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Abstract: All current deep learning-based prediction methods for remaining useful life (RUL) assume
that training and testing data have similar distributions, but the existence of various operating
conditions, failure modes, and noise lead to insufficient data with similar distributions during the
training process, thereby reducing RUL prediction performance. Domain adaptation can effectively
solve this problem by learning the cross-domain invariant features of the source domain and target
domain to reduce the distribution difference. However, most domain adaptive methods extract the
source domain and target domain features into a single space for feature alignment, which may leave
out effective information and affect the accuracy of prediction. To address this problem, we propose
a data-driven approach named long short-term memory network and multi-representation domain
adaptation (LSTM-MRAN). We standardize and process the degraded sensor data with a sliding time
window, use LSTM to extract features from the degraded data, and mine the time series information
between the data. Then, we use multiple substructures in multi-representation domain adaptation to
extract features of the source domain and target domain from different spaces and align features by
minimizing conditional maximum mean difference (CMMD) loss functions. The effectiveness of the
method is verified by the CMAPSS dataset. Compared with methods without domain adaptation
and other transfer learning methods, the proposed method provides more reliable RUL prediction
results under datasets with different operating conditions and failure modes.

Keywords: remaining useful life; sliding time window; long short-term memory network; multi
representation domain adaptation

MSC: 93-10

1. Introduction

With the development of science and technology, the levels of intelligence, integration
and complexity of industrial systems are increasingly higher, and the traditional fault
diagnosis and maintenance support technology encounter difficulty in gradually adapting
to new requirements. Prognostics and health management (PHM) technology opens up a
new path for improving system reliability and safety and plays an important role in product
system health monitoring, prediction and management. PHM technology can predict and
manage the possible risks of the system in the future, reduce maintenance support costs
and improve the safety and reliability of equipment [1]. In PHM, remaining useful life
(RUL) prediction is one of the core research problems. Accurate RUL prediction enables
stakeholders to assess the health of product equipment and plan future maintenance actions,
which is the theoretical basis for preventive and predictive maintenance in PHM.

RUL prediction methods can be divided into two categories: based on a degradation
model and based on a data-driven model [2]. For the current increasingly complex and
intelligent systems, establishing an accurate degradation model is difficult because of its
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complex structure, diverse failure modes, and uncertainty of operating conditions. The
method based on degraded data does not require prior knowledge and a complex physical
modeling process, and gradually becomes the mainstream method for RUL prediction. The
data-driven methods need to analyze the degradation data monitored by a large number of
sensors and mine the internal laws of product performance degradation to predict the RUL
of equipment. Owing to its powerful data analytical ability and function mapping ability,
machine learning (ML) is widely used in RUL prediction based on degradation data, such as
multilayer perceptron (MLP) [3], radial basis function (RBF) [4] and support vector machine
(SVM) [5] methods. However, the traditional RUL prediction method of ML is usually a
shallow model. Extracting features and expressing functional relations is difficult when
predicting multivariate complex time series. Deep learning technology has a strong feature
extraction ability, which provides a solution for training massive data. Badu et al. [6]
first applied deep convolutional neural network (CNN) to RUL prediction, using two
convolutional layers and two pooling layers to extract features of degraded data. Li et al. [7]
proposed a multivariate equipment RUL prediction based on deep CNN and adopted a
sliding time window method to obtain samples to better extract features. However, these
methods ignore the time correlation between sensor monitoring degradation data. Due
to its special network structure, the recurrent neural network (RNN) can retain the state
information at the last time on the hidden layer, so it has more advantages in time series
feature extraction. Liu et al. [3] used adaptive RNN to predict the RUL of lithium batteries.
Malhi et al. [8] used a competitive learning method to cluster the input data and input
the processed data into the RNN network for training, which improved the prediction
performance. However, when dealing with long-term monitoring sequences, the traditional
RNN encounters problems such as gradient disappearance and gradient explosion, which
affect the prediction accuracy. Wu et al. [9] used the LSTM model to predict the RUL
of aircraft engines and used dropout technology to improve the generalization ability of
LSTM, effectively avoiding problems such as the disappearance of gradients in traditional
RNNs. Zhang et al. [10] proposed an RUL prediction method based on BiLSTM, where the
forward and backward paths are independently calculated and outputs are connected in
series, which effectively smooths the prediction results. Kong et al. [11] proposed a fusion
algorithm of CNN and LSTM, and applied it in RUL prediction to learn temporal and
spatial features and improve the prediction accuracy.

