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Abstract: Systemic sclerosis (SSc) is an autoimmune, chronic disease that remains not well understood.
It is believed that the cause of the illness is a combination of genetic and environmental factors. The
evolution of the illness also greatly varies from patient to patient. A common complication of the
illness, with an associated higher mortality, is interstitial lung disease (ILD). We present in this paper
an algorithm (using machine learning techniques) that it is able to identify, with a 92.2% accuracy,
patients suffering from ILD-SSc using gene expression data obtained from peripheral blood. The
data were obtained from public sources (GEO accession GSE181228) and contains genetic data for
134 patients at an initial stage as well as at a follow up date (12 months later) for 98 of these patients.
Additionally, there are 45 control (healthy) cases. The algorithm also identified 172 genes that might
be involved in the illness. These 172 genes appeared in all the 20 most accurate classification models
among a total of half a million models estimated. Their frequency might suggest that they are related
to the illness to some degree. The proposed algorithm, besides differentiating between control and
patients, was also able to distinguish among different variants of the illness (diffuse variants). This
can have a significance from a treatment point of view. The different type of variants have a different
associated prognosis.

Keywords: systemic sclerosis; gene expression; machine learning

MSC: 62H20; 62H25; 62H99

1. Introduction

Systemic sclerosis (SSc), also called Scleroderma [1], is an autoimmune [2], relatively
uncommon, chronic illness [3] with associated high morbidity and mortality [4,5]; similar
to other autoimmune illnesses it is more common in females [6]. There is no curative
treatment for SSc but there are some treatment options for commonly associated com-
plications [7–9]. SSc can significantly impact the quality of life of the patient [10] and
attack internal organs [11]. The prevalence of the illness appears to vary depending in the
geographic location with, for instance, Zhong et al. [12] estimating a prevalence in the US
of approximately 50 cases per 100,000, while Englert et al. finding a lower prevalence in
Sidney, Australia of approximately 8.6 patients per 100,000 [13]. The illness has a higher
prevalence in some ethnics groups such as African American [14] and Native American.
Banabe et al. [15] concluded that females in the First Nation (Native American) in Canada
have a prevalence twice as high as females in the rest of the population. The usual age of
onset of the illness is between 30 to 60 years old with Hoffman-Vold et al. [16] estimating
a mean onset age of 47 in a study covering the Norwegian population. The illness is
characterized by excessive collagen content in tissue, fibrosis and vascular damage [17–19].
The causes of SSc are not yet well understood and it is theorized that it is likely caused by
a combination of genetic predisposition [20] and environmental factors [21,22]. It is very
likely that there is a genetic component with Varga and Abraham [23] estimating that the
illness is more frequent in families (1.6%) than in the general population (0.026%). There
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are also likely some environmental triggers and while many hypothesis have been formu-
lated, such as exposure to silica dust (miners disease) [24,25], certain chemical compounds
(toluene or benzene) drugs (cocaine or carbidopa) and infections [25–27], there is, to the
best of our knowledge, no irrefutable proof of the link between these factors and SSc, which
suggests some complex interaction between genetic and environmental factors. SSc is also
associated with the increased likelihood of some malignancies [28].

There are different variants such as Limited cutaneous systemic sclerosis (also referred
as CREST) and Diffuse systemic sclerosis [29,30]. Roadnan et al. [31] compared the skin
collagen content of 117 individuals with SSc (107 of the diffuse variant and 40 with the
CREST variant) and compared it with 58 control (healthy) individuals finding a signifi-
cant thickening of the skin, associated with higher collagen deposits. It should be noted
that there is still some disagreement in the existing literature in the classification of SSc
variants [32]. Interstitial lung disease is a relatively common complication of SSc that
significantly worsens the prognosis [33].

