
Citation: Bilal, M.; Safdar, M.; Taj, S.;

Zafar, A.; Ali, M.U.; Lee, S.W.

Reduce-Order Modeling and Higher

Order Numerical Solutions for

Unsteady Flow and Heat Transfer in

Boundary Layer with Internal

Heating. Mathematics 2022, 10, 4640.

https://doi.org/10.3390/

math10244640

Academic Editor: Ramoshweu

Solomon Lebelo

Received: 17 October 2022

Accepted: 4 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Reduce-Order Modeling and Higher Order Numerical
Solutions for Unsteady Flow and Heat Transfer in Boundary
Layer with Internal Heating
Muhammad Bilal 1 , Muhammad Safdar 1, Safia Taj 2, Amad Zafar 3 , Muhammad Umair Ali 4,*
and Seung Won Lee 5,*

1 School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and
Technology (NUST), H-12, Islamabad 44000, Pakistan

2 College of Electrical and Mechanical Engineering (CEME), National University of Sciences and Technology
(NUST), H-12, Islamabad 44000, Pakistan

3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
4 Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Republic of Korea
5 Department of Precision Medicine, Sungkyunkwan University School of Medicine,

Suwon 16419, Republic of Korea
* Correspondence: umair@sejong.ac.kr (M.U.A.); lsw2920@gmail.com (S.W.L.)

Abstract: We obtain similarity transformations to reduce a system of partial differential equations
representing the unsteady fluid flow and heat transfer in a boundary layer with heat generation/ab-
sorption using Lie symmetry algebra. There exist seven Lie symmetries for this system of differential
equations having three independent and three dependent variables. We use these Lie symmetries for
the reduced-order modeling of the flow equations by constructing invariants corresponding to linear
combinations of these Lie point symmetries. This procedure reduces one independent variable of
the concerned fluid flow model when applied once. Double reductions are achieved by employing
invariants twice that lead to ordinary differential equations with one independent and two dependent
variables. Similarity transformations are constructed using these two sets of derived invariants
corresponding to linear combinations of the Lie point symmetries. These similarity transformations
have not been obtained earlier for this flow model. Moreover, the corresponding reduced systems of
ordinary differential equations are different from those which exist in the literature for fluid flow and
heat transfer that we have been dealing with. We obtain multiple similarity transformations which
lead us to new classes of systems of ordinary differential equations. Accurate numerical solutions of
these systems are obtained using the combination of an adaptive fourth-order Runge–Kutta method
and shooting procedure. Effects of variation of unsteadiness parameter, Prandtl number and heat
generation/absorption on fluid velocity, skin friction, surface temperature and heat flux are studied
and presented with the help of tables and figures.

Keywords: boundary layer unsteady flow; reduce-order modeling; Lie symmetry; Runge–Kutta;
shooting method; heat and mass transfer

MSC: 76M60; 58J70; 35A30; 34B15

1. Introduction

With the advancements in industrial manufacturing processes, the accurate prediction
of flow and heat transfer is of prime importance. Many industrial and food processes
involve heat transfer in thin film flow, e.g., polymer coatings, metal sheets extractions, wire
coatings, heat exchangers, reactor fluidization, surface paint processing, etc. In most of these
processes, the surface finish, thickness and quality of coatings depend on the fluid flow and
heat transfer in the boundary layer/thin films. Moreover, in numerous applications, fluid
flow and heat transfer in the boundary layer involve heat generation/absorption effects,
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such as electric kettles, air conditioning, aerodynamic heating, solar water heaters, cooling
in electronic devices using heat sinks, and temperature control techniques in the stacks of
batteries. In many of these applications, the heat transfer rate and fluid velocity changes
with time, thereby making the behavior of the problem unsteady.

The unsteady boundary layer flows involving heat transfer are modeled using Navier–
Stokes equations. Normally, their solution could only be possible using numerical integra-
tion [1] due to the non-existence of the exact solutions in most of the cases for such nonlinear
equations. However, if we restrict the motion of fluid to a specific group of coordinates and
time dependence, we can derive similarity transformations to map flow equations into their
simpler and analytically solvable forms. By using similarity transformations, the system of
partial differential equations (PDEs) representing the unsteady fluid and heat transfer in
the boundary layer flow is mapped into a system of coupled nonlinear ordinary differen-
tial equations (ODEs). Such reductions fall into the category of reduced-order modeling.
Reduced-order modeling is a mathematical procedure that reduces the computational
complexity of the concerned systems. The similarity transformations provide reductions of
the dependent and independent variables of the fluid flow model, which brings down the
computational complexity of these models. Numerous exact, analytic or/and approximate
solution techniques for these systems of ODEs are available as compared to system PDEs
for fluid flow and heat transfer in thin films.