Although the aforementioned methods have achieved relatively accurate RUL results,
a key problem remains. In most of the equipment RUL predictions, the test and training
sets are usually assumed to be from the same working condition and obey the same
distribution, so the model has accurate prediction results only under the same working
condition. However, in the process of actual product use, most of the products have
variable working conditions, and the distribution of sensor monitoring data shows a certain
difference, which leads to a sharp decline in the accuracy of RUL prediction. To solve these
problems, we need to use models that can adapt to different input characteristics, data
distributions, and failure modes. Based on the TCN-RSA framework, Cao et al. [12] used the
residual self-attention mechanism to shape the internal features, and realized the accurate
RUL prediction of the bearing under different working conditions. Unsupervised domain
adaptation (UDA) can generalize the knowledge learned from the source domain to the
target domain, learn cross-domain invariant features, and effectively reduce the distribution
difference between the source and target domains [13]. UDA mainly achieves distribution
alignment through methods such as distance measurement [14], feature reconstruction [15],
and adversarial learning [16], reducing the direct distribution difference between the target
domain data and source domain data so that the models can be migrated seamlessly. At
present, domain adaptation has had several applications in PHM. Lu et al. [17] used MMD
for the first time to realize domain adaptation in fault diagnosis. Li et al. [18] proposed
multi-layer domain adaptation (MLDA), using MK-MMD and pseudo-labels. Learning to
achieve cross-domain fault diagnosis, Han et al. [19] used the adversarial learning method
to reduce the distribution difference between the source and target domains to achieve
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cross-domain fault diagnosis. All of the aforementioned domain adaptive learning methods
are intended to solve the problem of fault classification, while for regression problems such
as RUL prediction, the method of transfer learning is also widely used. Zhang et al. [20]
used CNN as a feature extractor and MMD as a domain adaptation loss function to
achieve great results in RUL prediction under different operating conditions. Cao et al. [21]
applied BiLSTM network to transfer learning, proposed TBiLSTM network structure,
and used MMD as the domain adaptation loss function to solve the problem of bearing
distribution difference under different working conditions. Da Costa et al. [22] combined
LSTM with adversarial training DaNN to align the characteristics of the source domain and
the target domain by maximizing the domain discrimination loss function. Fu et al. [23]
combined the above two methods and simultaneously used MMD and DaNN to align the
characteristics of the source domain and the target domain, and achieved remarkable results.
Although these methods effectively improve the accuracy of RUL prediction under different
working conditions, due to the distribution of the source domain and target domain being
complex, the feature extracted by a single structure can only contain part of the information.
Therefore, in order to make full use of the information on the source and target domains
and extract more comprehensive cross-domain invariant features, this paper proposes
an RUL prediction model based on LSTM and multi-representation domain adaptation
(MRAN) to represent the original data more comprehensively and improve the domain
adaptability. The temporal and spatial features of the source domain and target domain
are fully extracted by LSTM and multiple convolution substructures, and the distribution
differences between domains are reduced from different feature spaces by minimizing
CMMD. The extracted features after the final training are used as the degradation features
of the target domain for life prediction. The structure can extract cross-domain invariant
features from different spaces, effectively improving the prediction accuracy of RUL under
different working conditions. The performance of the model is verified by using turbine
engine data sets under different operating conditions and fault modes.

The main contributions of this paper are summarized as follows:
(1) In order to adapt to more application scenarios, the proposed structure does

not need to obtain the target domain label, but obtains the pseudo label through the
label classifier.

(2) In order to make full use of the input information, we use the LSTM-MRAN
structure to extract the source domain and target domain features from multiple scales.

(3) Align feature distributions from multiple substructures simultaneously by mini-
mizing conditional maximum mean dispersion (CMMD).

The remainder of this article is organized as follows. Section 2 introduces the network
structure of the proposed LSTM-MRAN model in detail. In Section 3, a case study is con-
ducted using the aircraft turbofan engine data from NASA, furthermore, the effectiveness
and advantage of the proposed model are validated by carrying out a comparison with
other methods based on the same experimental data sets. Section 4 concludes the study
and points out the future work direction.

