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Abstract: The Asymmetric Simple Inclusion Process (ASIP) is an n-site tandem stochastic network
with a Poisson arrival influx into the first site. Each site has an unlimited buffer with a gate in front of
it. Each gate opens, independently of all other gates, following a site-dependent Exponential inter-
opening time. When a site’s gate opens, all particles occupying the site move simultaneously to the
next site. In this paper, a Generalized ASIP network is analyzed where the influx is to all sites, while
gate openings are determined by a general renewal process. A compact matrix approach—instead of
the conventional (and tedious) successive substitution method—is constructed for the derivation of
the multidimensional probability-generating function (PGF) of the site occupancies. It is shown that
the set of (2n

n ) linear equations required to obtain the PGF of an n-site network can be first cut by half
into a set of (2n−1

n ) equations, and then further reduced to a set of 2n − (n + 1) equations. The latter
set can be additionally split into several smaller triangular subsets. It is also shown how the PGF
of an (n + 1)-site network can be derived from the corresponding PGF of an n-site system. Explicit
results for networks with n = 3 and n = 4 sites are obtained. The matrix approach is utilized to
explicitly calculate the probability that site k (k = 1, 2, . . . , n) is occupied. We show that, in the case
where arrivals occur to the first site only, these probabilities are functions of both the site’s index
and the arrival flux and not solely of the site’s index. Consequently, refined formulas for the latter
probabilities and for the mean conditional site occupancies are derived. We further show that in the
case where the arrival process to the first site is Poisson with rate λ, the following interesting property
holds: P(site k is occupied | λ = 1) = P(site k + 1 is occupied | λ→ ∞). The case where the inter-gate
opening intervals are Gamma distributed is investigated and explicit formulas are obtained. Mean
site occupancy and mean total load of the first k sites are calculated. Numerical results are presented.

Keywords: Asymmetric Simple Inclusion Process (ASIP); Generalized ASIP (G-ASIP); multidimen-
sional PGF; matrix approach; site occupancies

MSC: 60K25; 68M20; 90B22

1. Introduction and Outline

A tandem stochastic system (TSS) is an array of several sites in series, where random
events cause particles (customers, messages, products, calls, jobs, molecules, etc.) to
propagate unidirectionally along the one-dimensional lattice of n sites (queues, servers,
stations, etc.). Particles are fed, randomly in time, into the leftmost site and propagate
unidirectionally (to the right) through the system. At the rightmost site, particles exit the
system randomly in time. The random inflow into the leftmost site, the random instants
of movement from site to site, and the random outflow from the rightmost site are all
governed by random processes. Variations of this model have been explored in various
papers [1–11].

A notable example of TSS is the Tandem Jackson Network (TJN), which has been
investigated thoroughly in the literature [6–11]. In this model, the buffer size of each
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site is unlimited, only single particles move forward between sites and the transitions
instants follow Markovian rules. The TJN is famous for its product-form solution of the
multidimensional distribution function of the sites’ queue sizes (occupancies).

Another well-known TSS is the Asymmetric Exclusion Process (ASEP) [3,4], where
each site can hold at most a single particle, a constraint that causes blockings on particles’
forward movements. The ASEP was extensively studied in [12–27]. As described in [28],
“The ASEP serves as a model for a unidirectionally driven lattice gas of particles subject to
exclusion interactions. The exclusion principle causes jamming throughout the system and
renders the ASEP dynamics highly nontrivial. Despite its simple description and its one
dimensionality, the ASEP displays a complex and intricate behavior [12]”.

An important process in the family of tandem stochastic processes is the recently
introduced [28] Asymmetric Inclusion Process (ASIP) [28–32]. Similarly to the ASEP
and TJN, particles propagate unidirectionally through the system. The ASIP’s inclusion
principle allows each site to be occupied by an arbitrary number of particles at the same
time. All particles that simultaneously occupy a site form a cluster of particles that move
together to the next site, where a new and lager cluster will form together with the particles
already residing in the new site (if any), or out of the system, in the case of the rightmost
site. Each site has an unbounded buffer capacity and an unlimited size batch service. The
ASIP is a showcase of complexity [29]. To better illustrate the ASIP, one can imagine that
each site has a gate in front of it and when the gate opens, all particles currently in that
site move forward to the next site. The ASIP model may be viewed as a tandem array of
growth–collapse processes. Furthermore, it can be applied to the analysis of road traffic
along a sequence of traffic lights, where, when a traffic light turns green, all vehicles in
front of this light move forward to the next light. Another application is the analysis of
marine traffic along a canal with several locks (e.g., Panama Canal). An illustration of the
ASIP, with arrivals to the first site only, appears in Figure 1.
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Figure 1. An illustration of the Asymmetric Inclusion Process (ASIP).

In a TSS, each site is characterized by its occupancy capacity, Csite, and by its gate
(service) capacity, Cgate. Consequently, the above 3 TSS variations (TJN, ASEP and ASIP) are
distinguished by their values of Csite and Cgate. Table 1 below characterizes the differences
and similarities between the three models.

Table 1. Characterization of Tandem Stochastic Systems (TSS).