In [2], the idea of [3] is implemented to model the unsteady fluid flow in thin film
and [4] incorporated the heat transfer effects in it. Many researchers have studied these
flow and heat transfer models [5–15] using a few similarity transformations. These studies
have been conducted under multiple physical conditions, e.g., unsteady heat transfer
in non-Newtonian fluid using power-law, fluid flow in an unsteady sheet by integrating
thermocapillarity effects, fluid flow in an unsteady sheet by incorporating thermocapillarity
effects with variable fluid properties, MHD flow with heat transfer in an unsteady stretching
sheet with a non-uniform heat source, heat transfer with viscous dissipation on an unsteady
stretching sheet, fluid flow and heat transfer on an unsteady surface with thermocapillarity
and radiation effects, fluid flow and heat transfer on an unsteady stretching surface in the
presence of radiation and with variable fluid properties, heat transfer in nanofluid thin
film on an unsteady stretching sheet, etc. The reductions in the above cited works through
similarity transformations are valid for a specific time interval. An extensive numerical and
analytic treatment of flow in thin films has been completed to present optimum flow and
heat transfer to acquire the desired refinements of many industrial products depending on
such flows.

The Lie symmetry method is a mathematical technique by which one obtains similarity
reductions for differential equations (DEs) if there exist Lie point symmetries [16–18] for
these DEs. Previously, researchers used Lie point symmetries to derive similarity transfor-
mations for differential equations [19–28], e.g., for modified 1D shallow-water equations,
the spatial motion on a rotating plane of incompressible fluid on shallow water, free con-
vective nanofluid flow with heat generation/absorption on a chemically reacting sheet
in porous medium, the Green Naghdi model hyperbolic and shallow water equations, a
Schwartzian (2 + 1)-dimensional wave equation with a variable coefficient for shallow
water, rotating shallow water equations, 2D shallow water equations in Lagrangian co-
ordinates with a constant Coriolis parameter, a family of 1 + 1 5th-order PDEs, unsteady
boundary layer flow on a vertical sheet with free convection and shallow water equations
with Coriolis force, etc. However, in most of these studies, either single reduction is made,
or double reduction is completed using general boundary conditions.

In this study, we derive Lie symmetries for heat transfer and fluid flow in an unsteady
stretching sheet in the presence of heat generation/absorption. These Lie point symmetries
may reduce the dependent and/or independent variables of flow equations considered
through functions that remain invariant under Lie symmetry generators that are called
invariants. In these flow equations, we have three independent and three dependent
variables subject to specific boundary conditions. Using invariants associated with linear
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combinations of derived symmetries that is again a Lie symmetry, we reduce the PDEs
of the flow and heat transfer into systems of equations with two independent and three
dependent variables. Repeating the same procedure on these first reductions of PDEs,
i.e., we obtain Lie symmetries of these systems, and using invariants corresponding to
the obtained symmetries, we provide another reduction which finally leads to systems of
ODEs. By combining invariants employed in these two reductions, we construct similarity
transformations. These similarity transformations can map the flow equations straight to
ODEs; for a detailed procedure, the reader is referred to [29]. A similar study is conducted
by [30], using a similarity transformation of the form employed by, e.g., [2,4]. These
are different from those presented here. Hence, the systems of ODEs deduced by using
them and the ranges in which these similarity transformations are applicable are also
different from those imposed in [30]. Moreover, we present the velocity and heat profiles in
those ranges of the parameters involved, which either have not been considered earlier or
solutions have not been approximated there.

In Section 2, the mathematical formulation of the flow, construction of Lie symmetries,
invariants, similarity transformations and reductions to ODEs of the flow equations are
presented. Section 3 discusses the numerical solution procedure. In Section 4, we have
presented the results, which are followed by the conclusions.

2. Mathematical Formulation, Lie Symmetries, Similarity Transformations and
Reductions of Flow Equations

An incompressible, viscous, laminar and unsteady fluid coming out of origin of the co-
ordinate system on a thin horizontal surface along with the heat transfer is considered here,
as shown in Figure 1. In addition to that, it is also assumed that the temperature variations
are small, and thus, the viscosity of fluid remains constant. The pressure and gravitational
effects are also negligible. Initially, the temperature and velocity are taken as arbitrary func-
tions of x-coordinate and time t. It is further assumed that the flow is free from any kind
of surface waves, and streamwise diffusion is negligible. Under the stated assumptions,
the governing 2D boundary layer equations with uniform heat generation/absorption are
written as