2. Proposed Structure

This study proposes an LSTM-MRAN structure to predict RUL using a domain-
adaptive learning approach. The structure consists of four parts: (1) feature extractor
D = fd(x; θd), extract temporal features of degraded data for domain adaptation, label
classification, and RUL prediction; (2) label classifier C = fc(x; θc), train source domain
data and generate pseudo tags of the target domain; (3) domain adaptor M, align source and
target domain characteristics and; (4) RUL predictor L = fl(x; θl), output RUL prediction
value and evaluation function value. The network structure of the four parts and the train-
ing process of LSTM-MRAN is shown in Figure 1. Since the target domain data does not
have a real RUL label, the source domain data is input to pre-train the network model, and
then the target domain data is input to obtain a pseudo classification label, which is applied
to the domain adaptation process. The third part is the domain adaptation part. Multiple
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source domain and target domain features are extracted through the convolution layer of
different convolution kernels of LSTM-MRAN, and the distribution difference between
the source domain and target domain is reduced by minimizing CMMD. The inputs of the
framework are the source domain data and target domain data after normalization and
sliding window processing, and the outputs are the RUL prediction value and evaluation
function value. The model flow is shown in Figure 2 and Algorithm 1. Figure 2 shows
the overall framework of the whole structure. The source domain data and target domain
data processed by normalization and sliding windows extract multiple subrepresentations
through multiple substructures of the feature extractor. The feature extractor consists of two
parts, the LSTM module processes time series data and the multiple representation module
extracts different representation structures through different convolution kernels. The
extracted subrepresentations are used as the input of the domain adaptation module, and
the CMMD loss function is minimized through backpropagation to reduce the distribution
difference between domains. Finally, the RUL predictor receives the cross-domain invariant
feature from the domain feature extractor to predict the RUL value. Because the target
domain does not have enough labels, the label classifier outputs the target domain pseudo
labels after pre-training with the source domain data. Then, we will describe in detail the
four substructures and the joint loss function in the framework.

Algorithm 1: Domain adaptation and RUL prediction algorithm.

Input: historical degradation data Xs,n

1. The data preprocessing strategy processes the original degraded data and divides
the data set into a training set and a test set.

2. Slide the data into the window for processing.
3. Input the source domain pre-training feature extractor and label the classifier with

labels.
4. Input the target domain data of the training set and obtain the pseudo label through

the feature extractor and label classifier.
5. Input the training set (real label source domain data + pseudo label target do-

main data) to the domain adaptor, and use CMMD to calculate the distribution
difference.

6. Gradient descent algorithm minimizes CMMD, and backpropagation updates
feature extractor parameters.

7. Input test set data into the trained structure.
Output: predicted RUL value and evaluation function.

Figure 1. Network structure of LSTM-MRAN.
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Figure 2. Structure of LSTM-MRAN.

2.1. Feature Extractor

In the process of predicting the RUL of products based on degradation data, historical
data have an important effect on the performance and state of products at the current
time. The long short-term memory network (LSTM) is improved by RNN, it solves the
problem that RNN cannot deal with remote dependence. The LSTM unit consists of three
gate structures: forget gate, input gate, and output gate. The structure of the LSTM unit
is shown in Figure 3, the cell state update includes the following steps: the forget gate is
responsible for determining which information will be discarded from the cell state, then
the input gate determines which information currently input will be retained in the cell
state, and finally the output gate determines which information the cell will output. In this
way, the problems of gradient disappearance or explosion are effectively overcome.

Figure 3. Structure of LSTM unit.

The related formula is shown as follows:
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Forget gate:
ft = σ

(
W f · [ht−1, xt] + b f

)
, (1)

where W f is the correlation weight matrix, b f is the offset term, σ is the activation function,
the input of the current time consists of two parts, the model output of the previous time is
ht−1 and the model input of the current time is xt. The activation function selects whether
the information is forgotten or enters the network to participate in the subsequent update
of network parameters.

Input gate:
it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t, (4)

where, Wi, WC is the correlation weight matrix, bi, bc is the offset term, σ, tanh is the
activation function. The input of the input gate is the same as that of the forget gate. After
the nonlinear selection of the two activation functions, its output consists of the output of
the input gate at the previous time Ct, the output of the forget gate at the current time ft
and the current output C̃t.

Output gate:
ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot × tanh(Ct), (6)

where, Wo is the correlation weight matrix, bo is the offset term, σ, tanh is the activation
function. The output of the input gate reduces the value to the interval (−1, 1) through the
tanh activation function and determines the final output of the model together with the
first two inputs ht−1, xt.