While there is no curative treatment for the illness, over the years, multiple treatment
options for the related complications, such as some treatment options for renal crisis (using
ACE inhibitors) [34], have been developed, improving survival rates [35]. The evolution
of the illness varies significantly from patient to patient [6]. As previously mentioned,
some variants of SSc such as the diffuse variants [36] have a worse prognosis [37]. In this
paper, we focus on Interstitial lung disease systemic sclerosis (SSc-ILD) with and without
diffuse cutaneous involvement. According to figures from the US FDA, approximately half
of the patients with Scleroderma have ILD-SSc. Some researchers, such as Boussone and
Mouthon [38] have estimated a higher percentage. According to these authors, approxi-
mately 75% of SSc patients develop some level of ILD. They do, however, mention that only
a small fraction of these patients evolve into critical respiratory insufficiency. Goh et al. [39]
mentioned that in some cases it might be challenging to obtain a firm diagnosis on SSc-ILD
by using the classical approach of pulmonary function tests (PFTs) and high resolution
computed tomography (HRCT) [40]. SSc-ILD typically present fibrosis in the lower section
of the lungs. In recent years, there has been a substantial amount of research targeting a re-
duction in mortality on ILD-SSc [41,42]. In an illness as heterogeneous as ILD-SSc, it seems
important to develop biomarkers for its detection, ideally at early stage, as well as for dis-
tinguishing different variants such the presence of diffuse cutaneous involvement. Most of
the existing literature uses the clinical presentation of the patient [4] and/or imaging rather
than a genetic big data approach for the identification of the illness. We have followed a
gene expression approach. This is supported by indications of a genetic component in the
illness [43–45]. We present a new algorithm for the selection of the genes considered. In an
interesting article, Jamin et al. [46] use neural networks to the same classification task but
using electronic health records (clinical factors). Our proposed approach is complementary
to this type of analysis, as it uses a different set of information. Another complementary
approach is the one used by Akay et al. [47], in which skin images are used as an input for
a machine learning algorithm. These approaches use clinical manifestations and images of
skin lesions. A genetic approach has the potential advantage of not requiring clear clinical
manifestations such as skin lesions.

2. Aims

The main objectives of this paper are to be able to distinguish between control and SSc
patients using gene expression data analyzed with machine learning techniques as well as
to differentiate between different variants of the illness using the same approach.
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3. Materials and Methods

Assuming that there are n genes analyzed per patient and m patients. The information
for each patient can be stored in the form of a column vector xi.

Xi =



X1
i

X2
i

X3
i

.

.
Xn

i


(1)

with x1
i representing the expression of the first gene for patient i, the information for all the

patients can be expressed in a matrix form, as follows.

X =



X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . Xm2

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

m


(2)

There is also an associated variable Yi = {0, 1} describing the status of the patient with {0}
indicating a control (healthy) individual and {1} indicating a patient with the illness. This
can be represented with a row vector (including all patients).

Y = {y1, y2, . . . , ym} (3)

3.1. Algorithm

1. The first step entails dividing the data into the control and patient subsets.

Xc =



X1
1,c X1

2,c . . . X1
l,c

X2
1,c X2

2,c . . . X2
l,c

. . .

. . .

. . .
Xn

1,c Xn
2,c . . . Xn

l,c


(4)

Yc = {y1, y2, . . . , yl} (5)

Xp =



X1
l+1,p X1

l+2,p . . . X1
m,p

X2
l+1,p X2

l+2,p . . . X2
m,p

. . .

. . .

. . .
Xn

l+1,p Xn
l+2,p . . . Xn

m,p


(6)

Yp = {yl+1, yl+2, . . . , ym} (7)
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2. Estimating the mean values for each gene in each subset

Xme
c =



M1
c

M2
c

.

.

.
Mn

c


(8)

Xme
p =



M1
p

M2
p

.

.

.
Mn

p


(9)

3. Compare the expression value for each gene on both sets

Cj =
Mj

p

Mj
c

(10)

4. If cj < cj
th (with cj

th a predefined threshold) then eliminate the gene from both subsets.
Hence:

Xc∗ =



X1
1,c X1

2,c . . . X1
l,c

X2
1,c X2

2,c . . . X2
l,c

. . .

