
Citation: Kim, Y.; Chae, M.; Cho, N.;

Gil, H.; Lee, H. Machine

Learning-Based Prediction Models of

Acute Respiratory Failure in Patients

with Acute Pesticide Poisoning.

Mathematics 2022, 10, 4633. https://

doi.org/10.3390/math10244633

Academic Editors: Ximeng Liu and

Jose Luis Vicente Villardon

Received: 23 September 2022

Accepted: 4 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Machine Learning-Based Prediction Models of Acute
Respiratory Failure in Patients with Acute Pesticide Poisoning
Yeongmin Kim 1,†, Minsu Chae 2,†, Namjun Cho 3, Hyowook Gil 3 and Hwamin Lee 2,*

1 Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
2 Department of Medical Informatics, College of Medicine, Korea University, Seoul 02841, Republic of Korea
3 Department of Internal Medicine, Soonchunhyang University Cheonan Hospital,

Cheonan 31151, Republic of Korea
* Correspondence: hwamin@korea.ac.kr; Tel.: +82-2-3407-2099
† These authors contributed equally to this work.

Abstract: The prognosis of patients with acute pesticide poisoning depends on their acute respiratory
condition. Here, we propose machine learning models to predict acute respiratory failure in patients
with acute pesticide poisoning using a decision tree, logistic regression, and random forests, support
vector machine, adaptive boosting, gradient boosting, multi-layer boosting, recurrent neural network,
long short-term memory, and gated recurrent gate. We collected medical records of patients with
acute pesticide poisoning at the Soonchunhyang University Cheonan Hospital from 1 January 2016
to 31 December 2020. We applied the k-Nearest Neighbor Imputer algorithm, MissForest Impuer
and average imputation method to handle the problems of missing values and outliers in electronic
medical records. In addition, we used the min–max scaling method for feature scaling. Using the
most recent medical research, p-values, tree-based feature selection, and recursive feature reduction,
we selected 17 out of 81 features. We applied a sliding window of 3 h to every patient’s medical
record within 24 h. As the prevalence of acute respiratory failure in our dataset was 8%, we employed
oversampling. We assessed the performance of our models in predicting acute respiratory failure. The
proposed long short-term memory demonstrated a positive predictive value of 98.42%, a sensitivity
of 97.91%, and an F1 score of 0.9816.

Keywords: machine learning; respiratory failure; acute pesticide poisoning; logistic regression;
random forests; long short-term memory

MSC: 68T07; 9A16; 4008

1. Introduction

Pesticide toxicosis is caused by the ingestion of or exposure to pesticides [1]. In the
Republic of Korea, the death toll from toxicosis is 2702 people and 1675 of the 2702 people
(61.99%) had toxicosis caused by the ingestion of pesticides [2]. In addition, 71% of patients
with pesticide poisoning have been reported to die within 6–24 h [2]. The most common
reason for the ingestion of pesticides is suicide [3]. Each year, 110,000 individuals die from
pesticide poisoning [3], which accounts for 13.7% of all suicides [3]. In the Republic of
Korea, some regions (Chungcheong-do, Gangwon-do, Jeolla-do) have a higher death rate
from pesticide poisoning than that the capital area (Seoul, Incheon, and Gyeonggi-do) [2].
Pesticide toxicosis is easily accessible, especially in these regions [2]. Neurological, respira-
tory, and cardiovascular symptoms have been reported in cases of pesticide toxicosis [1].
The prognosis of pesticide toxicosis depends on the extent of respiratory failure [1]. Respi-
ratory failure is associated with a high death rate in hospitals. Current respiratory failure
treatment options can be ineffective [4]. Preventing the failure of multiple organs is crucial
in reducing the rate of mortality from respiratory failure [5]. Therefore, the prediction of
respiratory failure is important for patient prognosis.

Mathematics 2022, 10, 4633. https://doi.org/10.3390/math10244633 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244633
https://doi.org/10.3390/math10244633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2550-2739
https://orcid.org/0000-0002-6482-3511
https://doi.org/10.3390/math10244633
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244633?type=check_update&version=1

Mathematics 2022, 10, 4633 2 of 24

Recent predictions of respiratory failure include predicting respiratory failure based on
semi-supervised learning [4]; predicting respiratory failure with clinical data [5]; predicting
respiratory failure in patients with coronavirus disease-2019 (COVID-19) [6]; predicting
respiratory failure in the intensive care unit (ICU) [7,8]; predicting respiratory failure in
pesticide intoxication [9]; and predicting respiratory failure with simple patient trajecto-
ries [10].

Machine learning algorithms such as semi-recurrent neural networks (RNNs), extreme
gradient boosting, logistic regression (LR), random forest (RF), and long short-term memory
(LSTM) have been used to predict respiratory failure in previous studies. In the case of
respiratory failure prediction based on semi-RNNs, the positive predictive value (PPV) was
3.3% and the sensitivity was 78.0% [4]. In the case of respiratory failure prediction with
clinical data, the sensitivity was 71% [5]. In the case of respiratory failure prediction in
patients with COVID-19, the PPV was 74% and the sensitivity was 78% [6]. In the case of
respiratory failure prediction in the ICU, the PPV was 42% and the sensitivity was 80% [7].
In the case of respiratory failure prediction in pesticide intoxication, the PPV was 83.3%
and the sensitivity was 60.6% [9]. In the case of respiratory failure prediction with simple
patient trajectories, the PPV was 22.6% and the sensitivity was 88.1% [10]. Therefore, the
performance of algorithms for predicting acute respiratory failure is low.

Our goal is to predict the prognosis for patients with acute pesticide poisoning. How-
ever, it is difficult to predict the prognosis because of the various causes of acute pesticide
poisoning. We predict acute respiratory failure, an important prognostic factor for pa-
tients with acute pesticide poisoning. We predict acute respiratory failure within 24 h
using machine learning and three-hour electronic medical records (EMRs) for patients. We
perform EMR preprocessing as follows: (1) solve human errors; (2) solve missing values;
(3) sliding window; (4) feature selection; (5) data scaling; and (6) solve the imbalance. Data
preprocessing is important to improve performance [11–14]. Using current patient data to
fill in the gaps, we imputed missing values using the k-Nearest Neighbor (KNN) imputer
algorithm from scikit-learn [15], the MissForest Imputer, or the data average imputation
technique. We used a sliding window dataset based on 3 h data. We performed feature
selection based on the current medical knowledge and p-values and oversampling. We
performed data scaling using MinMaxScaler provided by scikit-learn [15]. For predicting
acute respiratory failure in acute pesticide poisoning, we utilize shallow learning such as
decision tree (DT), random forest (RF), logistic regression (LR), support vector machine
(SVM), adaptive boosting (AB), gradient boosting (GB), and deep learning such as multi-
layer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM),
and gated recurrent unit (GRU).

2. Materials
2.1. Data

This retrospective cohort study consisted of patients admitted to Soonchunhyang
University Cheonan Hospital in the Republic of Korea between January 2016 and December
2020. The patients were over 19 years of age. The patients with pesticide poisoning and
respiratory failure within 1 h of admission were excluded. The number of patients was
707. The pesticide categories included glyphosate, glufosinate, paraquat, organophosphate,
pyrethroid, and carbamate. After replacing missing data, we performed sliding window
data preprocessing, feature selection, and oversampling on the medical records.

When the data preprocessing process was completed, the total data consisted of
11,526 data with 17 features for 3 h. We split the data into the training dataset and test
dataset at a 7:3 ratio. The training dataset was then divided with a 7:3 ratio into a training
dataset and a test dataset. The training dataset was then divided with a 7:3 ratio into a
training dataset and a holdout fold. The training dataset was then divided with a 7:3 ratio
into a training dataset and a validation dataset. Using the training dataset, machine
learning methods were constructed and evaluated using the holdout fold. The number of
respiratory failures was only 909. Oversampling or undersampling can be used to solve the

Mathematics 2022, 10, 4633 3 of 24

imbalance in the datasets. We used oversampling algorithms such as the synthetic minority
oversampling technique (SMOTE), borderline-SMOTE, and adaptive synthetic (ADASYN)
given the limited cases of respiratory failure. Figure 1 shows the processing of patient
selection. The number of training datasets was 7291, the number of validation set was 1695,
and the number of holdout fold was 2421, and the number of test datasets was 3458.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 24

dataset and a test dataset. The training dataset was then divided with a 7:3 ratio into a

training dataset and a holdout fold. The training dataset was then divided with a 7:3 ratio

into a training dataset and a validation dataset. Using the training dataset, machine learn-

ing methods were constructed and evaluated using the holdout fold. The number of res-

piratory failures was only 909. Oversampling or undersampling can be used to solve the

imbalance in the datasets. We used oversampling algorithms such as the synthetic minor-

ity oversampling technique (SMOTE), borderline-SMOTE, and adaptive synthetic

(ADASYN) given the limited cases of respiratory failure. Figure 1 shows the processing

of patient selection. The number of training datasets was 7291, the number of validation

set was 1695, and the number of holdout fold was 2421, and the number of test datasets

was 3458.

Figure 1. Patient selection, data preprocessing, and dataset. The training dataset number was 7291,

and the validation set number was 1695, and the holdout fold number was 2421, and the test dataset

number was 3458.

2.2. Replacement Missing Value

Medical records are not free from missing values. The patient may be absent or there

may be problems with noise or human errors. To improve machine learning algorithms,

missing values need to be solved [11,12]. We solved missing values with the following

three steps: (1) replace missing values with the recent data imputer (RDI); (2) apply the

KNN imputation algorithm of scikit-learn with highly relevant features; and (3) replace

other features through average imputation.

2.2.1. Recent Data Imputer

Time-series data have continuous values over time. The RDI can be used to replace

the missing values of each patient with recent data. Figure 2 shows the RDI algorithm.

The average imputer, the maximum imputer, and the minimum imputer are non-con-

sistent time-series characteristics. The RDI has time-series characteristics.

Figure 1. Patient selection, data preprocessing, and dataset. The training dataset number was 7291,
and the validation set number was 1695, and the holdout fold number was 2421, and the test dataset
number was 3458.

2.2. Replacement Missing Value

Medical records are not free from missing values. The patient may be absent or there
may be problems with noise or human errors. To improve machine learning algorithms,
missing values need to be solved [11,12]. We solved missing values with the following
three steps: (1) replace missing values with the recent data imputer (RDI); (2) apply the
KNN imputation algorithm of scikit-learn with highly relevant features; and (3) replace
other features through average imputation.