Therefore, to fully mine the temporal information between the data, we use the
three-layer LSTM network as the feature extractor. Each layer of the LSTM network has
100 neurons and the Relu activation function is used. The temporal information of the
input data is mined by LSTM and the preliminary features are extracted. The extracted
preliminary features are used as the input of domain adaptation. The structure of the feature
extractor is shown in Figure 4.

Figure 4. Structure of LSTM.

2.2. Domain Adaptor

Domain adaptation is a kind of transfer learning. It is an ML algorithm for solving the
distribution offset of the source domain set and target domain. The purpose is to apply
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the classifier learned from the source domain to the target domain by learning the domain
invariant features of the source and target domains, to improve the prediction ability of the
model to the target domain.

2.2.1. Multi-Representation Adaptive Network

In unsupervised domain adaptation learning, a source domain Ds = {(xs
i , ys

j )}
ns
i=1 and

a target domain Dt = {xt
j}

nt
j=1 are defined, where the source domain has ns labeled data

and the target domain has nt unlabeled data. The label values of Ds and Dt are in the same
range, and the data distribution of the two domains is not equal, that is, Ps(xs) 6= Pt(xt).
The purpose of domain adaptation learning is to use the model to learn knowledge from
the source domain and improve the prediction ability of the target domain. As shown in
Figure 5, the main idea is to find the cross-domain invariant characteristics in line with the
common distribution, and shorten the distance between the source and target domains.
Domain adaptive neural network (DaNN) [24] uses maximum mean discreteness (MMD)
to extract domain invariant features. Tzeng et al. [25] proposed DDC neural network
to further shorten the distance between the two domains by combining neural network
and MMD. Long et al. [26] used MK-MMD to replace the original single-core MMD and
proposed DAN using multiple cores to construct the total core. These studies are from
the perspective of reducing the distribution differences between domains, and transfer by
designing better distribution measurement differences.

Figure 5. Domain Adaptation

However, in practical problems, the data distribution of the source and target domains
usually have a complex structure. Using only the feature information extracted from a
single structure is not enough, and even negative migration may occur. To solve this
problem, we use MRAN to align the conditional distributions of multiple representations
and extract domain-invariant features. The feature alignment method and MRAN frame
structure are shown in Figures 6 and 7, respectively. The features are mapped to multiple
feature spaces through multiple substructures and aligned in multiple feature spaces.
Compared with a single representation that contains only part of the information, multiple
representations may contain more information.

In this study, the input vector of MRAN is the feature vector of the source domain
and target domain extracted by LSTM, which is aligned in different feature spaces through
the multi-scale convolution kernel in MRAN. The width of the multi-scale convolution
kernel is the width of input data, and the length is the convolution kernel {F1, F2, . . . , Fnr}
with different scales. In order to make the length of multiple subrepresentation vectors
of MRAN output consistent, the method of zero-filling is used. After each convolution
operation, the activation function is used to increase the nonlinearity of the model. The
features extracted by multi-scale convolution kernel can be expressed as:
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xm = {φ(ωT
m,1 × σ(Xi:i+Nw−1) + bm,1),

φ(ωT
m,2 × σ(Xi:i+Nw−1) + bm,2),

. . . , φ(ωT
m,nr × σ(Xi:i+Nw−1) + bm,nr )},

(7)

where φ is the nonlinear activation function, ωm,n and bm,n, respectively, represent the
weight and bias term of the nth convolution kernel, and σ is the LSTM function. Finally,
the features obtained from each substructure are aligned using domain adaptive alignment
and spliced together as the input of RUL prediction.

Figure 6. Feature alignment method of MRAN.

Figure 7. MRAN network structure.
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2.2.2. Conditional Maximum Mean Discrepancy

In single representation domain adaptation, MMD is one of the most commonly used
and widely used loss functions, which is mainly applied to measure the distance between
two different but related distributions. The distance between the two distributions is
defined as:

d̂H(Xs, Xt) = ‖
1
ns

∑
xi∈DXs

Φ(Xi)−
1
nt

∑
xj∈DXt

Φ(Xj)‖2
H . (8)