. . .

. . .
Xn∗

1,c Xn∗
2,c . . . Xn∗

l,c


(11)

Yc = {y1, y2, . . . , yl} (12)

Xp =



X1
l+1,p X1

l+2,p . . . X1
m,p

X2
l+1,p X2

l+2,p . . . X2
m,p

. . .

. . .

. . .
Xn∗

l+1,p Xn∗
l+2,p . . . Xn∗

m,p


(13)

Yp = {yl+1, yl+2, . . . , ym} (14)

with n∗ < n. This process results in a reduction in the number of genes taken into
consideration. The data can now be consolidated into a X∗ matrix and a Y∗ vector
containing both control and patients.

X∗ =



X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . X2
m

. . .

. . .

. . .
Xn∗

1 Xn∗
2 . . . Xn∗

m


(15)
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Y∗ = {y1, y2, . . . , ym} (16)

5. Divide the data into a testing and a training datasets with both containing control
and patients.

XTr =



X1
Tr,1 X1

Tr,2 . . . X1
Tr,s

X2
Tr,1 X2

Tr,2 . . . X2
Tr,s

. . .

. . .

. . .
Xn∗

Tr,1 Xn∗
Tr,2 . . . Xn∗

Tr,s


(17)

YTr = {y1, y2, . . . , ys} (18)

XTs =



X1
Ts,s+1 X1

Ts,s+2 . . . X1
Ts,m

X2
Ts,s+1 X2

Ts,s+2 . . . X2
Ts,m

. . .

. . .

. . .
Xn∗

Ts,s+1 Xn∗
Ts,s+2 . . . Xn∗

Ts,m


(19)

YTs = {ys+1, ys+2, . . . , ym} (20)

6. Choose a classification technique (F), such as an artificial neural network.
7. Train the classification technique (F) with the training data (F(Xtr, YTr)).
8. Estimate the classification forecast (CF) using the trained algorithm.

CF = {CF1, CF2, . . . , CFs} (21)

9. Compare the classification forecasts (CF) with the the actual values YTr.
10. If Ci = Yi then Acci = 1 otherwise Acci = 0. Estimate mean accuracy.

Accm =
∑ Acci

s
(22)

Similarly estimate the sensitivity (Sm).
11. This is the first iteration

Se(1) = Sm (23)

12. Then, define an integer κ ∈ (1, an) with an < n∗.
13. Eliminate κ genes randomly chosen from the previous group of n∗ genes.
14. Repeat steps 7 to 11, estimating the new sensitivity Sm

t . If Sm
t > Se(1) then the

new configuration (group of genes) is accepted, else Se(2) = Se(1) and revert to the
previous configuration.

15. Repeat until the maximum number of iterations (imax) is reached.
16. Repeat entire process jmax times.
17. Select the configuration with the highest sensitivity.

To the best of our knowledge, this is a new algorithm for the identification of relevant
genes in the context of SSc. One of the advantages of this algorithm is that it does not
require previous knowledge regarding which genes are more relevant in the context of
the illness, as they are automatically selected by the algorithm and can potentially select
complex combinations of genes.

3.2. Data

Peripheral blood gene expression data was obtained from the publically available
database GEO (accession code GSE181228) [48]. The data is composed of 45 healthy control
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cases, as well as patients with systemic sclerosis-related interstitial lung disease (SSc-ILD),
see Figure 1. A total of 134 patients were analyzed at an initial stage (baseline), see Table 1.
There was also a follow up test, 12 months later, including 98 patients. The two drugs
used in this trial were mycophenolate mofetil (MMF), administered to 65 patients, and
cyclophosphamide (CYC) administered to 69 patients. The total number of samples was 277.
Our objective is not to replicate this paper [48] but to find biomarkers for the identification
of the illness regardless of the actual medication taken.

