r3 such that xa∈̃Bx3,r3 ≤ B2,1 ∧ B5,1.
X = IR, E is the fuzzy equivalence relation with respect to the product t-norm.

However, our aim is to obtain a base consisting of all open balls similarly as it is done
in the classical case. To obtain a more flexible version of an open ball, we additionally
introduce a level α ∈ (0, 1] and built fuzzy open ball Bx,r,α in order to obtain a topological
base collecting open balls Bx,r,α which will be used for a fuzzy topology we are going to
construct.

The first idea would be to take intersections of a fuzzy set Bx,r and an arbitrary con-
stant function. However, it does not work since we will not always be able to create a
reconstruction of a fuzzy set

Bx,r,α(y) =

{
α, if d(x, y) < r
max{E(d(x, y), r)− (1− α), 0}, otherwise,

until a fuzzy set

Bx,r′(y) =

{
1, if d(x, y) < r′

E(d(x, y), r′), otherwise.

Thus, the idea of constructing an open ball is in cutting a fuzzy set (4) by a constant
function f (y) = α, taking an upper part (which is ≥ α) and bringing it to the “bottom” by
subtracting α:

Bx,r,α(y) =

{
1− α, if d(x, y) < r
max{E(d(x, y), r)− α, 0}, otherwise.

(5)

Definition 18. The fuzzy set Bx,r,α defined by (5) is called a fuzzy open ball with center x, radius r
and level α.

Proposition 5. Family {Bx,r,α : x ∈ X, r ∈ [0, ∞], α ∈ [0, 1]} is a base of some fuzzy topology τMEd .

Proof. It is clear that for each point we have a fuzzy open ball which contains this point.
Now let xa∈̃Bx1,r1,α1 ∧ Bx2,r2,α2 . This means a < Bx1,r1,α1(x) ∧ Bx2,r2,α2(x). Further, the set
B1 = {y ∈ X : Bx1,r1,α1(y) > a} which is the strict a-cut of the fuzzy set Bx1,r1,α1 and the
set B2 = {y ∈ X : Bx2,r2,α2(y) > a} which is the strict a-cut of the fuzzy set Bx2,r2,α2 are the
open balls in the metric space (X, d), whose intersection is not an empty set (at least the
point x belongs to this intersection). Thus, there exists an open ball with center x and a
radius r′, which belong to the intersection of the sets B1 and B2. Thus, by Proposition 2
there exist r and a′ such that:
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Bx,r,a′ ≤ Bx1,r1,α1 ∧ Bx2,r2,α2 .

5. Relations between Fuzzy Metrics and E-d-Metrics

In this section, we will show connections between fuzzy metrics defined by axioms
(KM1)–(KM4) and their versions (GV1)–(GV4) on one side and E-d-metrics on the other
side. However, taking into account that fuzzy metrics defined by axioms (KM1)–(KM4)
and axioms (GV1)–(GV4) are increasing in the third argument and actually fuzzify the
statement d(x, y) < t, we should modify E-d-metrics in the following way. Let us consider
a mapping M : X× X× [0, ∞)→ [0, 1], defined as follows:

M(x, y, t) =

{
1, if d(x, y) < t
MEd(x, y, t), otherwise,

(6)

where d is a metric and E is a lower-continuous T-equivalence satisfying condition (3) and
which separates points.