In this study, as no labeled data exist in the target domain, it cannot directly match the
conditional distribution of the target domain. Thus, we use CMMD to adapt the source
and target domains. CMMD is derived from MMD, which divides data into different
parts based on true source domain data and pseudo-labeled target domain data. Using
class-conditional probability according to the Bayesian formula, we explore the sufficient
statistics of class-conditional distributions P(xs|ys = c) and Q(xt|yt = c) instead with
respect to each class c ∈ {1, . . . , C} [27]. Then, we modify MMD to measure the distance
between the class-conditional distributions P(xs|ys = c) and Q(xt|yt = c) and combine the
MMD distance on all categories to obtain CMMD. CMMD is shown in Equation (9).

d̂H(Xs, Xt) =
1
C

C

∑
c=1
‖ 1

n(c)
s

∑
xs(c)

i ∈D(c)
Xs

Φ(Xs(c)
i )

− 1

n(c)
t

∑
xt(c)

j ∈D(c)
Xt

Φ(Xt(c)
j )‖2

H .
(9)

By minimizing the CMMD, we align the same class-conditional distribution to re-
duce the overall distance between the source and target domains. Thus, the optimization
objective of the domain adaptor is:

min
θg

Lm = d̂H(Xs, Xt), (10)

where Lm is the loss function of the domain adaptor.
Therefore, we use MRAN as the domain adaptor and apply stochastic gradient descent

(SGD) minimization domain adaptation loss function CMMD to align the source domain
and target domain feature distribution as well as backpropagation to update the feature
extractor and domain adaptor parameters.

2.3. Label Classifier

The label classifier is used to output the pseudo label of the target domain. Since RUL
prediction is a continuous regression problem, we divide the product lifecycle data into
10 parts through the discrete method [28], and then mark them from 1 to 10 as classification
labels, corresponding to 10 categories. As shown in Equation (11) and Figure 8.

yc =

⌈
tr

Tu
× 10

⌉
=

⌈
tr

tr + tu
× 10

⌉
, (11)

where, yc is the classification label, tr is the remaining use time, tu is the used time, and Tu
is the total use time.

The label classifier is composed of a full connection layer and a softmax layer. The full
connection layer uses Relu activation, the softmax layer outputs prediction labels, the loss
function adopts cross-entropy, and the loss function is shown in Equation (12).

Lc
(

fc, fg
)
= −

n

∑
i=1

ys
i log fc

(
fg(xs

i )
)
. (12)
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Figure 8. RUL and Classification label.

2.4. RUL Predictor

The multiple feature representations obtained from MRAN are contacted together
as the input of the RUL predictor. The RUL predictor is used to output the final RUL
prediction value and compare it with the real RUL value to output the loss function. RUL
predictor updates parameters by backpropagation of pre-training with source domain
datasets, and executes random gradient descent algorithm to minimize the overall loss in
an iterative manner. The RUL predictor is composed of three full connection layers, the
number of neurons is 32, 16, and 1, respectively, and ReLU is used as an activation function.
The evaluation metric commonly used in RUL prediction include RMSE (root mean square
error), MAE (mean absolute error), and score function.

2.5. Joint Loss

The joint loss function of the LSTM-MRAN structure consists of two parts; label
classifier loss function Lc and domain adaptor loss function Ld. The label classifier uses the
cross entropy function, and the loss function is shown in Equation (13).

Lc( fc, fg) = −
n

∑
i=1

ys
i log fc( fg(xs

i )). (13)

The training goal of LSTM-MRAN is to minimize the classification error on the dataset
of the source domain and the conditional maximum mean dispersion between the source
domain and the target domain. The total loss function can be expressed as:

L(θg, θc, θy) = Lc(θg, θc) + Ly(θg, θy) + λLd(θg). (14)

Based on the above total loss function, the optimization target of parameters θg, θc can
be given as Equation (15).

θ̂g, θ̂c, θ̂y = arg min
θg ,θc ,θy

L(θg, θc, θy). (15)

3. Experiment
3.1. Experiment Datasets

This study uses the CMAPSS turbine engine dataset [29], which consists of four
different subsets, which in turn contain information from 21 sensors and 3 operation
settings. Each subset is divided into a training set and a test set. There is a complete track
from running to a fault in the training set. In the test set, the trajectory ends before the
equipment failure. In addition, the dataset collects fault information from multiple engines
under various operating conditions and fault modes.