Site (Occupancy) Capacity
Csite=1

Site (Occupancy) Capacity
Csite Is Unlimited

Gate (service) capacity
Cgate = 1 ASEP TJN

Gate (service) capacity
Cgate is unlimited ASEP ASIP

An important feature of the classical ASIP model [28] is that its multidimensional
Probability-Generating Function (PGF) of the site occupancies does not admit a product-
form solution (as does the TJN), which makes its analysis highly complicated and intricate.
Consequently, explicit PGF expressions were obtained only for ASIPs with n = 2 and
n = 3 sites.

In this work we study a generalized ASIP (abbreviated G-ASIP) model where particles
arrive to all sites, and inter-gate openings follow a renewal process, as is described below.
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A Generalized ASIP Model (G-ASIP)

Consider a system of n sites (queues) Q1, . . . , Qn in series. Each queue has one gate in
front of it, which may be viewed as a server. In the classical ASIP model (Reuveni, Eliazar
and Yechiali [28]) particles arrive only to the first queue according to a Poisson process with
rate λ, while gate j opens independently of the other gates every Exponential time with
parameter µj. We study a generalized ASIP where the time intervals between consecutive
instants of gate opening are i.i.d random variables, all distributed like a random variable
O. At an instant of gate opening, only one gate opens, and it is gate j with probability

pj > 0, where
n
∑

j=1
pj = 1. During intervals between successive gate openings, particles

arrive according to a random process. Gates are closed almost all the time. When gate j
(the gate in front Qj) opens, all particles present in Qj are instantaneously transferred to
Qj+1, j = 1, . . . , n− 1, where they form a larger cluster with the particles already residing
there. When the last gate (gate n) opens, all particles present in Qn simultaneously leave
the system. This extension of the model allows for the analysis of systems where the times
between gate openings are not necessarily Exponentially distributed (as in the classical
ASIP) but rather generally. For example, consider a road traffic between traffic lights, or
a marine traffic through a canal with several locks, where the evolution of each system is
governed by Deterministically distributed time intervals.

The classical ASIP model was further investigated and analyzed by the above au-
thors [29–31]. Recently, Boxma, Kella and Yechiali [32] extended the investigation of ASIP
models to the case where the gate opening process follows a Markov renewal process and
investigated workload distributions in these queueing networks [33]. In a recent study [34],
various key performance measures were analyzed, where a general process controls the
gate inter-opening times, and particles arrive to the first site between gate openings.

The current work considers an ASIP-type model with a general arrival process as
described above. First, we assume in Section 2 that arrivals occur to the first site only,
expand the study done in [31] to a G-ASIP, and derive a formula for calculating the site
occupancy probabilities in a homogeneous G-ASIP [34]. We show that these probabilities
are functions of both the site index, as well as the inward flux rate (λ), thus extending and
refining the result presented in [31], where those probabilities are presented as functions
of the site index only. Numerical results illustrate the dependence of a site’s occupancy
probability on the inward flux rate λ. A refined formula for the conditional mean occu-
pancy in each site is also derived. It is further shown that, in the case where the arrival
process to the first site is Poisson with rate λ, the following interesting property holds
P(site k is occupied | λ = 1) = P(site k + 1 is occupied | λ→ ∞).

For the classical ASIP [28], a tedious successive substitution approach was constructed
for the derivation of the PGF of site occupancies; however, due to the complexity of the
formulas, explicit expressions were derived for networks with n = 2 and n = 3 sites only.
In a generalized ASIP studied in [32], the PGF was explicitly calculated only for a network
with n = 2 sites. In Section 3, we assume that arrivals occur to all sites and develop
an innovative matrix solution approach to derive the multidimensional PGF of the site
occupancies, an approach replacing the tedious successive substitution solution method
developed in [28]. An explicit result is derived for the PGF of a G-ASIP with n = 3 sites.
In addition, the case where the inter-gate opening intervals are Gamma distributed with
shape parameter α is thoroughly analyzed and explicit formulas are derived, including the
cases when α = 1 (Exponential) and when α→ ∞ (Deterministic). In Section 4, we extend
the analysis to a system with n = 4 sites and calculate its PGF. The main contribution in

Section 5 is showing that the set of
(

2n
n

)
linear equations required to obtain the PGF of

an n-site G-ASIP can be first reduced by half into a set of
(

2n− 1
n

)
equations, and then

further reduced to a set of 2n − (n + 1) equations. The latter set can be additionally split
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into several smaller triangular sets. Moreover, a procedure is developed showing how to
derive the PGF of an (n + 1)-site G-ASIP from the solution obtained for an n-site network.

Finally, in Section 6, the mean site occupancies, and the mean total load of the first k
sites in an n-site system, with arrivals to all sites, are calculated. The results are compared
with those of the classical ASIP model [28].