2.2.1. Recent Data Imputer

Time-series data have continuous values over time. The RDI can be used to replace
the missing values of each patient with recent data. Figure 2 shows the RDI algorithm. The
average imputer, the maximum imputer, and the minimum imputer are non-consistent
time-series characteristics. The RDI has time-series characteristics.

2.2.2. k-Nearest Neighbor (KNN) Imputer

There may be missing values after using the RDI. The KNN imputer replaces missing
values through distance functions for highly correlated features [13]. Improved perfor-
mance may be achieved with the KNN compared with that of other imputers, such as the
average imputer, maximum imputer, and minimum imputer [13]. We performed KNN im-
putation with highly relevant features twice as follows: (1) total CO2, pH, HCO3 standard,
base excess, and lactate features; (2) pCO2 and pO2 features.

Mathematics 2022, 10, 4633 4 of 24Mathematics 2022, 10, x FOR PEER REVIEW 4 of 24

Figure 2. Processing by the recent data imputer (RDI). The black nodes indicate measured values

and the white nodes indicate missing values.

2.2.2. k-Nearest Neighbor (KNN) Imputer

There may be missing values after using the RDI. The KNN imputer replaces missing

values through distance functions for highly correlated features [13]. Improved perfor-

mance may be achieved with the KNN compared with that of other imputers, such as the

average imputer, maximum imputer, and minimum imputer [13]. We performed KNN

imputation with highly relevant features twice as follows: (1) total CO2, pH, HCO3 stand-

ard, base excess, and lactate features; (2) pCO2 and pO2 features.

2.2.3. MissForest Imputer

The MissForest is an imputer based on RF [16]. Figure 3 shows the processing of

MissForest. The MissForest replaces missing values to the median and trains on the da-

taset to interpolate missing values into prediction results.

Figure 3. Processing by the MissForest. (1) Interpolate missing values into the median. (2) Train via

dataset. (3) Interpolate missing values into the prediction results.

We interpolate total CO2, pH, HCO3 standard, base excess lactate, pCO2, and pO2 af-

ter performing the RDI algorithm.

2.3. Feature Selection

Feature selection is important to improve the machine learning algorithm [14]. We

perform according to a feature selection. (1) We calculate p-values to confirm unrelated

features. (2) We determine features based on current medical knowledge. (3) We analyze

the importance of features using RF and GB. (4) Using recursive feature elimination, we

analyze both high- and low-ranking features. (5) In low-ranking features, we compare

performance results exclusive to each feature.

First, we calculate the p-value for each feature and respiratory failure using ordinary

least squares. To calculate the p-value, we utilize the OLS method provided by

Figure 2. Processing by the recent data imputer (RDI). The black nodes indicate measured values
and the white nodes indicate missing values.

2.2.3. MissForest Imputer

The MissForest is an imputer based on RF [16]. Figure 3 shows the processing of
MissForest. The MissForest replaces missing values to the median and trains on the dataset
to interpolate missing values into prediction results.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 24

Figure 2. Processing by the recent data imputer (RDI). The black nodes indicate measured values

and the white nodes indicate missing values.

2.2.2. k-Nearest Neighbor (KNN) Imputer

There may be missing values after using the RDI. The KNN imputer replaces missing

values through distance functions for highly correlated features [13]. Improved perfor-

mance may be achieved with the KNN compared with that of other imputers, such as the

average imputer, maximum imputer, and minimum imputer [13]. We performed KNN

imputation with highly relevant features twice as follows: (1) total CO2, pH, HCO3 stand-

ard, base excess, and lactate features; (2) pCO2 and pO2 features.

2.2.3. MissForest Imputer

The MissForest is an imputer based on RF [16]. Figure 3 shows the processing of

MissForest. The MissForest replaces missing values to the median and trains on the da-

taset to interpolate missing values into prediction results.

Figure 3. Processing by the MissForest. (1) Interpolate missing values into the median. (2) Train via

dataset. (3) Interpolate missing values into the prediction results.

We interpolate total CO2, pH, HCO3 standard, base excess lactate, pCO2, and pO2 af-

ter performing the RDI algorithm.

2.3. Feature Selection

Feature selection is important to improve the machine learning algorithm [14]. We

perform according to a feature selection. (1) We calculate p-values to confirm unrelated

features. (2) We determine features based on current medical knowledge. (3) We analyze

the importance of features using RF and GB. (4) Using recursive feature elimination, we

analyze both high- and low-ranking features. (5) In low-ranking features, we compare

performance results exclusive to each feature.

First, we calculate the p-value for each feature and respiratory failure using ordinary

least squares. To calculate the p-value, we utilize the OLS method provided by

Figure 3. Processing by the MissForest. (1) Interpolate missing values into the median. (2) Train via
dataset. (3) Interpolate missing values into the prediction results.

We interpolate total CO2, pH, HCO3 standard, base excess lactate, pCO2, and pO2
after performing the RDI algorithm.

2.3. Feature Selection

Feature selection is important to improve the machine learning algorithm [14]. We
perform according to a feature selection. (1) We calculate p-values to confirm unrelated fea-
tures. (2) We determine features based on current medical knowledge. (3) We analyze
the importance of features using RF and GB. (4) Using recursive feature elimination, we
analyze both high- and low-ranking features. (5) In low-ranking features, we compare
performance results exclusive to each feature.

First, we calculate the p-value for each feature and respiratory failure using ordinary
least squares. To calculate the p-value, we utilize the OLS method provided by statsmod-
els [17]. We ignored features with p-value above 0.05 because they are uncorrelated factors.
Table 1 shows the p-values for each feature.

We confirm that the features of p-values above 0.05 are as follows: smoking; alcohol;
cardiovascular disease; SBP max; DBP max; RR max; Hb; glucose; BUN; creatinine; pCO2;
HCO3 standard; BE; and troponin.

Mathematics 2022, 10, 4633 5 of 24

Table 1. The respiratory failure was correlated to p-values of features.

Features p-Value Features p-Value

Pesticide dose 0.000 WBC 0.000
Sex 0.000 PLT 0.000
Age 0.000 Albumin 0.000
BMI 0.023 Glucose 0.070

Smoking 0.326 BUN 0.622
Alcohol 0.313 Creatinine 0.100

Diabetes disease 0.000 Total CO2 0.000
Respiratory disease 0.000 C-reactive protein 1 0.000

Cardiovascular disease 0.995 pH 0.000
GCS 0.000 pCO2 0.199

SBP max 0.088 pO2 0.000
DBP max 0.897 O2 saturation 0.000
HR max 0.000 HCO3 standard 0.356
RR max 0.174 BE 0.120
BT max 0.000 Troponin 0.555

Hb 0.221 Lactate 0.000
BMI: body mass index; GCS: Glasgow Coma Scale; SBP: systolic blood pressure; DBP: diastolic blood pressure;
HR: heart rate; RR: respiratory rate; BT: body temperature; max: maximum; Hb: hemoglobin; WBC: white blood
cell; PLT: platelet; BUN: blood urea nitrogen; BE: base excess.

Second, we perform feature selection based on current medical knowledge. The
following features are determined based on current medical knowledge: pesticide category;
pesticide dose; sex; age; GCS; SBP max; HR max; BT max; WBC; PLT; albumin; total CO2;
CRP1; pH; pO2; O2 saturation; and lactate.

Third, we analyze tree-based feature selection methods. Table 2 shows the performance
results of RF and GB. We confirm that sex is an unimportant feature.

Table 2. Performance result of tree-based feature selection method.

Features
Tree-Based Feature Selection

Features
Tree-Based Feature Selection

RF GB RF GB

Pesticide category 0.056 0.073 PLT 0.032 0.013
Pesticide dose 0.032 0.017 Albumin 0.034 0.008

Sex 0.001 0.0003 total_CO2 0.072 0.025
Age 0.039 0.019 C-reactive_protein_1 0.053 0.057
GCS 0.053 0.068 pH 0.175 0.247

SBP_max 0.010 0.003 pO2 0.018 0.003
HR_max 0.087 0.097 O2_saturation 0.062 0.017
BT_max 0.033 0.029 Lactate 0.017 0.006

WBC 0.224 0.316

RF: Random Forest; GB: Gradient Boost; GCS: Glasgow Coma Scale; SBP: systolic blood pressure; max: maximum;
HR: heart rate; BT: body temperature; WBC: white blood cell; PLT: platelet.

Fourth, using recursive feature elimination, we analyze high- and low-ranking features.
We perform recursive feature elimination based on SVM with linear, LR, RF, DT, and GB.
We perform recursive feature elimination provided by scikit-learn. Table 3 shows the
performance results of recursive feature elimination based on SVM with linear, LR, DT, and
GB. We confirm that sex, albumin, and PLT are unimportant factors.

Fifth, we compare the performance results of each feature based on Tables 2 and 3.
Table 4 shows the performance results of each feature using RF, GB, and MLP. The feature
of the second stage is the highest performance in Table 4. We separate our dataset into train
and test datasets. In the case of RF and GB, we train algorithms using stratified k-folds
by train folds after separating train datasets into train folds and holdout folds. We train
MLP algorithms using train folds and early stop using validation folds after separating

Mathematics 2022, 10, 4633 6 of 24

train datasets into the train, validation, and holdout folds. In addition, we compare the
performance of each feature via each algorithm using holdout folds.

Table 3. Performance result of recursive feature elimination of each algorithm. Low-rank features are
albumin, platelet, and sex. High-rank feature is pH.

Machine Learning Algorithm Low-Rank Feature High-Rank Feature

SVM with linear Albumin pH
LR PLT pH
RF Sex pH
DT Albumin pH
GB Sex pH

SVM: support vector machine; LR: logistic regression; RF: random forest; DT: decision tree; GB: gradient boost;
PLT: platelet.

Table 4. Performance result of feature selection based on RF, GB, and MLP.