The details of the four sub datasets are shown in Table 1. The four subsets are FD001,
FD002, FD003, and FD004. Among them, the engine working condition in the FD001
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dataset is the simplest, with only one operating condition and one failure mode. The FD004
working condition is the most complex, with 6 operating conditions and 2 failure modes.
The division of the experimental dataset is shown in Table 2. Two prediction tasks of
migration learning are used to evaluate the performance effect of the model, namely, using
FD004 pre-adaptation to learn the other three data set conditions and FD003 pre-adaptation
to learn the other three dataset conditions. The training dataset contains labeled data from
the source domain and unlabeled data from the target domain, and the test dataset contains
unlabeled data from the rest of the target domain. In addition to the life label, the source
domain dataset should also have a classification label. The classification label divides the
entire lifecycle of the turbine engine into 10 segments, marked from 1 to 10, corresponding
to 10 categories.

Table 1. C-MAPSS dataset.

Data FD001 FD002 FD003 FD004

Engines: Training (N) 100 260 100 249
Engines: Testing 100 259 100 248

Operating Conditions 1 6 1 6
Faults Modes 1 1 2 2

Table 2. Dataset Partitioning.

Migration Process Training Dataset Test Dataset

FD004→ FD001 train_FD004 90% test_FD001 (no labeled) 10% test_FD001 (no labeled)
FD004→ FD002 (labeled) 90% test_FD002 (no labeled) 10% test_FD002 (no labeled)
FD003→ FD001 train_FD003 90% test_FD001 (no labeled) 10% test_FD001 (no labeled)
FD003→ FD002 (labeled) 90% test_FD002 (no labeled) 10% test_FD002 (no labeled))

3.2. Data Preprocessing

The four datasets are composed of three operation settings and 21 sensors. The op-
eration setting parameters of FD001 and FD002 are shown in Figure 9. As the order of
magnitude and dimension of the monitoring data of the 21 sensors are quite different, they
need to be normalized before they are applied to the model.

x′i =
xi − µi

σi
. (16)

In Formula (16), µi and σi are distributed as the mean and standard deviation of the
i-th characteristic signal xi in x.

Figure 9. FD001, FD002 operating condition.
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The normalized 21 sensor parameters for the four datasets are shown in Figure 10.
As shown in this figure, the sensor distribution of FD001 and FD003 is similar, and the
sensor distribution of FD002 and FD004 is also similar. This is because the above dataset
pairs are generated under the same operating conditions, and the sensor values maintain a
similar distribution before failure. However, due to different failure modes, the sensor data
distribution shifts to a certain extent, which affects the RUL prediction.

(a) (b)

(c) (d)

Figure 10. One-time degradation of full-cycle parameters for 21 sensors in four subsets. (a) FD001.
(b) FD002. (c) FD003. (d) FD004.

Henme et al. [30] suggested that it is reasonable to estimate RUL as a constant value
when the engine is operating under normal conditions. In our experiment, we also use the



Mathematics 2022, 10, 4647 13 of 18

method of segmented life to divide the decline of engine life into two processes. The decline
process of the engine is relatively stable in the early stage of operation. After running for a
period of time, the decline of engine performance is intensified. The maximum RUL of the
engine is set to 125 cycles.

During training, the data monitored by the sensor is X = {X1, X2, X3, . . . , Xi, . . . , Xn} ∈
Rm×n, where m is the number of sensors and the size is 21, and n is the length of the time
series. When the equipment runs to the i-th cycle, the measured value of the corresponding
m-dimensional sensor is expressed as Xi = {xi,1, xi,2, xi,3, . . . , xi,j, . . . , xi,m} ∈ Rm×1. As
the sensor data is a multivariate time series, we transform the source and target domain
datasets using a sliding window with TW = 30, time step td = 1, and take it as a mini-batch
sample of the input data. A mini-batch of samples can be represented as:

Xi:i+TW−1 = {Xi, Xi+1, Xi+2, . . . , Xi+TW−1}

=


xi,1 xi,2 . . . xi,m

xi+1,1 xi+1,2 . . . xi+1,m
...

...
. . .

...
xi+TW−1,1 xi+TW−1,2 . . . xi+TW−1,m


∈ Rm×TW .