2. Occupation Probabilities
2.1. Introduction

Let Xk be the number of particles occupying site k, (k = 1, 2, . . . , n). The probability
that site k is occupied had been first studied in [29] for the classical ASIP. It was demon-
strated, via Monte Carlo simulations, that the asymptotic occupation probabilities for a
homogeneous ASIP where particles arrive at Poisson rate λ to the first site only and where
gate k opens, independently of other gates, every Exponential (µk) time. When λ = µk = 1
it was shown that the above probability exhibits a power law decay like k−0.5. Namely, at
steady state, the probability that site k is occupied decreases like k0.5. In a later study [31]
this result was analytically calculated, and it was shown (Equation (6)) there that

lim
k→∞

P(Xk > 0) ≈ 1√
πk

(1)

It was also argued that Equation (1) is universal in a stronger sense, as it is independent
even of the arrival rate λ, where ‘≈’ denotes asymptotic equivalence to leading order in k.
This result led to the immediate conclusion that the conditional mean occupancy of site k is
given by

E[Xk| > Xk0] ≈ λ

µ

√
πk (2)

However, we assert that λ 6= 1, P(Xk > 0) as well as E[Xk|Xk > 0] are functions
of the arrival rate λ. First, in the case that λ → 0, the term P(Xk > 0) should tend to 0,
whereas the approximation in Equation (1) does not satisfy this condition. Furthermore,
the conditional mean occupancy must satisfy that E[Xk|Xk > 0] ≥ 1 for any arrival rate,
in particular when λ→ 0. Yet, Equation (2) does not satisfy this quality either.

We claim that, while P(Xk > 0) ≈ 1√
πk

is a good approximation for the site occupan-
cies when the inward rate of arrival is λ = 1, a corrected formula of P(Xk > 0) depends
on the income flux λ. We derive an explicit formula for P(Xk > 0) for all cases of λ. As a
result, we also adjust Formula (2) and present an explicit result (depending on λ) for the
conditional mean occupancy of site k.

Denote by Ik the indicator occupancy of site k. That is, Ik =

{
1 Xk > 0
0 Xk = 0

, and denote by

Pλ(Ik = 1) ≡ Pλ(k) the two-variable occupancy function (discrete variable k and continuous
variable λ). Viewing Pλ(k) as a function of two variables gives a deeper insight into this
complex model. We show the interesting relation: Pλ=1(k) = lim

λ→∞
Pλ(k + 1), which has two

significant implications. First, the use of the latter relation simplifies the calculation of P1(k)
since it releases Pλ(k) from its stochastic dependents on the inward flux. The implication of
λ→ ∞ is that the first site is always occupied. Thus, the probability of site occupancies is
dependent on gate openings only. Second, we show that Pλ(k) is a monotone increasing
function of λ with an upper bound when λ→ ∞, which is equal to P1(k− 1). Furthermore,
we show that 1√

π(k−1+ 1
λ )+

1
λ2

is a more accurate approximation for Pλ(k) for λ ranging

from 0 to infinity and leads to a refined result for the conditional mean occupancy.

2.2. Laws of Motion in an n-Site G-ASIP

Consider an n-site G-ASIP. During the time between two successive gate openings,
arrivals occur to the first site only according to a general arrival process. In a steady state,
let A denote the number of arrivals to site Q1 during an inter-gate opening interval, and let
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ˆ
A(z) = E

[
zA], |z| ≤ 1, denote the corresponding probability-generating function (PGF).

Let Xj, j = 1, . . . , n denote the number of particles (occupancy) in site j right after a gate

opening, and let X(r)
j denote the number of particles in Qj right after the rth gate opening.

Let A(r) be the number of arrivals to site j during the interval between the (r − 1)th and
rth gate openings. Let G(z1, . . . , zn) = E

[
z1

X1 · · · zn
Xn
]
,
∣∣zj
∣∣ ≤ 1 be the PGF of the joint

probability mass function of the site occupancies at steady state.
The occupancies Law of Motion yields
If gate 1 opens at the (r + 1)st gate opening, then:

X(r+1)
1 = 0, X(r+1)

2 = X(r)
1 + A(r+1) + X(r)

2 , . . . ., X(r+1)
n = X(r)

n

If gate 2 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1), X(r+1)
2 = 0, X(r+1)

3 = X(r)
2 + X(r)

3 , . . . , X(r+1)
n = X(r)

n

If gate j opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1), X(r+1)
2 = X(r)

2 , . . . , X(r+1)
j = 0,X(r+1)

j+1 = X(r)
j + X(r)

j+1 , . . . , X(r+1)
n = X(r)

n

If gate n opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1), X(r+1)
2 = X(r)

2 , X(r+1)
3 = X(r)

3 , . . . , X(r+1)
n = 0

In steady state we obtain

G(z1, z2, . . . , zn) = E
[
z1

X1 · · · zn
Xn
]

= p1
ˆ
A(z2, z2, z3, . . . . zn)G(z2, z2, z3, . . . . zn) + p2

ˆ
A(z1, z3, . . . , zn)G(z1, z3, . . . , zn)

+ . . . . .+pn
ˆ
A(z1, z2, . . . , zn−1)G(z1, z2, . . . , zn−1)

(3)

Let
→
z = (z1, z2, . . . , zn), and let

→
z k =

z1, z2, . . . , zk−1, zk+1︸︷︷︸
k−th position

, zk+1 , . . . , zn

,

k = 1, 2, . . . , n− 1 and
→
z n = (z1, z2, . . . , zn−1 ). Then, Equation (3) becomes

G
(→

z
)
= p1

ˆ
A
(→

z 1

)
G
(→

z 1

)
+ p2

ˆ
A
(→

z 2

)
G
(→

z 2

)
+ . . . + pn

ˆ
A
(→

z n

)
G
(→

z n

)
(4)

Obtaining an expression for G
(→

z
)

allows us to explicitly calculate the occupation prob-
ability P(Xk > 0) for any k in an n-size G-ASIP. The optimal allocation of pj, j = 1, . . . , n
with the constraint ∑n

j=1 pj = 1 of the G-ASIP was studied in [32,34] and it was shown that

a homogeneous G-ASIP where pj =
1
n , j = 1, . . . , n, is optimal. In what follows, we study

the homogeneous G-ASIP.