Here, we will show that a mapping M : X × X × [0, ∞) → [0, 1], defined by (6), has
properties closely related to the properties of fuzzy metrics defined by axioms (KM1)–(KM4)
and axioms (GV1)–(GV4). Specifically, let us verify if a fuzzy set denoted by (6) satisfies
axioms (KM1)–(KM4) and axioms (GV1)–(GV4):

1. If x = y then d(x, y) = 0 and for each t > 0 M(x, y, t) = 1.
However, we could conclude that x = y only if M(x, y, t) = 1 for all t > 0, which is
equivalent to the (KM1) axiom;

2. For sure, M(x, y, t) = M(y, x, t) since metric d fulfils the symmetry condition, which
is equivalent to (KM2) and (GV2) axioms;

3. Let us prove that T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s), which is equivalent to
(KM2) and (GV2) axioms:
If t + s > d(x, z) then M(x, z, t + s) = 1 and condition
T(M(x, y, t), M(y, z, s)),≤ M(x, z, t + s) fulfills immediately. Thus, we consider the
case when t + s ≤ d(x, z). Let us consider four cases:

(a) If t ≤ d(x, y) and s ≤ d(y, z) then T(M(x, y, t), M(y, z, s)) =
= T(E(d(x, y), t), E(d(y, z), s)) ≤ M(x, z, t + s) because of the condition (1);

(b) If t > d(x, y) and s > d(y, z) then d(x, z) ≤ d(x, y) + d(y, z) < t + s, which
contradicts t + s ≤ d(x, z), or in other words
T(M(x, y, t), M(y, z, s)) ≤ M(x, z, t + s) fulfills immediately;

(c) If t ≤ d(x, y) and s > d(y, z) then T(M(x, y, t), M(y, z, s)) = T(E(d(x, y), t), 1)
= E(d(x, y), t). If t ≤ d(x, y) and s = d(y, z) then from the condition (3)
we have
T(E(d(x, y), t), E(d(y, z), s)) = E(d(x, y), t) ≤ E(d(x, z), t + d(y, z)).
Now if s > d(y, z) but still t + s ≤ d(x, z) we have:
E(d(x, y), t) ≤ E(d(x, z), t + d(y, z)) ≤ E(d(x, z), t + s);

(d) If t > d(x, y) and s ≤ d(y, z), then the proof is similar to the previous case.

4. Continuity of M depends on continuity of E: if E is lower-semicontinuous then
M(x, y,−) is left-continuous; if E is continuous then M(x, y,−) is continuous.

We finish by showing that (6) does not fulfill properties (KM0) and (GV0). First of
all, M(x, y, 0) = 1 if x = y; that is why M(x, y, 0) 6= 0 for all x, y ∈ X and the axiom
(KM0) is not fulfilled. The axiom (GV0) is also not fulfilled since M(x, y, t) could take a
value of 0 for a t > 0. For example, if EL(a, b) = max(1− |a− b|, 0) and d(x, y) = |x− y|,
then M(x, y, t) = 0 for all x, y satisfying d(x, y) > t > t − 1; for example, in this case,
M(2, 4, 1) = 0.
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6. Conclusions

In this paper, we have introduced and studied the notion of an E-d-metric defined
using a crisp metric and a fuzzy equivalence relation. In other words, it is a fuzzy extension
of a crisp metric by means of a fuzzy equivalence relation. We can informally explain
the difference between the Kramosil–Michalek metric and the E-d-metric by comparing
metrics with fuzzy numbers. There are two different approaches to fuzzy numbers: Hutton
numbers and triangular fuzzy numbers, or more precisely fuzzy extensional numbers. The
former are used for topological constructions, the latter more for applications, and they fit
the fuzzy extension principle.

We consider our research as providing a foundation for further defining the fuzzy
metrics used in the literature by means of the fuzzy relations we applied for values of the
crisp metrics d(x, y) and t, which generalize the equality E we used in this study.

We are also interested in formulating axioms for a fuzzy metric without using a crisp
metric d. However, we still want to fuzzify the statement d(x, y) = λ, where λ is a prior-
given real number. It would be interesting to study the connection of this defined fuzzy
metric and an E-d-metric.

In the future, we will also study topologies where open balls are generated by taking
strict α-cuts of fuzzy sets Mx(y) = E(x, y). In this case, the level could only be adjusted to
be small enough for crisp balls. However, it remains to be seen if we can obtain the same
topological spaces as for the E-d metric.
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