Feature Algorithm PPV Sensitivity F1 Score AUC

Reference
RF 98.92% 96.34% 0.9761 0.9812
GB 96.81% 95.29% 0.9604 0.9751

MLP 96.81% 95.29% 0.9604 0.9751

Reference exclude sex
RF 98.92% 95.81% 0.9734 0.9786
GB 92.78% 94.24% 0.9351 0.9681

MLP 92.78% 94.24% 0.9351 0.9681

Reference exclude PLT
RF 99.46% 95.81% 0.9760 0.9788
GB 98.89% 93.19% 0.9596 0.9655

MLP 92.78% 94.24% 0.9351 0.9681

Reference exclude albumin
RF 98.39% 95.81% 0.9708 0.9784
GB 96.70% 92.15% 0.9437 0.9594

MLP 96.70% 92.15% 0.9437 0.9594
PPV: positive predictive value; RF: random forest; GB: gradient boosting; MLP: multi-layer perceptron;
PLT: platelet.

For the performance evaluation of each feature, we perform steps one through five.
The first and second steps exhibit the highest performance when each feature’s performance
is evaluated. Therefore, we used the following features: pesticide category; pesticide dose;
sex; age; GCS; SBP max; HR max; BT max; WBC; PLT; albumin; total CO2; CRP1; pH; pO2;
O2 saturation; and lactate.

2.4. Hour Sliding Window in 24 H

In this study, our objective was to predict respiratory failure within 24 h using 3 h data.
Figure 4 shows the sliding window to time-series data in 24 h based on 3 h data.

2.5. MinMaxScaler

In machine learning, each feature unit is different; thus, the results can be biased.
To solve this, it is necessary to use the same data range. In this study, we used the
MinMaxScaler provided by scikit-learn [15]. It expresses a value between 0 and 1 through
Equation (1).

X =
X − min

max − min
(1)

The X variable represents a feature in the dataset. The min variable represents the
minimum value of each feature. The max variable represents the maximum value of
each feature.

Mathematics 2022, 10, 4633 7 of 24Mathematics 2022, 10, x FOR PEER REVIEW 7 of 24

Figure 4. Processing by sliding window.

2.5. MinMaxScaler

In machine learning, each feature unit is different; thus, the results can be biased. To

solve this, it is necessary to use the same data range. In this study, we used the

MinMaxScaler provided by scikit-learn [15]. It expresses a value between 0 and 1 through

Equation (1).

X =
X − min

max − min
 (1)

The X variable represents a feature in the dataset. The min variable represents the

minimum value of each feature. The max variable represents the maximum value of each

feature.

2.6. Oversampling

In this study, the prevalence of respiratory failure was 8%, which suggests an imbal-

ance. There are two methods of solving the imbalance: (1) oversampling and (2) under-

sampling. In this study, the number of cases of respiratory failure was limited and over-

sampling rather than undersampling tends to be better for improving performance [18].

Therefore, we performed oversampling. We applied SMOTE, borderline-SMOTE, and

ADADYN to solve the data imbalance [19].

2.6.1. Synthetic Minority Oversampling Technique (SMOTE)

The SMOTE algorithm was proposed by Chawla et al. [20]. The SMOTE algorithm

has three steps as follows: (1) apply the KNN algorithm in the minority class after ran-

domized minority data selection [20]; (2) choose randomized minority data in the nearest

data [20]; and (3) locate generated data between one-step and two-step data. Figure 5

shows the processing of the SMOTE algorithm.

Figure 4. Processing by sliding window.

2.6. Oversampling

In this study, the prevalence of respiratory failure was 8%, which suggests an imbal-
ance. There are two methods of solving the imbalance: (1) oversampling and (2) undersam-
pling. In this study, the number of cases of respiratory failure was limited and oversampling
rather than undersampling tends to be better for improving performance [18]. Therefore,
we performed oversampling. We applied SMOTE, borderline-SMOTE, and ADADYN to
solve the data imbalance [19].

2.6.1. Synthetic Minority Oversampling Technique (SMOTE)

The SMOTE algorithm was proposed by Chawla et al. [20]. The SMOTE algorithm has
three steps as follows: (1) apply the KNN algorithm in the minority class after randomized
minority data selection [20]; (2) choose randomized minority data in the nearest data [20];
and (3) locate generated data between one-step and two-step data. Figure 5 shows the
processing of the SMOTE algorithm.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 24

Figure 5. SMOTE processing. Blue indicates the majority dataset (non-respiratory failure). Orange

indicates the minority dataset (respiratory failure). Green indicates the minority dataset (respiratory

failure), which is generated by SMOTE.

2.6.2. Borderline-SMOTE

The borderline-SMOTE algorithm is based on the original SMOTE [21]. Notably, mi-

nority data may be far from the minority data-majority data boundary [21]. The border-

line-SMOTE is applied at the boundary between minority data and majority data. After

the KNN algorithm is applied to the minority data, the borderline-SMOTE algorithm con-

siders data comprising more than half of the data to be borderline. The borderline-SMOTE

applies the SMOTE algorithm to minority data at the borderline. Figure 6 shows data pro-

cessing by the borderline-SMOTE, which generates minority data at the borderline and

achieves classifier efficiency [19,21].

Figure 6. Borderline-SMOTE processing. Blue indicates the majority dataset (non-respiratory fail-

ure). Orange indicates the minority dataset (respiratory failure). Green indicates the minority da-

taset (respiratory failure) generated by Borderline-SMOTE.

2.6.3. Adaptive Synthetic (ADASYN)

The ADASYN algorithm applies the KNN algorithm to minority data to generate

minority data if there is a huge amount of majority data [19]. The ADASYN algorithm

consists of four steps as follows [19]: (1) KNN algorithm calculates the ratio of minority

data to majority data for each minority datum [19]; (2) the sum of the ratios of majority

data is divided by each ratio of majority data [19]; (3) it is calculated to repeat through

Equation (2) [19]; and (4) generate minority data as much as 𝑎 repeat on each minority

dataset [19]. Figure 7 shows data processing by the ADASYN algorithm.

repeat = second step result × (number of majority − number of minority) (2)

Figure 5. SMOTE processing. Blue indicates the majority dataset (non-respiratory failure). Orange
indicates the minority dataset (respiratory failure). Green indicates the minority dataset (respiratory
failure), which is generated by SMOTE.

2.6.2. Borderline-SMOTE

The borderline-SMOTE algorithm is based on the original SMOTE [21]. Notably, mi-
nority data may be far from the minority data-majority data boundary [21]. The borderline-
SMOTE is applied at the boundary between minority data and majority data. After the

Mathematics 2022, 10, 4633 8 of 24

KNN algorithm is applied to the minority data, the borderline-SMOTE algorithm considers
data comprising more than half of the data to be borderline. The borderline-SMOTE applies
the SMOTE algorithm to minority data at the borderline. Figure 6 shows data processing
by the borderline-SMOTE, which generates minority data at the borderline and achieves
classifier efficiency [19,21].

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 24

Figure 5. SMOTE processing. Blue indicates the majority dataset (non-respiratory failure). Orange

indicates the minority dataset (respiratory failure). Green indicates the minority dataset (respiratory

failure), which is generated by SMOTE.

2.6.2. Borderline-SMOTE

The borderline-SMOTE algorithm is based on the original SMOTE [21]. Notably, mi-

nority data may be far from the minority data-majority data boundary [21]. The border-

line-SMOTE is applied at the boundary between minority data and majority data. After

the KNN algorithm is applied to the minority data, the borderline-SMOTE algorithm con-

siders data comprising more than half of the data to be borderline. The borderline-SMOTE

applies the SMOTE algorithm to minority data at the borderline. Figure 6 shows data pro-

cessing by the borderline-SMOTE, which generates minority data at the borderline and

achieves classifier efficiency [19,21].

Figure 6. Borderline-SMOTE processing. Blue indicates the majority dataset (non-respiratory fail-

ure). Orange indicates the minority dataset (respiratory failure). Green indicates the minority da-

taset (respiratory failure) generated by Borderline-SMOTE.

2.6.3. Adaptive Synthetic (ADASYN)

The ADASYN algorithm applies the KNN algorithm to minority data to generate

minority data if there is a huge amount of majority data [19]. The ADASYN algorithm

consists of four steps as follows [19]: (1) KNN algorithm calculates the ratio of minority

data to majority data for each minority datum [19]; (2) the sum of the ratios of majority

data is divided by each ratio of majority data [19]; (3) it is calculated to repeat through

Equation (2) [19]; and (4) generate minority data as much as 𝑎 repeat on each minority

dataset [19]. Figure 7 shows data processing by the ADASYN algorithm.

repeat = second step result × (number of majority − number of minority) (2)

Figure 6. Borderline-SMOTE processing. Blue indicates the majority dataset (non-respiratory failure).
Orange indicates the minority dataset (respiratory failure). Green indicates the minority dataset
(respiratory failure) generated by Borderline-SMOTE.

2.6.3. Adaptive Synthetic (ADASYN)

The ADASYN algorithm applies the KNN algorithm to minority data to generate
minority data if there is a huge amount of majority data [19]. The ADASYN algorithm
consists of four steps as follows [19]: (1) KNN algorithm calculates the ratio of minority
data to majority data for each minority datum [19]; (2) the sum of the ratios of majority data
is divided by each ratio of majority data [19]; (3) it is calculated to repeat through Equation
(2) [19]; and (4) generate minority data as much as a repeat on each minority dataset [19].
Figure 7 shows data processing by the ADASYN algorithm.

repeat = second step result × (number of majority − number of minority) (2)
Mathematics 2022, 10, x FOR PEER REVIEW 9 of 24

Figure 7. ADASYN processing. Blue indicates the majority dataset (non-respiratory failure). Orange

indicates the minority dataset (respiratory failure). Green indicates the minority dataset (respiratory

failure) generated by ADASYN. When there are more majority data surrounding minority data,

more minority data are produced.

3. Methods

3.1. Shallow Learning

A time-series dataset has three dimensions: number of datasets, amount of time, and

number of features, e.g., (11,148, 3, 17). However, the machine learning algorithms pro-

vided by scikit-learn [15] use only two dimensions. We used both time-series and non-

time-series features. The time-series features were the maximum systolic blood pressure

(SBP) in 1 h, maximum heart rate (HR) in 1 h, maximum body temperature (BT) in 1 h,

white blood cell (WBC), platelet (PLT), albumin, total CO2, cysteine-rich protein 1 (CRP1),

pH, pO2, O2 saturation, and lactate. The non-time-series features were pesticide category,

pesticide dose, sex, age, and Glasgow Coma Scale (GCS). We expressed the dataset struc-

ture as the number of datasets and number of features, e.g., (11,148, 41).