2.3. Calculation of Pλ(k)

Utilizing Equation (4) enables a simple calculation of Pλ(k) for any inter-gate opening
process and any arrival rate. It is simpler to use in the sequel the ‘emptiness function’
Qλ(k) ≡ Pλ(Ik = 0).

The site occupancies PGF, G(z1, z2, . . . , zn), can be applied in order to obtain the
probability that site k is empty. That is, substituting zk = 0 and zj = 1 for all j 6= k gives

G

1, . . . , 1, 0︸︷︷︸
k

, 1, . . . , 1

 = Qλ(k).
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Theorem 1. In a homogeneous n-site G-ASIP where arrivals occur at the first site only, the
probability that site k is empty is

Qλ(1) =
1

n− (n− 1)
ˆ
A(0)

Qλ(k) =

(
2k−2, 2k−3, · · · , 1,

ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

)
k

∏
j=2

1
2j−1 Ck,j


1
1
...

Qλ(1)

, k ≥ 2

where,

Ck,j =



2j−2 0 · · · 0

0
. . . 0 · · ·

...
... 0 2j−2 0 · · · 0

... 0 2j−3 · · · 2 1
ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

...
. . . . . . 4 2 2

ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

. . .
...

...

2j−3 2j−3
ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

0 · · · 0 2j−2
ˆ
A(0)

n−(n−1)
ˆ
A(0)


To simplify, setting

Cj =


2j−3 · · · 2 1

0
. . . 2

...
. . .

...
0 · · · 0 2j−3


→
Aj =



ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

2
ˆ
A

2

(0)

n−(n−1)
ˆ
A(0)

...

2j−2
ˆ
A(0)

n−(n−1)
ˆ
A(0)


gives a compact presentation

Ck,j =


2k−2 Ik−j 0 0

0 Cj
→
Aj

0 0
...


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Proof. Let
→
0 (n,k) =

1, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
k︸ ︷︷ ︸

n

, then substituting
→
z =

→
0 (n,n−1) in Equation (4)

yields

G(0) = Qλ(1) =
1

n− (n− 1)
ˆ
A(0)

By substituting
→
z =

→
0 (n,k), k = 1, . . . , n in Equation (4), a linear set is obtained



2n−2 −1 0 · · · 0

0 2n−2 −1
...

...
. . . . . . −1 0

2n−2 −
ˆ
A(0)

0 · · · 0 n− (n− 1)
ˆ
A(0)





G
(→

0 (n,1)

)
G
(→

0 (n,2)

)
...

G
(→

0 (n,n)

)


=



1

G
(→

0 (n−1,1)

)
...

ˆ
A(0)G

(→
0 (n−1,n−1)

)


The above yields a recursive formula,

G
(→

0 (n,1)

)
G
(→

0 (n,2)

)
...

G
(→

0 (n,n)

)


=

1
2n−1 Cn



1

G
(→

0 (n−1,1)

)
...

G
(→

0 (n−1,n−1)

)


By using the initial condition Qλ(1) = 1

n−(n−1)
ˆ
A(0)

, the proof is complete. �

Theorem 2. In a homogeneous n-site G-ASIP where arrivals occur at the first site only with
λ→ ∞, the emptiness probabilities are given by

Qλ(1) =
1
n

Qλ(k) =
(
2k−2, · · · , 4, 2, 1

) k
∏
j=2

1
2j−1 Ck,j


1
1
...
1

+ 1
2 , k ≥ 2

where,

Ck,j =

(
2k−2 Ik−j 0

0 Cj

)
, Cj =


2j−3 · · · 2 1

0
. . . 2

...
. . .

...
0 · · · 0 2j−3


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Proof. Applying Theorem 1 when λ→ ∞ (namely, the probability of no arrivals between

two gate openings tends to zero) leads to lim
λ→0

ˆ
A(0)(λ) = 0, which leads to

Qλ(1) =
1
n

Qλ(k) =
(
2k−2, · · · , 4, 2, 1

) k

∏
j=2

1
2j−1 Cj


1
1
...
1
n


where,

Ck,j =

(
2k−2 Ik−j 0

0 Cj

)
, Cj =


2j−3 · · · 2 1

0
. . . 2

...
. . .

...
0 · · · 0 2j−3


The proof is complete. �

The result Qλ(1) = 1
n deserves further explanation: When λ → ∞, an unlimited

number of particles accumulate in front of Q1. Right after the opening of gate 1, Q1
becomes empty, and will stay empty until another gate opening occurs. At that instant, all
accumulated particles will move to Q1. At the next gate opening Q1 opens (and becomes
empty) with probability 1

n , which leads to the above result.