(17)

3.3. Life Prediction Process and Results

In our experiment, the feature extractor and RUL predictor are pre-trained using only
the source domain dataset and labels, the backpropagation algorithm is used to update the
model parameters, and the stochastic gradient descent optimization algorithm (SGD) is
used to iteratively minimize the overall error. LSTM-MRAN network structure is shown in
Table 3: Adam optimizer is used for 100 epochs, the learning rate is 0.001, and 32 mini-batch
samples are input for each training. MRAN training follows the standard mini-batch
SGD. The trained parameters are used as initialization parameters, and the target domain
samples are input to obtain virtual classification labels. Then, the mini-batches of the
source and target domains are simultaneously fed into the domain adaptation model. To
eliminate the bias caused by the domain size, we oversample the domains with fewer
datasets to ensure that the same number of source and target domains are input with
each time data. The learning rate of the domain adaptation module is set to 0.001, and
each training takes 32 samples for 50 epochs. After the model training is complete, RUL
prediction can be performed.

Table 3. LSTM-MRAN network parameters.

Parameter Value

TW 30
LSTM layers 3
LSTM units 100
LSTM activation function relu
LSTM dropout 0.3
MRAN substructure layers 3
Number of convolution kernels 32
Convolution kernel length 7/12/17
Substructure activation function Tanh
λ 0.8
Learning rate 0.1
Batches 512
Optimizer Adam
fully connected layers 3
fully connected units (32, 16, 1)
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In the MRAN structure, the size of the convolution kernel of each substructure has an
impact on the prediction results. The MRAN in this study uses three substructures and uses
three convolution kernels of different scales, respectively. A large number of experiments
show that the prediction results are better when the convolution kernel size is 12. Therefore,
to select better substructure convolution kernels, we take 12 as the center and d as the
tolerance and use the FD001 dataset for comparative experiments. As shown in Figure 11,
when the tolerance d = 5, the RMSE and R2-score values are the smallest. Therefore, in this
experiment, the convolution kernels of the three substructures we choose are 7, 12, and 17.

Figure 11. The effect of convolution kernel size on prediction results.

The processed test data sets are compared between the model without domain adap-
tation and the model that has undergone domain adaptation. The training results are
shown in Figures 12 and 13. In these figures, (a) and (c) are the results of directly using the
pre-trained model to perform RUL prediction on the target domain, (b) and (d) are the RUL
prediction results after domain adaptation using the MRAN model. To better quantify the
quality of the prediction results of the model RUL, we use root mean square error (RMSE)
and score function s as the evaluation index of the prediction results:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)2 (18)

s =
N

∑
i=1

si

si =

e−
di
13 − 1, for di < 0

e
di
10 − 1, for di ≥ 0,

(19)

where di = ŷi − yi, yi and ŷi are the theoretical value and predicted value of RUL.
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(a) (b)

(c) (d)

Figure 12. The source domain is FD003, and (a) is the prediction result of FD001 without domain
adaptation. (b) FD001 prediction result after domain adaptation. (c) Prediction results of FD002
without domain adaptation. (d) FD002 prediction result after domain adaptation.

(a) (b)

(c) (d)

Figure 13. The source domain is FD004, and (a) is the prediction result of FD001 without domain
adaptation. (b) FD001 prediction result after domain adaptation. (c) Prediction results of FD002
without domain adaptation. (d) FD002 prediction result after domain adaptation.

In the experiments, we found that methods using domain adaptive learning predict
significantly better results than those without adaptive learning. This result proves that the
method using transfer learning can learn cross-domain invariant features under different
working conditions and show better results in RUL prediction. Comparing the target
domain prediction results of FD001 and FD002 using FD003 and FD004 as the source
domain, we can find that our method has better prediction results for FD001 in FD003 and
better prediction results for FD002 in FD004. This is because the operating conditions of
FD001 and FD003, FD002 and FD004 are similar, the sensor data degradation distribution
is similar, and the transfer learning effect is better.

To verify the effectiveness of CMMD and Multi representation substructure in the
MRAN model, we conducted five sets of experiments for comparison:

(1) Only the source domain is used to train the model, without domain adaptation
(2) Single representation domain adaptation (DAN)
(3) Multi-representation domain adaptation using MMD
(4) Single representation domain adaptation using CMMD
(5) Multi-representation domain adaptation using CMMD
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The results are shown in Table 4. A comparison of the prediction results of (3), (4), and
(5) can show that CMMD and multi-representation structure are better than MMD and the
single-representation structure in the adaptive performance of the transfer learning field,
and the two combined with better performance in domain adaptive learning.

Table 4. RMSE in different MRAN.