3.1.1. Logistic Regression (LR)

LR classification is based on the sigmoid function. LR calculates the weight and bias

in the training dataset [22]. In this study, LR was used to calculate z with 41 features

through Equation (3) [22].

Z = ∑ wiai

41

i=1
+ b (3)

LR was used to calculate the sigmoid function with z through Equation (4) [22].

F(z) =
1

1 + 𝑒−𝑧
 (4)

LR classification was performed by f(z) through Equation (5) [22]. If f(z) is greater

than 0.5, it is classified as respiratory failure; otherwise, it indicates non-respiratory fail-

ure. We utilized the LR algorithm provided by scikit-learn [15].

predict = {
0 if f(z) ≤ 0.5

1 if f(z) > 0.5
 (5)

3.1.2. Decision Tree (DT)

DT utilizes a binary tree structure, which can classify highly related features of res-

piratory failure [3]. DT calculates impurity and branches until the leaf node impurity is 0.

There are two methods of calculating impurity: (1) the Gini coefficient and (2) the entropy

coefficient. In this study, we calculated impurity using the Gini coefficient through Equa-

tion (6) [15].

Figure 7. ADASYN processing. Blue indicates the majority dataset (non-respiratory failure). Orange
indicates the minority dataset (respiratory failure). Green indicates the minority dataset (respiratory
failure) generated by ADASYN. When there are more majority data surrounding minority data, more
minority data are produced.

Mathematics 2022, 10, 4633 9 of 24

3. Methods
3.1. Shallow Learning

A time-series dataset has three dimensions: number of datasets, amount of time,
and number of features, e.g., (11,148, 3, 17). However, the machine learning algorithms
provided by scikit-learn [15] use only two dimensions. We used both time-series and non-
time-series features. The time-series features were the maximum systolic blood pressure
(SBP) in 1 h, maximum heart rate (HR) in 1 h, maximum body temperature (BT) in 1 h,
white blood cell (WBC), platelet (PLT), albumin, total CO2, cysteine-rich protein 1 (CRP1),
pH, pO2, O2 saturation, and lactate. The non-time-series features were pesticide category,
pesticide dose, sex, age, and Glasgow Coma Scale (GCS). We expressed the dataset structure
as the number of datasets and number of features, e.g., (11,148, 41).

3.1.1. Logistic Regression (LR)

LR classification is based on the sigmoid function. LR calculates the weight and bias in
the training dataset [22]. In this study, LR was used to calculate z with 41 features through
Equation (3) [22].

Z =
41

∑
i=1

wiai + b (3)

LR was used to calculate the sigmoid function with z through Equation (4) [22].

F(z) =
1

1 + e−z (4)

LR classification was performed by f(z) through Equation (5) [22]. If f(z) is greater
than 0.5, it is classified as respiratory failure; otherwise, it indicates non-respiratory failure.
We utilized the LR algorithm provided by scikit-learn [15].

predict =
{

0 if f(z) ≤ 0.5
1 if f(z) > 0.5

(5)

3.1.2. Decision Tree (DT)

DT utilizes a binary tree structure, which can classify highly related features of res-
piratory failure [3]. DT calculates impurity and branches until the leaf node impurity
is 0. There are two methods of calculating impurity: (1) the Gini coefficient and (2) the
entropy coefficient. In this study, we calculated impurity using the Gini coefficient through
Equation (6) [15].

Gini =
n

∑
i=1

(Ri(1 −
m

∑
k=1

Pk
2)) (6)

The n variable represents the number of nodes and the m variable represents the
number of outcomes. In this study, m is 2. The Ri variable represents the sample ratio of
each branch. The Pk variable represents the class ratio. DT utilizes pruning to solve overfit.
Figure 8 shows the DT algorithms. The 1 h prefix indicates the medical record after 1 h of
measurement. The 2 h prefix indicates the medical record after 2 h of measurement. The
3 h prefix indicates the medical record after 3 h of measurement. We used the DT model
provided by scikit-learn [15].

3.1.3. Random Forest (RF)

RF is an ensemble model that uses many DTs and bootstrap aggregation [23]. Figure 9
shows the processing of RF. After each DT in the RF predicts respiratory failure, the RF
classifier votes on the prediction. In this study, we used a max depth hyperparameter of
6 and a n_estimators hyperparameter of 100 in the RandomForestClassifier provided by
scikit-learn [15].

Mathematics 2022, 10, 4633 10 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 24

Gini = ∑ (Ri(1 − ∑ Pk
2

m

k=1
))

n

i=1
 (6)

The n variable represents the number of nodes and the m variable represents the

number of outcomes. In this study, m is 2. The Ri variable represents the sample ratio of

each branch. The Pk variable represents the class ratio. DT utilizes pruning to solve overfit.

Figure 8 shows the DT algorithms. The 1 h prefix indicates the medical record after 1 h of

measurement. The 2 h prefix indicates the medical record after 2 h of measurement. The

3 h prefix indicates the medical record after 3 h of measurement. We used the DT model

provided by scikit-learn [15].

Figure 8. Decision tree. Orange indicates the prediction of respiratory failure in each node. Blue

indicates non-respiratory failure. Darker nodes contain more data.

3.1.3. Random Forest (RF)

RF is an ensemble model that uses many DTs and bootstrap aggregation [23]. Figure

9 shows the processing of RF. After each DT in the RF predicts respiratory failure, the RF

classifier votes on the prediction. In this study, we used a max depth hyperparameter of

6 and a n_estimators hyperparameter of 100 in the RandomForestClassifier provided by

scikit-learn [15].

Figure 9. Processing of random forests. The red box in the decision tree indicates the predicted out-

come. The random forest classifier is based on decision tree outcomes. Random Forest performs

bootstrap aggregation on many decision trees and uses voting to determine the prediction results

of many decision trees.

Figure 8. Decision tree. Orange indicates the prediction of respiratory failure in each node. Blue
indicates non-respiratory failure. Darker nodes contain more data.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 24

Gini = ∑ (Ri(1 − ∑ Pk
2

m

k=1
))

n

i=1
 (6)

The n variable represents the number of nodes and the m variable represents the

number of outcomes. In this study, m is 2. The Ri variable represents the sample ratio of

each branch. The Pk variable represents the class ratio. DT utilizes pruning to solve overfit.

Figure 8 shows the DT algorithms. The 1 h prefix indicates the medical record after 1 h of

measurement. The 2 h prefix indicates the medical record after 2 h of measurement. The

3 h prefix indicates the medical record after 3 h of measurement. We used the DT model

provided by scikit-learn [15].

Figure 8. Decision tree. Orange indicates the prediction of respiratory failure in each node. Blue

indicates non-respiratory failure. Darker nodes contain more data.

3.1.3. Random Forest (RF)

RF is an ensemble model that uses many DTs and bootstrap aggregation [23]. Figure

9 shows the processing of RF. After each DT in the RF predicts respiratory failure, the RF

classifier votes on the prediction. In this study, we used a max depth hyperparameter of

6 and a n_estimators hyperparameter of 100 in the RandomForestClassifier provided by

scikit-learn [15].

Figure 9. Processing of random forests. The red box in the decision tree indicates the predicted out-

come. The random forest classifier is based on decision tree outcomes. Random Forest performs

bootstrap aggregation on many decision trees and uses voting to determine the prediction results

of many decision trees.

Figure 9. Processing of random forests. The red box in the decision tree indicates the predicted outcome. The
random forest classifier is based on decision tree outcomes. Random Forest performs bootstrap aggregation
on many decision trees and uses voting to determine the prediction results of many decision trees.

3.1.4. Support Vector Machine (SVM)

SVM is a support vector base classifier and not a decision boundary [24]. There
is a problem with overfitting when other labels are near to the decision boundary. A
support vector is a calculated boundary that minimizes classification error. Figure 10 shows
classification based on the support vector of SVM.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 24

3.1.4. Support Vector Machine (SVM)

SVM is a support vector base classifier and not a decision boundary [24]. There is a

problem with overfitting when other labels are near to the decision boundary. A support

vector is a calculated boundary that minimizes classification error. Figure 10 shows clas-

sification based on the support vector of SVM.

Figure 10. It shows the classification of SVM.

3.1.5. Adaptive Boost (AB)

AB has two leaf nodes named as stump [25]. AB reduces the error by providing the

next estimator with the weight of the incorrectly predicted respiratory dataset through the

stump [25]. Figure 11 shows the AB weight calculation process.

Figure 11. Processing of adaptive boost. Each estimator transfers the weight of an incorrect predic-

tion after training via the dataset.

Figure 10. It shows the classification of SVM.

Mathematics 2022, 10, 4633 11 of 24

3.1.5. Adaptive Boost (AB)

AB has two leaf nodes named as stump [25]. AB reduces the error by providing the
next estimator with the weight of the incorrectly predicted respiratory dataset through the
stump [25]. Figure 11 shows the AB weight calculation process.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 24

3.1.4. Support Vector Machine (SVM)

SVM is a support vector base classifier and not a decision boundary [24]. There is a

problem with overfitting when other labels are near to the decision boundary. A support

vector is a calculated boundary that minimizes classification error. Figure 10 shows clas-

sification based on the support vector of SVM.

Figure 10. It shows the classification of SVM.

3.1.5. Adaptive Boost (AB)

AB has two leaf nodes named as stump [25]. AB reduces the error by providing the

next estimator with the weight of the incorrectly predicted respiratory dataset through the

stump [25]. Figure 11 shows the AB weight calculation process.

Figure 11. Processing of adaptive boost. Each estimator transfers the weight of an incorrect predic-

tion after training via the dataset.

Figure 11. Processing of adaptive boost. Each estimator transfers the weight of an incorrect prediction
after training via the dataset.

3.1.6. Gradient Boost (GB)

The GB calculates the residual error for solving an incorrect prediction result by
subtracting the measured value from the prediction value. GB calculates the residual error
based on the tree using actual respiratory failure and prediction results.

3.2. Deep Learning Algorithms

We organize datasets in three dimensions because RNN-based models support time-
series data. We utilize TensorFlow to perform deep learning [26].

3.2.1. Multi-Layer Perceptron (MLP)

The perceptron calculates the weight of many features such as EMRs, for prediction.
However, single perceptrons suffer with non-linear datasets. In order to solve the nonlinear
problem, the perceptron organizes multiple layers, which is referred to as MLP. The MLP
does not support three dimensions, so we organize datasets in two dimensions. We
implement MLP utilizing dense layers provided by TensorFlow [26]. Figure 12 shows the
structure of MLP.