2.4. Calculation of Pλ(k) for the Classical ASIP

We now derive an explicit formula for the site occupancy probabilities for the case when
gate k opens independently every Exponential (µk = 1) time, k = 1, 2, . . . , n,
(µ = ∑n

k=1 µk = n) and the arrival is Poisson (λ). We further show that lim
λ→∞

Pλ(k + 1) = P1(k).

Substituting
ˆ
A(0) = µ

µ+λ = n
n+λ in Theorem 1 yields

Qλ(1) =
n + λ

n(λ + 1)

Qλ(k) =
(

2k−2, · · · , 2, 1, n
(λ+1)(λ+n)

) k
∏
j=2

1
2j−1 Cj


1
1
...

n+λ
n(λ+1)

, k ≥ 2

where,

Cj =



2j−2 0 · · · 0

0
. . . 0 · · ·

...
... 0 2j−2 0 · · · 0

... 0 2j−3 · · · 2 1 n
(λ+1)(λ+n)

...
. . . . . . 4 2 2n

(λ+1)(λ+n)
. . .

...
...

2j−3 2j−3n
(λ+1)(λ+n)

0 · · · 0 2j−2

λ+1


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To illustrate, we calculate the occupancy probabilities of the first five sites in Ap-
pendix A and get:

Qλ(1) =
n + λ

n(λ + 1)
, Qλ(2) =

1
2

(
1 +

λ + 1

(λ + 1)3

)
, Qλ(3) =

1
8

(
5 +

λ + 3

(λ + 1)3

)
,

Qλ(4) =
1

16

(
11 +

λ + 3

(λ + 1)3 +
2

(λ + 1)4

)

Qλ(5) =
1

128

(
93 +

2(λ + 5)

(λ + 1)5 +
10(λ + 2)

(λ + 1)4 +
5

(λ + 1)2

)
It is clearly seen that the site occupancy probabilities are functions of the inward flux

and have an upper limit for the probability Pλ(k) as λ → ∞. This follows, since Qλ(k) is
a monotone decreasing function of λ for every k. It is readily seen that lim

λ→∞
Pλ(2) = 1

2 ,

lim
λ→∞

Pλ(3) = 3
8 , lim

λ→∞
Pλ(4) = 5

16 and lim
λ→∞

Pλ(5) = 35
128 . On the other hand, as λ becomes

small and tends to zero, lim
λ→0

Pλ(k) = 0 for all k.

Studying the probabilities Qλ(k) as functions λ, we observe that direct substitution in
Qλ(k) of λ = 1 and of λ → ∞ in the first six sites, leads to an interesting relationship, as
depicted in Table 2, namely lim

λ→∞
Pλ(k + 1) = P1(k), k ≥ 2.

Table 2. Qλ(k) when λ = 1 and when λ→ ∞ for the first six sites.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 34 
 

 

( )( )

( )( )

( )( )

2

2

3

3
3

2

2 0 0
0 0

0 2 0 0

0 2 2 1
1
24 2

1

22
1

20 0
1

j

j

j

j

j
j

j

n
n

nC
n

n
n

λ λ

λ λ

λ λ

λ

−

−

−

−
−

−

 
 
 
 
 
 
 + +
 
 =  + + 
 
 
 
 + +
 
 
 + 


  

 

 

  

  



 

To illustrate, we calculate the occupancy probabilities of the first five sites in Appen-
dix A and get:  

( ) ( )
1

1
nQ
nλ

λ
λ
+=
+ , 

( )
( )3

1 12 1
2 1

Qλ
λ
λ

 += + 
 +  , 

( )
( )3

1 33 5
8 1

Qλ
λ
λ

 += + 
 +  , 

( )
( ) ( )3 4

1 3 24 11
16 1 1

Qλ
λ
λ λ

 += + + 
 + +   

( ) ( )
( )

( )
( ) ( )5 4 2

2 5 10 21 55 93
128 1 1 1

Qλ
λ λ

λ λ λ

 + +
= + + + 

 + + +   
It is clearly seen that the site occupancy probabilities are functions of the inward flux 

and have an upper limit for the probability 𝑃ఒ(𝑘) as 𝜆 → ∞. This follows, since 𝑄ఒ(𝑘) is 
a monotone decreasing function of 𝜆 for every 𝑘. It is readily seen that limఒ→ஶ 𝑃ఒ(2) = ଵଶ , limఒ→ஶ 𝑃ఒ(3) = ଷ଼ , limఒ→ஶ 𝑃ఒ(4) = ହଵ଺  and limఒ→ஶ 𝑃ఒ(5) = ଷହଵଶ଼ . On the other hand, as 𝜆  becomes 
small and tends to zero, limఒ→଴ 𝑃ఒ(𝑘) = 0 for all k. 

Studying the probabilities 𝑄ఒ(𝑘) as functions 𝜆, we observe that direct substitution 
in 𝑄ఒ(𝑘) of 𝜆 = 1 and of 𝜆 → ∞ in the first six sites, leads to an interesting relationship, 
as depicted in Table 2, namely limఒ→ஶ 𝑃ఒ(𝑘 + 1) = 𝑃ଵ(𝑘), 𝑘 ≥ 2. 
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93128 𝑘 = 6 
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Figure 2 below depicts the behavior of Pλ(k) (abbreviated P(k)) as function of λ for
k = 2, 3, 4, 5, and exhibits the corresponding upper bound.