Figure 1. Gene expression in SSc-ILD vs. control patients.

Table 1. Patients characteristics at baseline.

Category Value

Age 52.4
Male 36

Female 98
White 93

African American 29
Asian 9

Native American 3

The range in age of the patients (at baseline) was from 28 to 79 and there was a
large percentage of female (73.1%), consistent with a higher prevalence among the female
population of the disease. The majority of the cases 93 (69.4%) were of white race with
smaller number of samples of African American (21.6%), Asian (6.7%) and Native American
(2.2%). Some of the patients, see Table 2, presented diffuse cutaneous involvement, which
has been mentioned as an indicator for the evolution of the illness.

Table 2. Patient with diffuse cutaneous involvement (dc) 1.

dc non-dc

Baseline 79 55
12 months 59 38

1 One of the samples was not identified as either dc or non-dc.

3.3. Classification Algorithm

There are several potential classification algorithms [49] that could be used in the con-
text of this paper. We used artificial neural networks (ANN) [50–52]. This is a well-known
and robust technique applied in many different fields. ANNs have been successfully used
in the context of SSc identification [53] using as inputs hand photographs of the patients.
Similarly, Chassagnon et al. [54] and Chandrasekaran et al. [55] also used neural networks
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for the assessment of interstitial lung disease in systemic sclerosis using CT images. ANNs
are a versatile tool that does not require previous knowledge of the system that it is attempt-
ing to model. The ANN used had one hidden layer [56] with 100 neurons. As standard
practice, the data were divided into a training and a testing dataset [57,58]. The training
dataset contained approximately 66% of the samples. The rest of the samples were included
in the testing data set. Only data in the training dataset were used during the training
phase of the algorithm. The algorithm in this paper was designed to be flexible, hence other
classification techniques, such as support vector machines [59,60], could be potentially used.
The required computational time is a factor to be taken into account. Training all the half a
million models used in this paper required approximately 197 h (roughly 8.2 days). All the
calculations were carried out in Matlab (models’ optimization and accuracy estimations
were carried out in an automated way) using five Core i5-8265U computers.

4. Results

As described in the methodology, the initial steps of the algorithm included an initial
filtering in which the mean values of the gene expression for the control and patient cohorts
were estimated. Only genes with a 25% difference in gene expression (absolute value),
compared to the base case (control), were included in the analysis.This 25% level was
chosen in order to conduct an initial filtering in the data while at the same time had not
been too restrictive as the algorithm will further filter the genes. The algorithm then
further reduced the number of genes included. As mentioned, a Mote Carlo approach
was followed, setting the algorithm to 1000 iterations and repeating the process 500 times,
generating half a million models in the process (see Figure 2). The best model resulted in a
list of 1157 genes with a average sensitivity, specificity, accuracy and ROC of 74.8%, 95.3%,
92.2% and 86.3%, respectively. As an example, an ROC curve is shown in Figure 3 for a
given iteration. There were no improvements when controlling for age, gender or ethnicity.
The precision obtained using the algorithm was higher than the base case precision using all
genes (see Table 3). The way that the models are constructed, the sensitivity is guaranteed
not to decrease from iteration to iteration, but the same cannot be said for the specificity or
the overall accuracy of the model (see Figure 4). The list of these 1157 genes can be found
in the supplementary files. It was also tested whether the model, using the same genes, is
able to differentiate between the diffuse and non-diffuse variants, obtaining a sensitivity of
72.4% (out-of-sample). As in the previous case, the precision obtained using the algorithm
was higher than the precision using the base case (all genes), as shown in Table 3.

Figure 2. Sensitivity results of the models.
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Figure 3. ROC sample for one iteration.

Table 3. Average precision of the model distinguishing SSc and control patients as well as SSc variants
(diffuse vs. non-diffuse).