∂u
∂x

+
∂v
∂y

= 0,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν

(
∂2u
∂y2

)
,

ρCp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
= κ

(
∂2T
∂y2 + H

)
, (1)

subject to

at y = 0 : u = U, v = 0, T = Ts,

at y = h(t) : v =
dh
dt

,
∂u
∂y

=
∂T
∂y

= 0. (2)

boundary layer, h(t)

Ts

T (x,t)

u (x,t)

x

y

U

∂T
∂y = 0∂u

∂y = 0

Figure 1. Schematic of flow in boundary layer.
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In (1) and (2) x, y are the coordinates parallel and normal to the stretching surface and
u, v are the velocities in these directions, respectively. T is the temperature, t is the time,
ρ is the density, ν is the kinematic viscosity, Cp is the specific heat at constant pressure, κ
is the thermal diffusivity and H is the heat generation/absorption per unit volume and is
defined as

H =

(
Ũ(T − T0)

xν

)
G∗, (3)

where Ũ is considered as velocity in the x-direction due to the flow in [30], which implies

Ũ = U =
bx

(1− at)
. (4)

In (3), T0 is temperature at the origin and G∗ is the temperature-dependent heat gener-
ation/absorption parameter [30]. After simplifying, H is observed to be a function of
temperature, t−1 and G∗. For heat addition, G∗ > 0, and for heat absorption, G∗ < 0. By re-
stricting the motion in its own horizontal plane and imposing specific time dependence,
the surface velocity U and temperature Ts in [30] are written as (4) and

Ts = T0 −
(

dxr1

ν

)
Tre f (1− at)−r2 , (5)

respectively, where Tre f is a reference temperature, r1 and r2 are positive constants and
d is a positive proportionality constant with dimension length2−rtime−1 [9]. A similarity
transformation that is compatible with (4) and (5) is

η =
y
β

√
b

ν(1− at)
, u =

bx
(1− at)

f ′(η), v = −
√

bν

(1− at)
β f (η),

T = T0 −
(

dxr1

ν

)
Tre f (1− at)−r2 ϑ(η), (6)

where a and b are positive constants and have the dimensions of t−1. β is the dimensionless
boundary layer/film thickness, f is the stream function, ϑ is the dimensionless temperature
and η is the similarity variable. Aziz et al. [30] employed these transformations on (1) and
obtained the system of ODEs as

f ′′′ + λ
(

f f ′′ − S( f ′ +
η

2
f ′′)− f ′2

)
= 0,

ϑ′′

Pr
+ λ

(
f ϑ′ − r1 f ′ϑ− S(

η

2
ϑ′ + r2Sϑ) +

1
Pr

G∗ϑ
)

= 0. (7)

Likewise, considering (4) and (5) in (2) and transforming them via (6), we obtain

at η = 0 : f = 0, f ′ = 1, ϑ = 1,

at η = 1 : f ′′ = 0, ϑ′ = 0, f =
1
2

S, (8)

where prime denotes the derivative with respect to η, S = a/b denotes the dimensionless
unsteadiness parameter, Pr = ρνCp

κ is the Prandtl number and λ = β2 is the dimensionless
film thickness. It is important to note that the above similarity transformations are valid
only for t < a−1. In the subsequent sections, we are performing reduced-order modeling
using Lie symmetry algebra.
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2.1. Lie Symmetries and Invariants

To derive similarity transformations for the system of PDEs (1), we first obtain Lie
point symmetry generators for this system that is a vector field as

X = ξi
∂

∂ψi
+ φi

∂

∂ζi
, (9)

where i = 1, 2, 3, ξ and φ are infinitesimal coordinates and they are functions of independent
x, y, t and dependent variables u, v, T, respectively. The system (1) and boundary condi-
tions (2) contain both first and second-order partial derivatives. For this, we require first
and second extensions of (9) to operate on them. MAPLE contains an algebraic procedure
to derive Lie point symmetries for DEs; here, we use it to obtain Lie point symmetries of
system (1). In (3), we consider Ũ = bx

at , that is different from U(t, x), given in conditions (2)
which provides

H =
b

aνt
G∗(T − T0). (10)

The stretchable sheet velocity U(t, x), is obtained in the subsequent section by applying
the Lie symmetry generators. Hence, it is not expected to be similar for all symmetries that
are derived using (10) in system (1). System (1) admits an infinite dimensional Lie point
symmetry algebra that is spanned by the following symmetry generators

X
∞

1 =
∂

∂x
+ f1(t, x)

∂

∂y
+ ( f1,t + u f1,x)

∂

∂v
,

X
∞

2 = t
∂

∂x
+ f2(t, x)

∂

∂y
+

∂

∂u
+ ( f2,t + u f2,x)

∂

∂v
,

X
∞

3 = x
∂

∂x
+ f3(t, x)

∂

∂y
+ u

∂

∂u
+ ( f3,t + u f3,x)