The relation lim
λ→∞

Pλ(k + 1) = P1(k) simplifies the calculation of P1(k) since it releases

Pλ(k) from its dependents on the inward flux. The implication of λ → ∞ is that the first
site is always occupied and allows the use of Theorem 2 to calculate P1(k).

While it was demonstrated in [31] that 1√
πk

is a good approximation for the site
occupancy probabilities when the number of sites become large, independent of λ, Monte
Carlo simulations show that for 0 < λ < 1 the occupancy probabilities graph fluctuates
between 0 and 1√

πk
. For λ > 1 and as λ tends to infinity, the occupancy graph sways away

from 1√
πk

.
Following extensive simulations of the G-ASIP model with varying arrival rates λ, we

propose a refined and better approximation for Pλ(k), namely, Pλ(k) ≈ 1√
π(k−(1− 1

λ ))+
1

λ2

.
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In the following set of results obtained using Monte Carlo simulations, we compare
the two approximations for five different arrival rates λ. Figure 3 below shows that for
arrival rates λ = 8, λ = 4, λ = 1, λ = 1

2 and λ = 1
4 the simulated occupancy probabilities

is better approximated by 1√
π(k−(1− 1

λ ))+
1

λ2

rather than 1√
πk

.

Figure 4 shows that the suggested approximation of Pλ(k) is an increasing function
of the variable λ as should be expected, and it is a decreasing function of the index k. It
also shows, as its contours suggest, the very interesting property that P∞(k + 1) = P1(k).
For example, when λ = 1 the probability that site k = 4 is occupied is P1(4) = 35

128 ≈ 0.273,
while the approximated value is 1√

4π+1
≈ 0.2715.

With a better approximation for Pλ(k), we now present a refined formula for the
conditional mean occupancy of site k, namely,

E[Xk|Ik = 1] ≈ λ

√
π

(
k−

(
1− 1

λ

))
+

1
λ2 (5)
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Figure 3. Monte Carlo simulations comparing the approximations 1√
π(k−(1− 1

λ ))+
1
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πk

As

shown by the simulations, 1√
πk

is a good approximation when λ = 1 but it loses its accuracy as

λ shifts away from 1. The two-dimensional function Pλ(k) ≈ 1√
π(k−(1− 1

λ ))+
1

λ2

is better suited to

approximate the site’s occupancy probabilities.
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Equation (10) in [31] claims that E[Xk|Ik = 1] = E[Xk|Xk > 0] ≈ λ
µk

√
πk, imply-

ing that, when µk = 1, E[Xk|Ik = 1] = λ
√

πk. However, Equation (10) infers that
lim
λ→0

E[Xk|Xk > 0] = 0, which cannot be true since the conditional mean occupancy of

site k must satisfy E[Xk|Ik = 1] ≥ 1 for all λ > 0. If the Poisson arrival rate is low, it should
be expected that most sites will be vacant, and those who are occupied will be occupied by
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a single particle only. The limit lim
λ→0

E[Xk|Xk > 0] = 1 is to be expected. Namely, the limit

lim
λ→0

[Xk|Ik = 1] = lim
λ→0

λ
Pλ(k)

= 1 should be obtained. This condition demands that for very

small λ (λ� 1) the occupancy probability function should satisfy Pλ(k) ∼ λ.
In conclusion, equipped with analytical calculations, as well as with Monte Carlo

observations, we can claim that the function Pλ(k) must satisfy:

1. P∞(k + 1) = P1(k).
2. lim

λ→0
Pλ(k) = λ.

3. Pλ(k) decreases like k0.5.

Our suggested corrected two-variable site occupancy function approximation is

Pλ(k) ≈
1√

π
(

k−
(

1− 1
λ

))
+ 1

λ2

This approximation is also valid for smaller values of k and satisfies conditions 1, 2
and 3 above.

This leads to the corrected conditional mean occupancy

E[Xk|Ik = 1] ≈ λ

√
π

(
k−

(
1− 1

λ

))
+

1
λ2

2.5. Site Occupancy Probabilities When Arrivals Occur to All Sites

Consider a 3-site G-ASIP where arrivals occur to all sites. The site occupancy probabil-
ities are (the derivation is given in Appendix B).

P(I1 = 0) =
p1

1− (p2 + p3)
ˆ
A(0)

P(I2 = 0) =
p1

2 p2
ˆ
A(0)

ˆ
A(0, 0)(

1− (p1 + p3)
ˆ
A(0, 0)

)(
1− (p2 + p3)

ˆ
A(0)

)(
1− p3

ˆ
A(1, 0)

) +
p2

1− p3
ˆ
A(1, 0)

P(I3 = 0) = p3

1−p1
ˆ
A(1,1,0)

+ p1
2 p2

2 p3
ˆ
A(0)

ˆ
A(0,0)

ˆ
A(0,0,0)

ˆ
A(1,0,0)(

1−p1
ˆ
A(1,1,0)

)(
1−p2

ˆ
A(1,0,0)

)(
1−(p1+p2)

ˆ
A(0,0,0)

)(
1−(p2+p3)

ˆ
A(0)

)(
1−(p1+p3)

ˆ
A(0,0)

)

+

p2
ˆ
A(1,0,0)p3

ˆ
A(1,0)

 p1
2 p2

ˆ
A(0)

ˆ
A(0,0)(

1−(p1+p3)
ˆ
A(0,0)

)(
1−(p2+p3)

ˆ
A(0)

)(
1−p3

ˆ
A(1,0)

)+ p2

1−p3
ˆ
A(1,0)


(

1−p1
ˆ
A(1,1,0)

)(
1−p2

ˆ
A(1,0,0)

)
The construction of the set of equations for calculating site occupancy probabilities for

a 4-site G-ASIP where arrivals occur to all sites are presented in Appendix C.