3.2.2. Recurrent Neural Network (RNN)

Without considering the order of the time series, machine learning recognizes the fea-
tures of time-series as other features [27]. An RNN model has been proposed for considering
the order of the time series. The vanilla RNN model calculates the current weights using

Mathematics 2022, 10, 4633 12 of 24

the weights from the previous EMRs and the current EMRs. We implement RNN utilizing
a simple RNN layer provided by TensorFlow. Figure 13 shows the structure of RNN.

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 24

3.1.6. Gradient Boost (GB)

The GB calculates the residual error for solving an incorrect prediction result by sub-

tracting the measured value from the prediction value. GB calculates the residual error

based on the tree using actual respiratory failure and prediction results.

3.2. Deep Learning Algorithms

We organize datasets in three dimensions because RNN-based models support time-

series data. We utilize TensorFlow to perform deep learning [26].

3.2.1. Multi-Layer Perceptron (MLP)

The perceptron calculates the weight of many features such as EMRs, for prediction.

However, single perceptrons suffer with non-linear datasets. In order to solve the nonlin-

ear problem, the perceptron organizes multiple layers, which is referred to as MLP. The

MLP does not support three dimensions, so we organize datasets in two dimensions. We

implement MLP utilizing dense layers provided by TensorFlow [26]. Figure 12 shows the

structure of MLP.

Figure 12. Structure of MLP in this paper. The number of units in hidden layer is 256.

3.2.2. Recurrent Neural Network (RNN)

Without considering the order of the time series, machine learning recognizes the

features of time-series as other features [27]. An RNN model has been proposed for con-

sidering the order of the time series. The vanilla RNN model calculates the current

weights using the weights from the previous EMRs and the current EMRs. We implement

RNN utilizing a simple RNN layer provided by TensorFlow. Figure 13 shows the struc-

ture of RNN.

Figure 12. Structure of MLP in this paper. The number of units in hidden layer is 256.
Mathematics 2022, 10, x FOR PEER REVIEW 13 of 24

Figure 13. Structure of the RNN model in this paper. The number of units in the RNN layer is 128.

3.2.3. Long Short-Term Memory (LSTM)

The vanilla RNN has the problem of considering only previous and current EMRs

[28]. LSTM organizes forget gate, input gate, and output gate to solve short-term depend-

ent problems [28]. The input gate calculates reminder information for long-term memory

using the weight of previous short-term memory and current EMRs. The forget gate cal-

culates the removal information for long-term memory using the weight of previous

short-term memory and current EMRs. The long-term memory updates using the results

of the forget gate and input gate. The output gate calculates weight using previous short-

term memory and current EMRs and current long-term memory. We utilize the LSTM

layer provided by TensorFlow. Figure 14 shows the structure of LSTM.

Figure 14. Structure of the LSTM model in this paper. The number of units in the LSTM layer is 128.

Figure 13. Structure of the RNN model in this paper. The number of units in the RNN layer is 128.

3.2.3. Long Short-Term Memory (LSTM)

The vanilla RNN has the problem of considering only previous and current EMRs [28].
LSTM organizes forget gate, input gate, and output gate to solve short-term dependent
problems [28]. The input gate calculates reminder information for long-term memory using
the weight of previous short-term memory and current EMRs. The forget gate calculates
the removal information for long-term memory using the weight of previous short-term
memory and current EMRs. The long-term memory updates using the results of the forget
gate and input gate. The output gate calculates weight using previous short-term memory
and current EMRs and current long-term memory. We utilize the LSTM layer provided by
TensorFlow. Figure 14 shows the structure of LSTM.

Mathematics 2022, 10, 4633 13 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 24

Figure 13. Structure of the RNN model in this paper. The number of units in the RNN layer is 128.

3.2.3. Long Short-Term Memory (LSTM)

The vanilla RNN has the problem of considering only previous and current EMRs

[28]. LSTM organizes forget gate, input gate, and output gate to solve short-term depend-

ent problems [28]. The input gate calculates reminder information for long-term memory

using the weight of previous short-term memory and current EMRs. The forget gate cal-

culates the removal information for long-term memory using the weight of previous

short-term memory and current EMRs. The long-term memory updates using the results

of the forget gate and input gate. The output gate calculates weight using previous short-

term memory and current EMRs and current long-term memory. We utilize the LSTM

layer provided by TensorFlow. Figure 14 shows the structure of LSTM.

Figure 14. Structure of the LSTM model in this paper. The number of units in the LSTM layer is 128.

Figure 14. Structure of the LSTM model in this paper. The number of units in the LSTM layer is 128.

3.2.4. Gated Recurrent Unit (GRU)

To solve long-term dependency in vanilla RNN, the GRU organizes update gates and
reset gates [29]. The weight for the prediction of acute respiratory failure is calculated
through previous memory and current EMRs. The update gates determine whether to
use the previous memory or the current weight. The reset gates calculate the removal
information for memory. We utilize the GRU layer provided by TensorFlow. Figure 15
shows the structure of GRU.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 24

3.2.4. Gated Recurrent Unit (GRU)

To solve long-term dependency in vanilla RNN, the GRU organizes update gates and

reset gates [29]. The weight for the prediction of acute respiratory failure is calculated

through previous memory and current EMRs. The update gates determine whether to use

the previous memory or the current weight. The reset gates calculate the removal infor-

mation for memory. We utilize the GRU layer provided by TensorFlow. Figure 15 shows

the structure of GRU.

Figure 15. Structure of the GRU model in this paper. The number of units in the GRU layer is 128.

3.3. Stratified-k-Fold

Cross-validation involves the splitting of the training dataset into a training fold and

a test fold [30]. The training fold is used for learning in the training step [30]. The test fold

is used for validation after the machine learning training step [30]. This technique can be

used to solve overfitting [31]. The stratified k-fold is a cross-validation method that sepa-

rates the data into k-training folds and test folds based on the class ratio (Figure 16).

Figure 16. Stratified k-fold processing (in this case, k is 4).

Figure 15. Structure of the GRU model in this paper. The number of units in the GRU layer is 128.

Mathematics 2022, 10, 4633 14 of 24

3.3. Stratified-k-Fold

Cross-validation involves the splitting of the training dataset into a training fold and
a test fold [30]. The training fold is used for learning in the training step [30]. The test
fold is used for validation after the machine learning training step [30]. This technique
can be used to solve overfitting [31]. The stratified k-fold is a cross-validation method that
separates the data into k-training folds and test folds based on the class ratio (Figure 16).

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 24

3.2.4. Gated Recurrent Unit (GRU)

To solve long-term dependency in vanilla RNN, the GRU organizes update gates and

reset gates [29]. The weight for the prediction of acute respiratory failure is calculated

through previous memory and current EMRs. The update gates determine whether to use

the previous memory or the current weight. The reset gates calculate the removal infor-

mation for memory. We utilize the GRU layer provided by TensorFlow. Figure 15 shows

the structure of GRU.

Figure 15. Structure of the GRU model in this paper. The number of units in the GRU layer is 128.

3.3. Stratified-k-Fold

Cross-validation involves the splitting of the training dataset into a training fold and

a test fold [30]. The training fold is used for learning in the training step [30]. The test fold

is used for validation after the machine learning training step [30]. This technique can be

used to solve overfitting [31]. The stratified k-fold is a cross-validation method that sepa-

rates the data into k-training folds and test folds based on the class ratio (Figure 16).

Figure 16. Stratified k-fold processing (in this case, k is 4). Figure 16. Stratified k-fold processing (in this case, k is 4).

4. Results
4.1. Evaluation Methods

In machine learning, binary classification is mainly evaluated by a confusion matrix.
Table 5 shows the confusion matrix. In this study, the patient dataset was imbalanced.
Therefore, the PPV and sensitivity are more important than accuracy. The PPV indicates
the rate of actual respiratory failure patients among patients with predicted respiratory
failure, which can be calculated through Equation (7).

PPV =
TP

TP + FP
(7)

Table 5. Confusion matrix.

Actual

Respiratory failure Non-respiratory failure

Precision
Respiratory failure True positive (TP) False positive (FP)

Non-respiratory failure False negative (FN) True negative (TN)

The sensitivity indicates the rate of patients with predicted respiratory failure among
actual patients with respiratory failure, which can be calculated through Equation (8).

Sensitivity =
TP

TP + FN
(8)

The F1 score considers both the PPV and sensitivity, which can be calculated through
Equation (9).

F1 score = 2 × PPV × Sensitivity
PPV + Sensitivity

(9)

4.2. Characteristics of Study

We used 17 features to predict respiratory failure. Table 6 shows the mean and
standard deviation of each feature in this study. We excluded the “pesticide category”
from the features because there were several pesticide categories. We construct time series

Mathematics 2022, 10, 4633 15 of 24

characteristics comprising 3 h measurements. To avoid overfitting, we oversampled the
training dataset.

Table 6. The characteristics of our dataset.