∂

∂v
,

X
∞

4 = f4(t, x)
∂

∂y
+ (T − T0)

∂

∂T
+ ( f4,t + u f4,x)

∂

∂v
,

X
∞

5 = t
∂

∂t
+ (

y
2
+ f5(t, x))

∂

∂y
− u

∂

∂u
+ ( f5,t + u f5,x −

v
2
)

∂

∂v
,

X
∞

6 = f6(t, x)
∂

∂y
+ t

bκG∗
aCpρν

∂

∂T
+ ( f6,t + u f6,x)

∂

∂v
,

X
∞

7 =
∂

∂t
+ f7(t, x)

∂

∂y
+

(T − T0)bκG∗

aCpρνt
∂

∂T
+ ( f7,t + u f7,x)

∂

∂v
,

X
∞

8 = f8(t, x)
∂

∂y
+ ( f8,t + u f8,x)

∂

∂v
. (11)

By considering fi(t, x) = 0, for i = 1, 2, . . . , 8, we obtain a finite dimensional algebra.
The reason to use finite dimensional algebra is to extract scaling transformations to per-
form the reduced-order modeling. Scaling transformations are the most suitable map-
pings that are employed for reduction of the independent variables of the flow models.
Table 1 presents the finite dimensional symmetry algebra and corresponding invariants
for system (1). These symmetry generators X1, . . . , X7 and their linear combinations leave
system (1) and associated conditions invariant. The boundary conditions (2) also remain
invariant under these generators. Both U and T at y = 0 are functions of x-coordinate
and time t. There, invariant forms under X1, . . . , X7 are determined by applying these
generators on them and evaluating the resulting expressions on these conditions. However,
when a single symmetry is used in this procedure, both U and T become either functions of
x or t. In this work, we want to keep them functions of both x and t. We achieved it through
linear combinations of the symmetry generators X1, . . . , X7 by adding two at a time, which
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also leave boundary conditions (2) invariant. We obtain seven such combinations in which
these conditions remain functions of both space and time, as shown in Table 2.

Table 1. Lie point symmetry generators and invariants.

Symmetry Invariants-Conserved Quantities

X1 = ∂
∂x x, y, T, u, v

X2 = t ∂
∂x + ∂

∂u t, y, T, u
x , v

X3 = x ∂
∂x + u ∂

∂u t, y, T, u
x , v

X4 = (T − T0)
∂

∂T t, x, y, u, v

X5 = t ∂
∂t +

y
2

∂
∂y − u ∂

∂u −
v
2

∂
∂v x, y

t , T, ut, v

X6 =

(
t

bκG∗
aCpρν

)
∂

∂T t, x, y, u, v

X7 = ∂
∂t +

b(T−T0)κG∗
aCpρνt

∂
∂T x, y, T−T0

t , u, v

Table 2. First invariants for similarity transformations.

Case Symmetry and Invariants Corresponding Boundary Conditions

1 X3 + X4

t, y, u
x , v, T−T0

x

at y = 0 : v = 0, u = xŪ(t), T = T0 + xT̄s(t)

at y = h(t) : v = ∂h
∂t , ∂u

∂y = ∂T
∂y = 0

2 X2 + X5

x− t, y√
t
, ut− t,

√
tv, T

at y = 0 : v = 0, u = 1 + Ū(x−t)
t , T = T̄s(x− t)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

3 X3 + X5

x
t , y√

t
, u,
√

tv, T
at y = 0 : v = 0, u = Ū( x

t ), T = T̄s(
x
t )

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

4 X3 + X6

t, y, u
x , v, T − ln(x)

(
t

bκG∗
aCpρν

) at y = 0 : v = 0, u = xŪ(t), T = T̄s(t) + ln(x)t
bκG∗
aCpρν

at y = h(t) : v = ∂h
∂t , ∂u

∂y = ∂T
∂y = 0

5 X4 + X5

x, y√
t
, tu,
√

tv, T−T0
t

at y = 0 : v = 0, u = Ū(x)
t , T = T0 + tT̄s(x)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

6 X5 + X6

x, y√
t
, tu,
√

tv, T − aCpρν
bκG∗ t

bκG∗
aCpρν

at y = 0 : v = 0, u = Ū(x)
t , T =

aCpρν
bκG∗ t

bκG∗
aCpρν + T̄s(x)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

7 X5 + X7
x, y√

1+t
, u(t + 1),

√
1 + tv,

(1 + t)
bκG∗
aCpρν (T − T0)t

− bκG∗
aCpρν

at y = 0 : v = 0, u = Ū(x)
t+1 , T = T0 + (1 + t)