3. Site Occupancy PGF in a G-ASIP with Arrivals to All Sites: n = 3

As indicated in the introduction, the PGF of the joint probability mass function of the
site occupancies of a G-ASIP network was calculated in [32] only for the case of n = 2. In
this section we extend the analysis and calculate the PGF for a 3-site G-ASIP. Arrivals occur
at all sites Q1, Q2 and Q3 during the time between two successive gate openings with a
general arrival process. In a steady state, let Aj, j = 1, 2, 3 denote the number of arrivals to

site Qj during an inter-gate opening interval and let
ˆ
A(z1, z2, z3) = E

[
z1

A1 z2
A2 z3

A3
]

denote
the corresponding joint PGF. Let Xj, j = 1, 2, 3 denote the number of particles (occupancy)
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in site j right after a gate opening, and let X(r)
j denote the number of particles in Qj right

after the rth gate opening. Let A(r)
j be the number of arrivals to site j during the interval

between the (r− 1)th and rth gate openings. Let G(z1, z2, z3) = E
[
z1

X1 z2
X2 z3

X3
]
,
∣∣zj
∣∣ ≤ 1

be the PGF of the joint probability mass function of the sites’ occupancies at steady state.

3.1. Successive Substitutions

The laws of motion of an n-site G-ASIP were presented in Section 2.2. Substituting
n = 3 yields

G
(→

z
)
= p1

ˆ
A
(→

z 1

)
G
(→

z 1

)
+ p2

ˆ
A
(→

z 2

)
G
(→

z 2

)
+ p3

ˆ
A
(→

z 3

)
G
(→

z 3

)
(6)

The PGF of the joint probability mass function of the site occupancies of a 3-site
classical ASIP was calculated in [28] using a successive substitution method. The tedious
successive substitution procedure to calculate G(z1, z2, z3) is detailed in Appendix C. The
final result is:

G(z1, z2, z3) =

p1
ˆ
A(z2, z2, z3)



p2
1 p2

2 p3
ˆ
A(z3,z3,z3)

ˆ
A(z3,z3)

ˆ
A(z3)

ˆ
A(z2,z3,z3)((

1−(p2+p3)
ˆ
A(z3)

))(
1−(p1+p3)

ˆ
A(z3,z3)

)(
1−(p1+p2)

ˆ
A(z3,z3,z3)

)
(

1−p1
ˆ
A(z2,z2,z3)

)(
1−p2

ˆ
A(z2,z3,z3)

)

+

p2
1 p2

2 p3
ˆ
A(z2,z3)

ˆ
A(z3)

ˆ
A(z3,z3)

ˆ
A(z2,z3,z3)(

1−(p1+p3)
ˆ
A(z3,z3)

)(
1−(p2+p3)

ˆ
A(z3)

)+ p1 p2
2 p3

ˆ
A(z2,z3)

ˆ
A(z2)

ˆ
A(z2,z3,z3)

1−(p2+p3)
ˆ
A(z2)(

1−p1
ˆ
A(z2,z2,z3)

)(
1−p2

ˆ
A(z2,z3,z3)

)(
1−p3

ˆ
A(z2,z3)

)

+

p1 p2 p3
ˆ
A(z2,z2)

ˆ
A(z2)(

1−(p1+p3)
ˆ
A(z2,z2)

)(
1−(p2+p3)

ˆ
A(z2)

)

1−p1
ˆ
A(z2,z2,z3)


+

p2
ˆ
A(z1, z3, z3)



p2
1 p2 p3

ˆ
A(z3,z3,z3)

ˆ
A(z3,z3)

ˆ
A(z3)(

1−(p1+p2)
ˆ
A(z3,z3,z3)

)((
1−(p2+p3)

ˆ
A(z3)

))(
1−(p1+p3)

ˆ
A(z3,z3)

)(
1−p2

ˆ
A(z1,z3,z3)

)

+

p2
1 p2 p3

ˆ
A(z1,z3)

ˆ
A(z3)

ˆ
A(z3,z3)(

1−(p1+p3)
ˆ
A(z3,z3)

)(
1−(p2+p3)

ˆ
A(z3)

)+ p1 p2 p3
ˆ
A(z1,z3)

ˆ
A(z1)

1−(p2+p3)
ˆ
A(z1)(

1−p3
ˆ
A(z1,z3)

)(
1−p2

ˆ
A(z1,z3,z3)

)


+

p3
ˆ
A(z1, z2)


p2

1 p2
ˆ
A(z2)