Metric SSc (Model) SSc (Base) Variant (Model) Variant (Base)

Avg. Sensitivity 0.7478 0.5146 0.7241 0.5152
Avg. Specificity 0.9533 0.8664 0.7000 0.5833
Avg. Accuracy 0.9217 0.8060 0.7101 0.5507

Avg. ROC 0.8632 0.6907 0.6962 0.5549

Figure 4. Sensitivity, specificity and accuracy of a sample model.
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In Figure 5, the average gene expression is shown for the control and SSc patients. The
genes are ordered from the highest to lowest gene expression according to the control data.
It can be observed that the SSc data fluctuates more compared to the control data.

Figure 5. Mean gene expression for controls and patients.

The asymptotic behavior was also tested, increasing the number of iterations to
relatively large amounts, such as 50,000 (see Figure 6). There was no indication that
substantially increasing the number of iterations necessarily translate into better forecasting
precision with the sensitivity reaching a plateau relatively fast. Due to the scale, it is hard
to appreciate but in Figure 6 it is shown how the model quickly reaches this plateau. It is
also interesting to analyze which genes tend to appear more frequently in the best models.
Out of the half a million models calculated, the 20 most accurate were selected and the
genes compared. A total of 172 genes appeared in all of these 20 models. The list of these
172 genes can be found in the supplementary material. It is reasonable to assume that the
genes that appear more frequently in the most accurate models might, at least potentially,
be related to the disease.

Figure 6. Sample of asymptotic analysis (50,000 iterations).
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5. Discussion

Systemic sclerosis is a chronic and potentially life threatening illness which is not
yet fully understood. The illness has different variants, such as the diffuse form, with
different levels of severity in the prognosis. SSc is believed to be caused by a combination
of genetic predisposition and environmental factors. While there is currently no curative
therapy, there have been many advances on the treatments of related complications of
the illness. Some of these complications are potentially life threatening. One common
and severe complication of SSc is interstitial lung disease (ILD). In this paper, we present
an algorithm that uses machine learning techniques, applied to gene expression data,
to be able to distinguish between control (healthy) patients and patients suffering from
interstitial lung disease systemic sclerosis (ILD-SSc). This algorithm selects the genes (and
their expression levels) to be included as inputs into machine learning models for the
detection of the illness. The precision of this approach is higher than the one obtained
using the genes expression for all the available genes. Having biomarkers that are able to
identify the illness might be important from an early detection point of view. The accuracy
of the presented model was relatively high, at 92%, with a sensitivity of approximately
75%. Our approach is complementary of some of the existing research in this field that use
clinical manifestation of the illness. An example of such an approach would be [53] that
uses hand photographs and a neural networks classification algorithm or [54] that also uses
a neural networks approach but in the case applied to CT images. A potential advantage
of using the genetic expression information is that there is no need for the illness to have
clear clinical manifestations, such as skin lesions. Milanese et al. [61] achieved an accuracy
of 84% using CT texture analysis. Another interesting alternative for the identification
and classification of SSc is presented in Filippini et al. [62], in which the authors use hand
thermal images and neural networks for diagnosis, achieving an overall accuracy of 84%.
Another imaging base paper is Nitkunanantharajah et al. [63], in which the authors use
nailfold capillaries imaging, obtaining a high sensitivity of 78.3%.

The approach followed in the algorithm is also allowed for the identification of
172 genes that might potentially have some relevance in the context of ILD-SSc. These
172 genes appeared in all the 20 most accurate models (out of half a million models es-
timated). The assumption is that given the frequency with which these genes appear in
the most accurate models, they might be related to the illness. The proposed algorithm
was also able to distinguish between the variants of the illness (diffuse). While the preci-
sion was lower that in the previous case (distinguishing between control and patients), it
was reasonably high with a sensitivity of approximately 72%. This is reasonable, taking
into consideration that the illness is likely not only caused by genetic factors but from a
combination of genetic factors and environmental exposures.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
math10244632/s1.
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