− bκG∗
aCpρν t

bκG∗
aCpρν T̄s(x)

at y = a3
√

1 + t : v = a3
2
√

1+t
, ∂u

∂y = ∂T
∂y = 0



Mathematics 2022, 10, 4640 7 of 16

2.2. Double Reductions and Construction of Similarity Transformations

Similarity transformations are derived through double reductions of differential equa-
tions (DEs) using Lie point symmetry generators. Consider Case 1 in Table 2, which is
X3 + X4. Except for u = U(t, x) and T = Ts(t, x), it leaves all other boundary conditions (2)
invariant. The conditions u = U(t, x) and T = Ts(t, x) when inserted in the invariance
criterion read as

[X3 + X4](u−U(t, x))|u=U(t,x) = 0,

[X3 + X4](T − Ts(t, x))|T=Ts(t,x) = 0. (12)

Applying these symmetry generators and expanding the resulting expressions at u =
U(t, x) and T = Ts(t, x) provides the following linear PDEs

x
∂U(x, t)

∂x
− u = 0,

x
∂Ts(x, t)

∂x
− T + T0 = 0. (13)

Solving these equations, we obtain

u = xŪ(t), and T = T0 + xT̄s(t). (14)

Now, for the derivation of 0th-order differential invariants, we apply X34 = X3 + X4, in the
following invariance criterion

X34 J(t, x, y, u, v, T) = 0, (15)

which leads to the following PDE

x
∂J
∂x

+ u
∂J
∂u

+ (T − T0)
∂J
∂T

= 0. (16)

Solving it using MAPLE, we obtain five invariants {t, y, u
x , v, T−T0

x } with two independent
t, y and three dependent variables u

x , v, T−T0
x . We obtain first components of the claimed

similarity transformations by renaming these invariants as follows

c1 = t, c2 = y, P =
u
x

, Q = v, R =
T − T0

x
. (17)

This maps the system of PDEs (1) and conditions (2) to

P +
∂Q
∂c2

= 0,

∂P
∂c1

+ P2 + Q
∂P
∂c2

= ν

(
∂2P
∂c22

)
,

ρCp

(
∂R
∂c1

+ PR + Q
∂R
∂c2

)
= κ

(
∂2R
∂c22 + H

)
, (18)

and

at c2 = 0 : P = F(c1), Q = 0, R = G(c1),

at c2 = h : Q =
dh
dc1

,
∂P
∂c2

=
∂R
∂c2

= 0. (19)

For the second reduction, symmetry generators for system (18) are obtained that
admits a three-dimensional Lie symmetry algebra
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Y1 = R
∂

∂R
, Y2 = c1

∂

∂c1
+

c2

2
∂

∂c2
− P

∂

∂P
− Q

2
∂

∂Q
,

Y3 =
∂

∂c1
+

(
bRκG∗
aCpc1ρν

)
∂

∂R
. (20)

The combination Y1 + Y2 further converts the boundary conditions (19) to

at c2 = 0 : P =
a1

c1
, Q = 0, R = a2c1,

at c2 = a3
√

c1 : Q =
a3

2
,

∂P
∂c2

=
∂R
∂c2

= 0. (21)

The invariants obtained using these symmetries Y1 +Y2 are { c2√
c1

, Pc1, Q
√

c1, R
c1

}, where now
c2√
c1

is the new independent variable and Pc1, Q
√

c1, R
c1

are the new dependent variables,
which are given the following notations

χ =
c2√
c1

, Pc1 = L, Q
√

c1 = M,
R
c1

= N. (22)

Using (22), the second reductions are performed that transform the system (18) and
associated conditions (21) to

L + M′ = 0,

L2 − L− χ

2
L′ + ML′ = νL′′,

LN + N − χ

2
N′ + MN′ =

κ

ρCp
N′′ +

bκG∗N
aρCpν

, (23)

and

at χ = 0 : L = a1, M = 0, N = a2,

at χ = a3 : M =
a3

2
, L′ = N′ = 0, (24)

where prime denotes differentiation with respect to χ. In system (7), we have Pr, S and
β. We introduce these variables in the similarity transformations constructed here by
combining (17), (22) and

χ = ηβ

√
aν

b
, L = − b

a
f ′(η), M = β

√
bν

a
f (η), N = ϑ(η), (25)

which leads to claimed similarity transformations

u = − bx
at

f ′(η), v = β

√
bν

at
f (η), T = T0 + xtϑ(η), η =

1
β

√
b

atν
y. (26)

The set of similarity transformations (26) maps the system of PDEs (1) and boundary
conditions (2) into system of ODEs as

f ′′′ + λ

(
S f ′ − f f ′′ +

Sη

2
f ′′ + f ′2

)
= 0,

1
Pr

ϑ′′ + λ

(
− f ϑ′ +

Sη

2
ϑ′ − Sϑ + f ′ϑ +

1
Pr

ϑG∗
)