Training Data (n = 8068) Test Data (n = 3458)

Pesticide dose 171.87 ± 138.07 177.18 ± 144.12
Sex, male 4994, 61.90% 2210, 63.91%

Age 61.07 ± 16.37 61.40 ± 16.48
GCS 13.90 ± 2.10 13.85 ± 2.19

1h_SBP_max 124.00 ± 18.03 123.89 ± 18.16
1h_HR_max 76.40 ± 14.37 76.30 ± 14.36
1h_BT_max 36.55 ± 0.36 36.55 ± 0.36

1h_WBC 7.53 ± 3.17 7.54 ± 3.15
1h_PLT 144.52 ± 64.19 142.90 ± 65.09

1h_albumin 3.59 ± 0.48 3.57 ± 0.49
1h_total_CO2 24.14 ± 3.15 24.23 ± 3.15

1h_C-reactive_protein_1 26.97 ± 50.49 28.73 ± 51.61
1h_pH 7.43 ± 0.06 7.43 ± 0.06
1h_pO2 93.29 ± 26.62 93.02 ± 24.74

1h_O2_saturation 96.02 ± 3.67 96.03 ± 3.62
1h_lactate 2.43 ± 2.02 2.48 ± 2.12

2h_SBP_max 123.92 ± 17.90 123.93 ± 18.32
2h_HR_max 76.40 ± 14.38 76.38 ± 14.43
2h_BT_max 36.55 ± 0.35 36.56 ± 0.37

2h_WBC 7.53 ± 3.17 7.54 ± 3.15
2h_PLT 144.12 ± 63.80 142.47 ± 64.86

2h_albumin 3.58 ± 0.48 3.57 ± 0.49
2h_total_CO2 24.14 ± 3.15 24.23 ± 3.15

2h_C-reactive_protein_1 26.98 ± 50.49 28.74 ±51.61
2h_pH 7.43 ± 0.06 7.43 ± 0.07
2h_pO2 93.41 ± 26.20 92.98 ± 24.72

2h_O2_saturation 95.99 ± 3.79 96.00 ± 3.72
2h_lactate 2.44 ± 2.03 2.48 ± 2.13

3h_SBP_max 123.84 ± 18.01 123.79 ± 17.99
3h_HR_max 76.48 ± 14.52 76.34 ± 14.36
3h_BT_max 36.56 ± 0.35 36.56 ± 0.36

3h_WBC 7.53 ± 3.17 7.53 ± 3.15
3h_PLT 143.94 ± 63.64 142.42 ± 64.84

3h_albumin 3.58 ± 0.48 3.57 ± 0.49
3h_total_CO2 24.14 ± 3.16 24.24 ± 3.15

3h_C-reactive_protein_1 26.99 ± 50.48 28.74 ± 51.61
3h_pH 7.43 ± 0.07 7.43 ± 0.07
3h_pO2 93.44 ± 25.88 92.98 ± 24.74

3h_O2_saturation 95.99 ± 3.81 95.97 ± 3.88
3h_lactate 2.44 ± 2.04 2.49 ± 2.15

GCS: Glasgow Coma Scale; SBP: systolic blood pressure; HR: heart rate; BT: body temperature; WBC: white blood
cell; PLT: platelet.

4.3. Evaluation of Imputation

We compared the performances of KNN and missForest after interpolating with RDI.
We separate our dataset into train and test datasets. In the case of RF and GB, we train
algorithms using stratified k-folds by train folds after separating train datasets into train
folds and holdout folds. We train MLP algorithms using train folds and early stop using
validation folds after separating train datasets into train, validation, and holdout folds. In
addition, we compare the performance of the imputer via each algorithm using holdout
folds. The results of KNN and missForest imputation using validation datasets based on
RF, GB, and MLP are shown in Table 7.

Mathematics 2022, 10, 4633 16 of 24

Table 7. Performance comparison of KNN and missForest based on RF, GB, and MLP.

Imputation Algorithm PPV Sensitivity F1 Score AUC

KNN imputer

RF 98.92% 96.34% 0.9761 0.9812

GB 97.80% 93.19% 0.9544 0.9651

MLP 96.81% 95.29% 0.9604 0.9751

MissForest imputer

RF 98.92% 96.34% 0.9761 0.9812

GB 97.74% 90.58% 0.9402 0.9520

MLP 96.17% 92.15% 0.9412 0.9592
PPV: positive predictive value; RF: random forest; GB: gradient boosting; MLP: multi-layer perceptron.

In this paper, we confirm KNN imputer outperforms the MissForest imputer. We
perform the KNN imputer after interpolating through RDI.

4.4. Evaluation of Hyperparameter Tuning

To improve the performance of each algorithm, we perform hyperparameter turning.
We separate our dataset into train and test datasets. In the case of RF and GB, we train
algorithms using stratified k-folds by train folds after separating train datasets into train
folds and holdout folds. We train MLP algorithms using train folds and early stop using
validation folds after separating train datasets into train, validation, and holdout folds.
In addition, we compare the performance of hyperparameter tuning via each algorithm
using holdout folds. On DT and RF, we tune the hyperparameter for the information gain
method and max depth. We use SVM to turn hyperparameters for the penalty of square
l2 and kernels with radial basis functions (RBF), linear, and polynomial. On AB, we tune
the hyperparameters for the number of estimators and learning rate. On GB, we tune
hyperparameters for the number of estimators and max depth. On MLP, RNN, LSTM, and
GRU, we tune hyperparameters for the unit size and dropout rate. The performance results
of each algorithm according to their hyperparameters are shown in Table 8.

Table 8. Performance comparison of hyperparameter turning.

Algorithm Hyperparameter PPV Sensitivity F1 Score AUC

DT
Function of

computational
complexity

Gini

Max depth

8 95.76% 82.72% 0.8876 0.9120

9 96.49% 86.39% 0.9116 0.9306

10 98.17% 84.29% 0.9070 0.9208

Entropy

8 97.27% 93.19% 0.9519 0.9648

9 98.35% 93.72% 0.9598 0.9679

10 98.31% 91.62% 0.9485 0.9574

RF
Function of

computational
complexity

Gini

Max depth

8 98.66% 76.96% 0.8647 0.8844

9 98.76% 83.25% 0.9034 0.9158

10 98.74% 82.20% 0.8971 0.9105

Entropy

8 98.86% 91.10% 0.9482 0.9550

9 98.92% 96.34% 0.9761 0.9812

10 98.91% 95.29% 0.9707 0.9760

Mathematics 2022, 10, 4633 17 of 24

Table 8. Cont.

Algorithm Hyperparameter PPV Sensitivity F1 Score AUC

SVM
Regularization

parameter

5.5

kernel

RBF 99.32% 76.96% 0.8673 0.8846

Linear 77.36% 42.92% 0.5522 0.7093

Poly 97.43% 79.58% 0.8761 0.8970

6.0

RBF 99.33% 77.49% 0.8706 0.8872

Linear 76.58% 44.50% 0.5629 0.7167

Poly 96.84% 80.10% 0.8768 0.8994

6.5

RBF 99.34% 79.06% 0.8805 0.8950

Linear 75.68% 43.98% 0.5563 0.7138

Poly 86.84% 80.10% 0.8768 0.8994

AB Number of
estimators

140

Learning rate

0.5 94.08% 74.87% 0.8338 0.8723

1.0 95.43% 87.43% 0.9126 0.9354

2.0 6.91% 84.82% 0.1277 0.4344

150

0.5 94.34% 78.53% 0.8571 0.8907

1.0 96.07% 89.53% 0.9268 0.9461

2.0 6.91% 84.82% 0.1277 0.4344

160

0.5 94.97% 79.06% 0.8629 0.8935

1.0 94.97% 89.01% 0.9189 0.9430

2.0 6.91% 84.82% 0.1277 0.4344

GB Number of
estimators

110

Max depth

3 95.73% 82.99% 0.8845 0.9094

4 97.77% 91.62% 0.9459 0.9572

5 97.80% 93.19% 0.9544 0.9651

120

3 96.45% 85.34% 0.9056 0.9254

4 97.80% 93.19% 0.9544 0.9651

5 97.80% 93.19% 0.9544 0.9651

130

3 96.45% 85.34% 0.9056 0.9254

4 97.78% 92.15% 0.9488 0.9598

5 96.55% 87.96% 0.9205 0.9384

MLP Unit size

64

Dropout rate

20% 97.13% 88.48% 0.9260 0.9413

30% 96.63% 90.05% 0.9322 0.9489

40% 95.71% 81.68% 0.8814 0.9068

128

20% 97.71% 89.53% 0.9344 0.9467

30% 98.24% 87.43% 0.9252 0.9365

40% 94.97% 79.06% 0.8629 0.8935

256

20% 96.81% 95.29% 0.9604 0.9751

30% 97.80% 93.19% 0.9544 0.9651

40% 92.73% 80.10% 0.8596 0.8798

Mathematics 2022, 10, 4633 18 of 24

Table 8. Cont.

Algorithm Hyperparameter PPV Sensitivity F1 Score AUC

RNN Unit size

64

Dropout rate

20% 76.28 62.30% 0.6859 0.8032

30% 86.26% 82.20% 0.8418 0.9054

40% 71.34% 66.49% 0.6883 0.8210

128

20% 98.32% 92.15% 0.9514 0.9601

30% 97.85% 95.29% 0.9655 0.9755

40% 78.08% 59.69% 0.6766 0.7913

256

20% 96.65% 90.58% 0.9351 0.9515

30% 64.88% 69.63% 0.6717 0.8320

40% 98.22% 86.91% 0.9222 0.9339

LSTM Unit size

64

Dropout rate

20% 95.72% 93.72$ 0.9471 0.9668

30% 98.29% 90.05% 0.9399 0.9496

40% 72.15% 59.69% 0.6533 0.7886

128

20% 96.15% 91.62% 0.9383 0.9565

30% 98.29% 90.05% 0.9399 0.9459

40% 98.88% 92.67% 0.9568 0.9629

256

20% 98.87% 91.62% 0.9511 0.9577

30% 97.77% 91.62% 0.9459 0.9572

40% 98.86% 91.10% 0.9482 0.9550

GRU Unit size

64

Dropout rate

20% 97.75% 91.10% 0.9431 0.9546

30% 98.82% 87.43% 0.9278 0.9367

40% 98.32% 92.15% 0.9514 0.9601

128

20% 98.88% 92.15% 0.9539 0.9603

30% 97.16% 89.53% 0.9319 0.9465

40% 97.30% 94.24% 0.9574 0.9701

256

20% 97.78% 92.15% 0.9488 0.9598

30% 98.31% 91.10% 0.9457 0.9548

40% 98.34% 93.19% 0.9570 0.9653

PPV: positive predictive value; DT: decision tree; RF: random forest; SVM: support vector machine; RBF: radial
basis function; poly: polynomial; AB: adaptive boost; GB: gradient boost; MLP: multi-layer perceptron; RNN:
recurrent neural network; LSTM: long short-term memory; GRU: gated recurrent unit.

DT had the highest F1 score when the information gain method and max depth were
set to entropy and 9, respectively. RF had the highest F1 score when the information gain
method and max depth were set to entropy and 9, respectively. SVM had the highest F1
score when the penalty of square l2 and kernel was set to 6.5 and radial basis function,
respectively. AB had the highest F1 score when the number of estimators and learning
rate were set to 150 and 1.0, respectively. GB had the highest F1 score when the number of
estimators and max depth was set to 120 and 4, respectively. MLP had the highest F1 score
when the unit size and dropout rate were set to 256 and 20%, respectively. RNN had the
highest F1 score when the unit size and dropout rate were set to 128 and 30%, respectively.
LSTM had the highest F1 score when the unit size and dropout rate were set to 128 and
40%, respectively. GRU had the highest F1 score when the unit size and dropout rate were
set to 128 and 40%, respectively.