Source Target Source-only DAN MRAN (MMD) DAN (CMMD) MRAN (CMMD)

FD003 FD001 42.32 ± 5.61 41.33 ± 4.84 38.33 ± 3.74 39.68 ± 3.17 30.87 ± 2.57
FD002 53.17 ± 6.87 47.68 ± 5.96 43.14 ± 5.31 45.32 ± 4.24 42.26 ± 3.36

Source Target Source-only DAN MRAN (MMD) DAN (CMMD) MRAN (CMMD)

FD004 FD001 45.21 ± 5.82 44.81 ± 5.53 38.33 ± 3.39 39.68 ± 3.16 32.87 ± 2.57
FD002 47.60 ± 6.13 42.96 ± 5.97 32.57 ± 3.61 35.32 ± 3.35 27.32 ± 2.55

Comparison with Other Transfer Learning Methods

To prove the feasibility of the proposed LSTM-MRAN model in RUL prediction, it
has been compared with other transfer learning methods such as JAN [31], DAN [26],
DANN [32], CNN+MMD [20] and LSTM+DANN [22]. In [31], the paper proposed a deep
learning method with joint adaptation networks. In [26], the paper introduced a deep
adaptation network to learn transferable features. We use these two methods to conduct
experiments. In [32], the paper designed a deep adversarial neural network to predict
machinery RUL, which introduced adversarial training to achieve data alignments of
different machine entities in order to extract generalized prognostic knowledge. The results
are reported in Table 5. As shown in this table, the prediction performance of the MRAN
model is better than that of other methods on the source domain FD004, FD003, and the
target domain FD001 with large distribution differences, while the prediction performance
of the FD002 dataset with similar distribution is similar to that of JAN. The reason is that
MRAN aligns the extracted features in multiple spaces, which can more accurately extract
the domain-invariant features between the source and target domains, thereby effectively
improving the RUL prediction accuracy. This finding is significant for the RUL prediction
of equipment with complex multi-dimensional fault characteristics.

Table 5. RMSE in different DA.

Source Target DAN JAN DANN CNN+MMD [20] LSTM+DANN [22] Proposed method

FD003
FD001 39.2 ± 0.8 33.5 ± 0.2 36.9 ± 0.4 18.3 ± 1.2 31.74 ± 0.98 29.84 ± 2.73
FD002 47.6 ± 5.3 45.4 ± 5.8 49.4 ± 6.7 48.8 ± 3.0 44.62 ± 1.21 42.23 ± 3.43
FD004 62.5 ± 3.1 54.2 ± 3.5 55.3 ± 7.5 52.5 ± 2.7 47.96 ± 5.78 43.51 ± 3.64

Source Target DAN JAN DANN CNN+MMD [20] LSTM+DANN [22] Proposed method

FD004
FD001 45.2 ± 5.6 36.5 ± 4.7 32.5 ± 3.4 35.3 ± 3.1 31.54 ± 2.42 32.87 ± 2.57
FD002 31.4 ± 0.4 32.2 ± 0.1 33.2 ± 0.4 29.4 ± 0.6 29.73 ± 0.37 27.32 ± 2.55
FD003 45.4 ± 3.9 44.2 ± 4.3 29.7 ± 3.8 38.7 ± 3.2 27.87 ± 2.69 36.05 ± 2.83

4. Conclusions

This study presents an RUL prediction method based on LSTM-MRAN, which adap-
tively aligns the source domain with the target domain through MRAN, and uses the LSTM
model to fit the timing and nonlinear relationship of multi-sensor data in complex systems,
providing an RUL prediction method under variable conditions. Compared with other
methods used in the CMAPSS datasets, the effectiveness of this method for aircraft engine
prediction has been verified, especially when the distribution of datasets in the source
and target domains is quite different. Compared with other single-representation domain
adaptive structures, our method has lower prediction loss and more accurate results, which
shows that the domain invariant features extracted from multi-representation domain
adaptive structures are more representative and can better reflect the degradation trend
of target domain data. However, this structure has some limitations. First, the weight of
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each substructure is consistent. However, in practice, the features extracted from each
substructure may have different effects on RUL prediction. Second, it only implements
domain adaptation between a single source domain and the target domain. In practical
applications, source domain datasets may come from multiple different distributions. In fu-
ture research, we point out that the attention mechanism is introduced to weigh the features
extracted from different substructures. Moreover, we will further study the application of
multi-source domain adaptation in the RUL prediction field.
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