= 0, (27)
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and

at η = 0 : f = 0, f ′ = 1, ϑ = 1,

at η = 1 : f =
1
2

S, f ′′ = 0, ϑ′ = 0. (28)

Using linear combinations of symmetries X1 − X7, we perform double reductions and
obtain a set of similarity transformations against each combination that reduces the system
of PDEs (1) into systems of ODEs given in Table 3. The reason to consider only these
linear combinations in Table 3 is the form of U(t, x) and Ts(t, x) they provide; i.e., both
of them are functions of the x-coordinate and time-t in all cases. Once invariance of
the conditions (2) under the admitted Lie point symmetries of the system (1) has been
established, then it implies that any linear combination of these symmetries also leaves the
associated conditions invariant.

Table 3. Similarity transformations and systems of ODEs.

Case Symmetry Generator and Similarity Transformation System of ODEs

1 X3 + X4

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xtϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ − Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

2 X2 + X5

v = β
√

bν
at f (η), u = 1− b(x−t)

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + (x− t)ϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0

3 X3 + X5

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 +
x
t ϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

4 X3 + X6

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + (ϑ(η) + ln(x))t
bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′
)
= 0

5 X4 + X5

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xtϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ − Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

6 X5 + X6

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xϑ(η) +
aCpρν
bκG∗ t

bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0

7 X5 + X7

v = β
√

bν
a(1+t) f (η), u = − bx

a(1+t) f ′(η)

η = 1
β

√
b

aν(1+t)y, T = T0 + xϑ(η)(1 + t)
− bκG∗

aCpρν t
bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0
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The skin friction Cf and heat flux qs are important physical parameters, and they are
written as

C f =

(
2τs

ρu2

)
, (29)

qs = − κ

(
∂T
∂y

)
y=0

, (30)

where τs is the shear stress

τs = µ

(
∂u
∂y

)
y=0

, (31)

Using the similarity transformations (26), i.e., for Case 1, we have

C f =
2

β
√

Rex
f ′′(0), (32)

qs = − xκ

βµ

√
b(1 + x)ρ3

a
ϑ′(0), (33)

where Rex is the local Reynolds number.

3. Numerical Solutions

The solution of a nonlinear coupled system of ODEs, e.g., (7) subject to (8) is obtained
by using the combination of most efficient Runge–Kutta Fehlberg numerical integration
technique and shooting method. It is a fourth-order O(h4) accurate scheme with the fifth-
order O(h5) error estimation. This method is known as RKF45. This method automatically
varies the step size at specified locations based on the approximation accuracy required.
This adaptive grid sizing helps to reduce the computational cost [31]. In system (7),
if dimensionless film thickness λ is known, the solution can be approximated by using
only the first five conditions from (8). We write system (7) in the form of system of five 1st
coupled ODEs by considering

f = y1 , f ′ = y2 , f ′′ = y3 , f ′′′ = y′
3
, ϑ = y4 , ϑ′ = y5 , ϑ′′ = y′

5
. (34)

By substituting the above assumptions (34) in system (7) and boundary conditions (8),
we obtain

y′
1
= f ′, y′

2
= f ′′, y′

3
= λ

(
−y1 y3 +

Sη

2
y3 + y2

2 + Sy2

)
, y′

4
= ϑ′,

y′
5
= λPr

(
− y1 y5 + 2y2 y4 +

Sη

2
y5 + y4(

3
2

S− 1
Pr

B∗)
)

, (35)

and

y1(0) = 0, y2(0) = 1, y3(0) = b1 , y4(0) = 0, y5(0) = b2 . (36)

Three simultaneous shooting techniques are applied to transform the boundary value
problem into an initial value problem. The transformed initial conditions b1 and b2 are
found iteratively by using Newton’s method until the error is 10−12. In the RKF45 in-
tegration procedure, the numerical integration in performed until the error is less than
10−10.

As the film/boundary layer thickness β is unknown, so the value of λ is approximated
iteratively until the last condition of (8); that is, f (1) = S

2 is satisfied within a range of less
than 10−9. The film thickness λ varies with the unsteadiness parameter S, so at different
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values of S, first, the film thickness λ is approximated before analyzing the effects of
Prandtl number Pr and heat generation/absorption G∗. The results obtained for system (7)
with conditions (8) using this procedure are compared with the 10th order Homotopy
Analysis Method (analytical method) employed by Wang [32]. In Table 4, the effects of
unsteadiness on film thickness λ and skin friction f ′′(0) are compared with the analytical
results. In Table 5, the effects of change in Prandtl number Pr on surface temperature
ϑ(1) and heat flux −ϑ′(0) are compared. It is clear from Tables 4 and 5 that the numerical
approach used in the present study is in good agreement with the analytical method.