Mathematics 2022, 10, 4633 19 of 24

4.5. Evaluation of Oversampling Algorithms

We separate our dataset into train and test datasets. In the case of shallow machine
learning, we train algorithms using stratified k-folds by train folds after separating train
datasets into train folds and holdout folds. We train deep learning using train folds and
early stop using validation folds after separating train datasets into train, validation, and
holdout folds. In addition, we compare the performance of each oversampling via each
algorithm using holdout folds. Table 9 shows the performance of each machine learning
algorithm and oversampling algorithm. Table 9 showed the best performance at GRU
with ADASYN.

Table 9. Prediction performance. GRU with ADASYN demonstrated the highest performance.

Machine Learning
Algorithm Oversampling PPV Sensitivity F1 Score AUC

LR

SMOTE 42.42% 86.39% 0.5690 0.8817

Borderline
SMOTE 43.24% 85.34% 0.5739 0.8787

ADASYN 44.24% 86.39% 0.5851 0.8853

DT

SMOTE 86.27% 92.15% 0.8911 0.9545

Borderline
SMOTE 92.22% 93.19% 0.9271 0.9626

ADASYN 86.12% 94.24% 0.9000 0.9647

RF

SMOTE 96.43% 98.95% 0.9767 0.9932

Borderline
SMOTE 95.43% 98.43% 0.9691 0.9901

ADASYN 96.43% 98.90% 0.9765 0.9929

SVM

SMOTE 91.09% 96.34% 0.9364 0.9776

Borderline
SMOTE 90.53% 90.05% 0.9029 0.9462

ADASYN 90.40% 93.72% 0.9203 0.9643

AB

SMOTE 83.11% 95.29% 0.8878 0.9681

Borderline
SMOTE 85.57% 90.05% 0.8776 0.9438

ADASYN 83.49% 92.67% 0.8784 0.9555

GB

SMOTE 95.96% 99.48% 0.9769 0.9956

Borderline
SMOTE 95.90% 97.91% 0.9689 0.9877

ADASYN 98.45% 99.48% 0.9896 0.9967

MLP

SMOTE 98.94% 97.91% 0.9842 0.9891

Borderline
SMOTE 96.84% 96.34% 0.9659 0.9803

ADASYN 98.38% 95.29% 0.9681 0.9758

RNN

SMOTE 97.33% 95.29% 0.9630 0.9753

Borderline
SMOTE 98.35% 93.72% 0.9598 0.9679

ADASYN 96.35% 96.86% 0.9661 0.9827

Mathematics 2022, 10, 4633 20 of 24

Table 9. Cont.

Machine Learning
Algorithm Oversampling PPV Sensitivity F1 Score AUC

LSTM

SMOTE 97.85% 95.29% 0.9655 0.9755

Borderline
SMOTE 98.38% 95.29% 0.9681 0.9758

ADASYN 98.93% 96.86% 0.9788 0.9838

GRU

SMOTE 98.3–8% 95.29% 0.9681 0.9758

Borderline
SMOTE 98.38% 95.29% 0.9681 0.9758

ADASYN 98.42% 97.91% 0.9816 0.9889
PPV: positive predictive value; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector
machine; AB: adaptive boost; GB: gradient boost; MLP: multi-layer perceptron; RNN: recurrent neural network;
LSTM: long short-term memory; GRU: gated recurrent unit.

4.6. Evaluation of Machine Learning Algorithms

We separate our dataset into train and test datasets. In the case of shallow machine
learning, we train algorithms using stratified k-folds by train folds. We train deep learning
using train folds and early stop using validation folds after separating train datasets into
train and validation folds. In addition, we compare the performance of each algorithm
using test datasets. Table 10 shows the highest performance achieved for each machine
learning algorithm. In the case of PPV, GRU shows the highest performance. In the case of
sensitivity, GB shows the highest performance. In the case of the F1 score, LSTM shows the
highest performance.

Table 10. Highest prediction performance of each machine learning algorithm.

Machine Learning Algorithms Oversampling PPV Sensitivity F1 Score AUC

LR ADSYN 44.47% 83.88% 0.5812 0.8745
DT Borderline SMOTE 92.11% 94.14% 0.9312 0.9672
RF SMOTE 96.09% 98.90% 0.9747 0.9928

SVM SMOTE 89.49% 96.70% 0.9296 0.9786
AB SMOTE 86.33% 94.87% 0.9040 0.9679
GB ADASYN 96.10% 99.27% 0.9766 0.9946

MLP SMOTE 97.48% 99.27% 0.9837 0.9952
RNN ADASYN 95.67% 97.07% 0.9636 0.9835
LSTM ADASYN 98.18% 98.90% 0.9854 0.9937
GRU ADASYN 98.53% 98.17% 0.9835 0.9902

PPV: positive predictive value; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector
machine; AB: adaptive boost; GB: gradient boost; MLP: multi-layer perceptron; RNN: recurrent neural network;
LSTM: long short-term memory; GRU: gated recurrent unit.

4.7. Comparison of the Importance of Disease Prediction

We guess that the most important techniques in a machine learning algorithm are
imputation, oversampling, and feature selection, in that order. We evaluate the performance
of an RDI-based imputer and a mean-based imputer. In the RDI-based imputer, the PPV and
sensitivity improved by more than 20% and 10%, respectively. The datasets in the medical
field are unbalanced. In the case of diseases such as respiratory failure, they are classified
according to their occurrence. The overfitting problem of prediction occurs when machine
learning comprised a majority of the data in datasets. Oversampling or undersampling
must be performed to solve imbalanced datasets. Table 11 shows the performance results of
replacing missing values with the mean or not performing oversampling. In the case of not
performing oversampling, the sensitivity is lower than if oversampling had been performed.

Mathematics 2022, 10, 4633 21 of 24

Table 11. Performance result of each scenario.

Scenario Algorithm PPV Sensitivity F1 Score AUC

Reference

LR 44.47% 83.88% 0.5812 0.8745

DT 92.11% 94.14% 0.9312 0.9672

RF 96.09% 98.90% 0.9747 0.9928

SVM 89.49% 96.70% 0.9296 0.9786

AB 86.33% 94.87% 0.9040 0.9679

GB 96.10% 99.27% 0.9766 0.9946

MLP 97.48% 99.27% 0.9837 0.9952

RNN 95.67% 97.07% 0.9636 0.9835

LSTM 98.18% 98.90% 0.9854 0.9937

GRU 98.53% 98.17% 0.9835 0.9902

Replace missing
values via average

LR 22.26% 70.70% 0.3386 0.7477

DT 63.06% 83.15% 0.7172 0.8949

RF 53.24% 87.18% 0.6611 0.9031

SVM 41.05% 83.15% 0.5496 0.8646

AB 58.21% 73.99% 0.6516 0.8472

GB 75.40% 86.45% 0.8055 0.9201

MLP 65.49% 81.32% 0.7255 0.8882

RNN 62.10% 78.02% 0.6916 0.8697

LSTM 41.63% 80.22% 0.5482 0.8529

GRU 65.73% 85.71% 0.7440 0.9094

Does not perform
oversampling

LR 81.46% 45.05% 0.5802 0.7209

DT 98.05% 92.31% 0.9509 0.9608

RF 98.85% 94.14% 0.9644 0.9702

SVM 99.06% 77.29% 0.8683 0.8861

AB 94.80% 86.81% 0.9063 0.9320

GB 98.38% 89.01% 0.9346 0.9444

MLP 95.67% 80.95% 0.8770 0.9032

RNN 90.87% 83.88% 0.8724 0.9158

LSTM 77.73% 62.64% 0.6937 0.8055

GRU 91.09% 86.08% 0.8851 0.9268
PPV: positive predictive value; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector
machine; AB: adaptive boost; GB: gradient boost; MLP: multi-layer perceptron; RNN: recurrent neural network;
LSTM: long short-term memory; GRU: gated recurrent unit.

Table 4 shows the variance in performance according to the features. We consider
the features with the highest performance in Table 4. In the case of machine learning
algorithms, the performance depends on the dataset. The sensitivity of machine learning
algorithms in Table 10 is more than 80%. However, the PPV of logistic regression is less
than 50%. The deep learning models such as RNN, LSTM, and GRU all performed at
comparable levels.

5. Discussion

We proposed the prediction model for acute respiratory failure, an important prognos-
tic factor in acute pesticide poisoning patients. The effects of respiratory failure include
loss of consciousness, arrhythmias, and death. Table 12 shows the performance of each

Mathematics 2022, 10, 4633 22 of 24

algorithm for the prediction of respiratory failure. In recent years, respiratory failure pre-
diction models have been developed to predict respiratory failure in COVID-19 patients
based on deep learning with semi-supervised learning [4], respiratory failure based on
XGBoost using clinical data [5], respiratory failure in COVID-19 patients based on LR [6],
respiratory failure in ICU patients based on LightGBM [7], respiratory failure in patients
with pesticide poisoning due to intentional pesticide ingestion based on LR [9], cardiac
arrest and respiratory failure in ICU patients based on LSTM [10], and respiratory failure
in ICU patients based on gradient boosting [8]. In the case of prediction based on semi-
supervised learning [4], the PPV was 0.033 and the sensitivity was 0.78. In the case of
prediction based on XGBoost using clinical data [5], the sensitivity was 0.71. In the case
of prediction of respiratory failure with COVID-19 based on LR [6], the PPV was 0.74 and
the sensitivity was 0.72. In the case of prediction based on LightGBM [7], the PPV was
0.42 and the sensitivity was 0.80. In the case of prediction of respiratory failure in patients
with pesticide poisoning based on LR [9], the PPV was 0.833 and the sensitivity was 0.606.
In the case of prediction based on LSTM [10], the PPV was 0.226 and the sensitivity was
0.881. However, these respiratory failure prediction algorithms are characterized by a large
measurement interval, low performance, or large number of features [4–10]. Our proposed
algorithm demonstrated improved respiratory failure prediction within 24 h with higher
PPV and sensitivity compared with those of other models.

Table 12. Comparison of the performance between the proposed algorithm and algorithms in
other studies.

Algorithms Features Patient Data Range Sensitivity PPV AUC

[4] Semi-supervised learning 25 32 h 0.78 0.023 0.78

[5] XGBoost 24 - 0.71 - -

[6] LR 26 - 0.72 0.74 0.89

[7] LightGBM 25 - 0.80 - 0.746

[8] GradientBoosting 106 6 h 0.534 0.643 0.769

[9] LR 7 - 0.606 0.833 0.912

[10] LSTM 8 2 h 0.881 0.226 0.886

Our algorithm LSTM 17 3 h 0.9817 0.9890 0.9937

PPV: positive predictive value; LR: logistic regression; LSTM: long short-term memory; RF: random forest.

Our proposed algorithm demonstrated improved respiratory failure prediction within
24 h with higher PPV and sensitivity compared with those of other models. We guess
that the pesticide category, white blood cell (WBC), pH, heart rate (HR), and C-reactive
protein 1 are important predictors of respiratory failure in acute pesticide poisoning. The
performance results of important features based on RF and GB confirmed that the highest-
scoring features are the above features. These are the limitations of this paper: First, we
conducted a single cohort at the Soonchunhyang University Cheonan Hospital. Second,
we proceeded with retrospective research. We have not yet confirmed the validity from
an external source. Third, our algorithm required three-hour EMRs. Our algorithm is
not applicable to high-risk patients hospitalized for less than three hours. Fourth, our
algorithm is difficult to use in hospitals. Our algorithm predicts whether respiratory failure
has happened within 24 h. It does not estimate the time or risk score that a patient should
experience respiratory failure. Follow-up research is required to decrease the prediction
range for respiratory failure or score the patient’s risk or provide information such as the
estimated time of respiratory failure.

Mathematics 2022, 10, 4633 23 of 24

6. Conclusions

We predicted respiratory failure in patients with pesticide poisoning at Soonchun-
hyang University Cheonan Hospital. We analyzed the 3 h medical records of individuals
with pesticide poisoning to predict respiratory failure within 24 h. In consideration of
time-series properties, sliding windows, feature selection, and oversampling were used
to replace missing values. Enhanced performance was achieved with the use of LSTM.
Moreover, our machine learning technique algorithm could improve the prognosis of pa-
tients with pesticide poisoning. In addition, we will enhance the algorithm for predicting
respiratory failure within 24 h such that it can predict respiratory failure within 4 or 8 h.
We plan to conduct studies to predict respiratory failure in patients admitted to the general
ward and ICU.

Author Contributions: Conceptualization, H.L. and H.G.; methodology, Y.K. and M.C.; software,
Y.K. and M.C.; validation, N.C., H.G. and H.L.; formal analysis, Y.K.; resources, H.G. and N.C.; data
curation, N.C.; writing—original draft preparation, Y.K. and M.C.; writing—review and editing, H.L.
and H.G.; visualization, Y.K. and M.C.; supervision, H.L.; project administration, H.L. and H.G.;
funding acquisition, H.L. and H.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under
the ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2022-RS-2022-00156439)
supervised by the IITP (Institute of Information and Communications Technology Planning and Eval-
uation), the Bio and Medical Technology Development Program (No. NRF-2019M3E5D1A02069073)
and a Korea University Grant.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Soonchunhyang University Cheonan
Hospital (IRB number: 2020-02-016).

Informed Consent Statement: Patient consent was waived because of the retrospective design of
the study.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cho, N.-J.; Park, S.; Lee, E.Y.; Gil, H.-W. Risk factors to predict acute respiratory failure in patients with acute pesticide poisoning.

J. Korean Soc. Clin. Toxicol. 2020, 18, 116–122.
2. Lee, H.; Choa, M.; Han, E.; Ko, D.R.; Ko, J.; Kong, T.; Cho, J.; Chung, S.P. Causative Substance and Time of Mortality Presented to

Emergency Department Following Acute Poisoning: 2014-2018 National Emergency Department Information System (NEDIS). J.
Korean Soc. Clin. Toxicol. 2021, 19, 65–71.

3. Mew, E.J.; Padmanathan, P.; Konradsen, F.; Eddleston, M.; Chang, S.-S.; Phillips, M.R.; Gunnell, D. The global burden of fatal
self-poisoning with pesticides 2006-15: Systematic review. J. Affect. Disord. 2017, 219, 93–104. [CrossRef] [PubMed]

4. Lam, C.; Tso, C.F.; Green-Saxena, A.; Pellegrini, E.; Iqbal, Z.; Evans, D.; Hoffman, J.; Calvert, J.; Mao, Q.; Das, R. Semisuper-
vised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome from Time-Series Clinical Data: Model
Development and Validation Study. JMIR Form. Res. 2021, 5, e28028. [CrossRef]

5. Sinha, P.; Churpek, M.M.; Calfee, C.S. Machine learning classifier models can identify acute respiratory distress syndrome
phenotypes using readily available clinical data. Am. J. Respir. Crit. Care Med. 2020, 202, 996–1004. [CrossRef]

6. Bartoletti, M.; Giannella, M.; Scudeller, L.; Tedeschi, S.; Rinaldi, M.; Bussini, L.; Fornaro, G.; Pascale, R.; Pancaldi, L.; Pasquini,
Z. Development and validation of a prediction model for severe respiratory failure in hospitalized patients with SARS-CoV-2
infection: A multicentre cohort study (PREDI-CO study). Clin. Microbiol. Infect. 2020, 26, 1545–1553. [CrossRef]

7. Hüser, M.; Faltys, M.; Lyu, X.; Barber, C.; Hyland, S.L.; Merz, T.M.; Rätsch, G. Early prediction of respiratory failure in the
intensive care unit. arXiv 2021, arXiv:2105.05728.

8. Schwager, E.; Jansson, K.; Rahman, A.; Schiffer, S.; Chang, Y.; Boverman, G.; Gross, B.; Xu-Wilson, M.; Boehme, P.; Truebel, H.
Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome. NPJ Digit. Med. 2021, 4, 133.
[CrossRef]

9. Cho, N.-J.; Park, S.; Lyu, J.; Lee, H.; Hong, M.; Lee, E.-Y.; Gil, H.-W. Prediction Model of Acute Respiratory Failure in Patients with
Acute Pesticide Poisoning by Intentional Ingestion: Prediction of Respiratory Failure in Pesticide Intoxication (PREP) Scores in
Cohort Study. J. Clin. Med. 2022, 11, 1048. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jad.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28535450
http://doi.org/10.2196/28028
http://doi.org/10.1164/rccm.202002-0347OC
http://doi.org/10.1016/j.cmi.2020.08.003
http://doi.org/10.1038/s41746-021-00505-5
http://doi.org/10.3390/jcm11041048
http://www.ncbi.nlm.nih.gov/pubmed/35207319

Mathematics 2022, 10, 4633 24 of 24

10. Kim, J.; Chae, M.; Chang, H.-J.; Kim, Y.-A.; Park, E. Predicting cardiac arrest and respiratory failure using feasible artificial
intelligence with simple trajectories of patient data. J. Clin. Med. 2019, 8, 1336. [CrossRef]

11. Idri, A.; Benhar, H.; Fernández-Alemán, J.; Kadi, I. A systematic map of medical data preprocessing in knowledge discovery.
Comput. Methods Programs Biomed. 2018, 162, 69–85. [CrossRef]

12. Benhar, H.; Idri, A.; Fernández-Alemán, J. Data preprocessing for heart disease classification: A systematic literature review.
Comput. Methods Programs Biomed. 2020, 195, 105635. [CrossRef] [PubMed]

13. Jadhav, A.; Pramod, D.; Ramanathan, K. Comparison of performance of data imputation methods for numeric dataset. Appl. Artif.
Intell. 2019, 33, 913–933. [CrossRef]

14. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
2017, 50, 1–45. [CrossRef]

15. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Du-bourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. JMLR 2011, 12, 2825–2830.

16. Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012,
28, 112–118. [CrossRef]

17. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in
Science Conference, Austin, TX, USA, 28 June–3 July 2010; p. 10-25080.

18. Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine learning with oversampling and undersampling techniques: Over-view
study and experimental results. In Proceedings of the 2020 11th International Conference on Information and Communication
Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 243–248.

19. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; pp. 1322–1328.

20. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

21. Han, H.; Wang, W.-Y.; Mao, B.-H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887.

22. Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. Logistic regression; Springer: Berlin/Heidelberg, Germany, 2002.
23. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin

Classif. 1999, 10, 61–74.
25. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.

Sci. 1997, 55, 119–139. [CrossRef]
26. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX symposium on operating systems design and
implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

27. Hüsken, M.; Stagge, P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50, 223–235. [CrossRef]
28. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
29. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
30. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538.
31. Berrar, D. Cross-Validation. Encycl. Bioinform. Comput. Biol. 2019, 1, 542–545. Available online: https://www.sciencedirect.com/

science/article/pii/B978012809633820349X?via%3Dihub (accessed on 23 September 2022).

http://doi.org/10.3390/jcm8091336
http://doi.org/10.1016/j.cmpb.2018.05.007
http://doi.org/10.1016/j.cmpb.2020.105635
http://www.ncbi.nlm.nih.gov/pubmed/32652383
http://doi.org/10.1080/08839514.2019.1637138
http://doi.org/10.1145/2996357
http://doi.org/10.1093/bioinformatics/btr597
http://doi.org/10.1613/jair.953
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1016/S0925-2312(01)00706-8
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.sciencedirect.com/science/article/pii/B978012809633820349X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/B978012809633820349X?via%3Dihub

	Introduction
	Materials
	Data
	Replacement Missing Value
	Recent Data Imputer
	k-Nearest Neighbor (KNN) Imputer
	MissForest Imputer

	Feature Selection
	Hour Sliding Window in 24 H
	MinMaxScaler
	Oversampling
	Synthetic Minority Oversampling Technique (SMOTE)
	Borderline-SMOTE
	Adaptive Synthetic (ADASYN)

	Methods
	Shallow Learning
	Logistic Regression (LR)
	Decision Tree (DT)
	Random Forest (RF)
	Support Vector Machine (SVM)
	Adaptive Boost (AB)
	Gradient Boost (GB)

	Deep Learning Algorithms
	Multi-Layer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Stratified-k-Fold

	Results
	Evaluation Methods
	Characteristics of Study
	Evaluation of Imputation
	Evaluation of Hyperparameter Tuning
	Evaluation of Oversampling Algorithms
	Evaluation of Machine Learning Algorithms
	Comparison of the Importance of Disease Prediction

	Discussion
	Conclusions
	References