Table 4. Validation of numerical results.

S
Present Study Wang [32]

β −f ′′(0) β −f ′′(0)

1.2 1.1277809 1.4426253 1.127780 1.442631
1.3 0.9642181 1.2183196 0.964219 1.218322
1.4 0.8210322 1.0127802 0.821032 1.012784
1.5 0.6931444 0.8218421 0.693144 0.821842
1.6 0.5761730 0.6423970 0.576173 0.642397

Table 5. Validation of numerical Results at S = 1.2 and G* = 0.

Pr
Present Study Wang [32]

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

0.01 0.9823314 0.0377342 0.982331 0.037734
0.1 0.8462218 0.3439312 0.843622 0.343931
1.0 0.2867165 1.9995915 0.286717 1.999590
2.0 0.1281219 2.9759051 0.128124 2.975450
3.0 0.0676448 3.7013202 0.067658 3.698830

4. Results

From Table 3, it is evident that despite having the unique symmetry generators and
invariants (except for Case 1 and 5 for which the corresponding systems of ODEs are also
similar), the transformed systems of ODEs for Case 2, Case 6 and Case 7 are the same. The
system of ODEs in Case 4 is not containing any heat generation/absorption parameter
G∗ and thus is not considered further for a solution. It is important to note that the Lie
similarity transformations in Table 3 are valid at any time interval, i.e., for t > 0. Moreover,
the ranges of S for which we are providing the variations in film thickness, velocity of the
flow and temperature have not been revealed in [30].

4.1. Effect of Unsteadiness on Film Thickness and Fluid Velocity

The first equation is not coupled with the second one and is the same for all cases of
Table 3. It controls the dimensionless boundary layer thickness, fluid velocity and skin
friction. The variable in these equations is the dimensional unsteadiness parameter S.
Table 6 shows the effect of variation of unsteadiness S on film thickness λ, surface velocity
f ′(1) and skin friction f ′′(0). Figure 2 shows the variation of velocity distribution f ′(η) in
the boundary layer with unsteadiness parameter S. The film thickness β is observed to
decrease with the increase in unsteadiness S in the flow. The surface velocity f ′(1) and so
the skin friction f ′′(0) are observed to increase with the increase in unsteadiness S.
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Table 6. Variation of velocity f ′(1) and dimensionless film thickness β with unsteadiness parameter S.

S β f ′(1) f ′′(0)

4.0 0.46222258 2.54527934 2.64859856
6.0 0.42256741 4.11506337 5.12669108
8.0 0.38196786 5.68906454 7.57845493
10.0 0.34939989 7.26442893 10.0221543

S = 4, 6, 8, 10

Figure 2. Velocity distribution f ′(η) variation with unsteadiness parameter S.

4.2. Effect of Unsteadiness on Temperature

As the unsteadiness in the fluid increases, the flow velocity f ′(η) increases. This also
increases the heat flux −ϑ′(0), and thus, a drop in the surface temperature ϑ(1) is observed
for Case 1 and Case 5. For Cases 2, 3, 6, and 7, the surface temperature ϑ(1) increases
with the increase in unsteadiness S in the fluid. Figure 3 and Table 7 show the effects of
unsteadiness S on surface temperature ϑ(1) and heat flux −ϑ′(0) for all the cases.

Table 7. Variation of temperature distribution with unsteadiness parameter at Pr = 1 and G∗ = 1.

S
Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

4.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109
6.0 0.8800376 0.3375851 1.6365029 1.0733105 5.6566690 7.5566639
8.0 0.8559376 0.4088891 1.6905412 1.1414694 8.0118998 11.224076
10 0.8412676 0.4528668 1.7180535 1.1725929 10.128307 14.510949

(a) Case 1 and 5

S = 4, 6, 8, 10

(b) Case 2, 6 and 7

S = 4, 6 , 8, 10

(c) Case 3

S = 4, 6 , 8, 10

Figure 3. Variation of temperature distribution ϑ(η) with the unsteadiness parameter S at Pr = 1 and
G∗ = 1.
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4.3. Effect of Prandtl Number on Temperature

As the Prandtl number increases, the ratio of momentum diffusivity to thermal dif-
fusivity increases. This increases the heat flux −ϑ′(0), and thus, a temperature ϑ(1) drop
is observed for Case 1 and Case 5. For Cases 2, 3, 6, and 7, the surface temperature ϑ(1)
increases with the increase in Prandtl number Pr in the fluid. Figure 4 and Table 8 show the
effect of Prandtl number Pr on the temperature distribution ϑ(η), surface temperature ϑ(1),
and heat flux −ϑ′(0).

(a) Cases 1 and 5

Pr = 0.8, 1.0, 1.2, 1.4

(b) Cases 2, 6 and 7

Pr = 0.8, 1.0, 1.2, 1.4

(c) Case 3

Pr = 0.8, 1.0, 1.2, 1.4

Figure 4. Variation of temperature distribution ϑ(η) with Prandtl number Pr at S = 4 and G∗ = 1.

Table 8. Variation of temperature distribution ϑ(η) with Prandtl number at S = 4 and G∗ = 1.

Pr
Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

0.8 0.9595775 0.1261086 1.4071290 0.7190225 2.4052188 2.3063102
1.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109
1.2 0.8930815 0.2836747 1.6093876 1.0579964 4.7864442 6.2626166
1.4 0.8623943 0.3581463 1.7320289 1.2589990 7.6471113 10.783625

4.4. Effect of Heat Generation/Absorption on Temperature

When fluid generates heat, i.e., G∗> 0, the surface temperature ϑ(1) increases and
when it absorbs heat, i.e., G∗< 0, the surface temperature is ϑ(1). This corresponds to the
increase and decrease in heat flux −ϑ′(0), respectively. Similar effects are observed here for
all cases as shown in Figure 5 and Table 9.

(a) Cases 1 and 5

G* = −2.0, −1.0, 0.0, 1.0

(b) Cases 2, 6 and 7

G* = −2.0, −1.0, 0.0, 1.0

(c) Case 3

G* = −2.0, −1.0, 0.0, 1.0

Figure 5. Variation of temperature distribution ϑ(η) with heat generation/absorption parameter G∗

at S = 4 and Pr = 1.
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Table 9. Variation of temperature distribution ϑ(η) with heat generation/absorption parameter G∗ at
S = 4 and Pr = 1.

G∗
Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

−2.0 0.6980416 0.6846427 1.0296499 0.0020397 1.7502717 1.3163411
−1.0 0.7626680 0.5501907 1.1551679 0.2443599 2.0816556 1.8831544

0.0 0.8376079 0.3886397 1.3090560 0.5316521 2.5452882 2.6576106
1.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109

5. Conclusions

Reduced-order modeling has been performed by systematically deriving the similarity
transformations using Lie symmetry algebra to map the system of PDEs representing heat
transfer in unsteady flow with heat generation/absorption to ODEs. Similarity transforma-
tions are deduced through invariants corresponding to each linear combination of the Lie
symmetries (considering two at a time) of the flow equations. These similarity transfor-
mations are used to perform double reductions to map the said system of PDEs into the
system of ODES. We present only those cases here in which specific boundary conditions
remain functions of both space and time variables. Seven such cases are obtained. Case 4
has not been pursued here because it has no heat generation/absorption parameter in the
corresponding system of ODEs.

In all cases, the film thickness λ = β2 decreases, and the flow velocity f ′(η) increases
with an increase in unsteadiness parameter S. For Cases 1 and 5, the surface temperature
ϑ(1) decreases with an increase in unsteadiness S, Prandtl number Pr and heat absorption
G∗< 0. While for Cases 2, 3, 6 and 7, the surface temperature ϑ(1) increases with increase
in unsteadiness S, Prandtl number Pr and heat generation G∗> 0. The Lie symmetry
method provides more than one type of similarity transformation and correspondingly
reduces the system of ODEs, which enables a comprehensive study of the flow and heat
transfer through approximate solutions of the systems of ODEs corresponding to concerned
flow equations.

In this study, we show that there exists more than one type of similarity transformation
which provides three different systems of ODEs when employed on PDEs describing the
unsteady fluid flow and heat transfer in a boundary layer with heat generation/absorption.
To the best of our knowledge, the similarity transformations and corresponding reductions
of the flow model are different from those which exist in the literature. We have considered
linear combinations of two symmetries by assigning a unique positive value, i.e., 1 to each
coefficient in these linear combinations. Keeping arbitrary constant coefficients in these
linear combinations may lead to more general forms of the similarity transformations and
corresponding systems of ODEs. The inclusion of arbitrary constant coefficients in the linear
combinations may yield similarity transformations and corresponding systems of ODEs
with these constant coefficients. With the involvement of the arbitrary constants in resulting
systems of ODEs, the convergence of the analytic solutions can be controlled, i.e., the flow
and heat transfer rates can be altered with a variation in the arbitrary constants. Moreover,
by constructing optimal systems of Lie sub-algebras, the classes of ODEs derived in this
work can be retrieved along with maybe a few more. The inequivalence of these classes of
systems of ODEs can also be established. Although the construction of optimal systems
has not been included in the scope of the present study, it may lead to more general results.
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