ˆ
A(z2,z2)(

1−(p1+p3)
ˆ
A(z2,z2)

)(
1−(p2+p3)

ˆ
A(z2)

)+ p1 p2
ˆ
A(z1)

1−(p2+p3)
ˆ
A(z1)

1−p3
ˆ
A(z1,z2)



(7)

3.2. Matrix Representation
3.2.1. Linear Equations

We argue and show that the tedious successive substitution process used to derive
the explicit solution of Equation (7), as depicted by the tree in Figure 2, can be modified
and simplified with a formulated matrix representation approach leading to a set of linear
equations,

Proposition 1. There are 20 distinct variables G
(
zi, zj, zk

)
, 1 ≤ i ≤ j ≤ k ≤ 4, z4 := 1 in

Equation (6).
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Proof. Consider the 3 variables zi, zj, zk, as well as the digit 1, such that 1 ≤ i ≤ j ≤ k ≤ 4.
The number of vertices and leaves that exist in the set{

G
(
zi, zj, zk

)∣∣ 1 ≤ i ≤ j ≤ k ≤ 4, z4 := 1
}

is equal to the number of ways one can create distinct 3-digit numbers from the digits

{1, 2, 3, 4} with repetition and in increasing order. There are D(4, 3) =

(
4− 1 + 3

4− 1

)
=(

6
3

)
= 20 possible ways. �

With a straightforward substitution in Equation (6), one can generate 20 linear equa-
tions of the variables G

(
zi, zj, zk

)
, 1 ≤ i ≤ j ≤ k ≤ 4, z4 := 1 .

The solution derived from this set can then be substituted in Equation (6) to finalize
the process.

Still, solving a 20× 20 linear equations set can be tedious in itself. Thus, we take a step
forward and present the following improving approach.

Proposition 2. There are only 10 variables needed to derive
{

G
(
zi, zj, zk

)∣∣1 ≤ i ≤ j ≤ k ≤ 3
}

.

Proof. The number of vertices and leaves that exist in the set{
G
(
zi, zj, zk

)∣∣1 ≤ i ≤ j ≤ k ≤ 3
}

is equal to the number of ways one can create a 3-digit number from the digits {1, 2, 3}

with repetition and in increasing order. There are D(3, 3) =
(

5
2

)
= 10 possible ways. �

3.2.2. Solution

We bring to use Equation (6):

G(z1, z2, z3) = p1
ˆ
A(z2, z2, z3)G(z2, z2, z3) + p2

ˆ
A(z1, z3, z3)G(z1, z3, z3) + p3

ˆ
A(z1, z2)G(z1, z2)

and apply the following eight substitutions, which yield eight linear equations as follows:

z2 = 1, z3 = 1 → G(z1)
z1 = z2, z2 = 1, z3 = 1 → G(z2)

z2 = z1, z3 = 1 → G(z1, z1)
z1 = z2, z3 = 1 → G(z2, z2)
z3 = 1 → G(z1, z2)

z2 = z1, z3 = 1 → G(z1, z1, z2)
z3 = z2 → G(z1, z2, z2)
z1 = z2, z3 = z2 → G(z2, z2, z2)

Consequently, we obtain the following set of eight linear equations:
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G(z1) = p1 + p2
ˆ
A(z1)G(z1) + p3

ˆ
A(z1)G(z1)

G(z2) = p1 + p2
ˆ
A(z2)G(z2) + p3

ˆ
A(z2)G(z2)

G(z1, z1) = p1
ˆ
A(z1, z1)G(z1, z1) + p2

ˆ
A(z1)G(z1) + p3

ˆ
A(z1, z1)G(z1, z1)

G(z2, z2) = p1
ˆ
A(z2, z2)G(z2, z2) + p2

ˆ
A(z2)G(z2) + p3

ˆ
A(z2, z2)G(z2, z2)

G(z1, z2) = p1
ˆ
A(z2, z2)G(z2, z2) + p2

ˆ
A(z1)G(z1) + p3

ˆ
A(z1, z2)G(z1, z2)

G(z1, z1, z2) = p1
ˆ
A(z1, z1, z2)G(z1, z1, z2) + p2

ˆ
A(z1, z2, z2)G(z1, z2, z2) + p3

ˆ
A(z1, z1)G(z1, z1)

G(z1, z2, z2) = p1
ˆ
A(z2, z2, z2)G(z2, z2, z2) + p2

ˆ
A(z1, z2, z2)G(z1, z2, z2) + p3

ˆ
A(z1, z2)G(z1, z2)

G(z2, z2, z2) = p1
ˆ
A(z2, z2, z2)G(z2, z2, z2) + p2

ˆ
A(z2, z2, z2)G(z2, z2, z2) + p3

ˆ
A(z2, z2)G(z2, z2)

The latter set can be solved directly in a matrix form H · g = p, where

H =

1−
(

p2 + p3
) ˆ

A
(
z1
)

0 0 0 0 0 0 0

0 1−
(

p2 + p3
) ˆ

A
(
z2
)

0 0 0 0 0 0

−p2
ˆ
A
(
z1
)

0 1−
(

p1 + p3
) ˆ

A
(
z1, z1

)
0 0 0 0 0

0 −p2
ˆ
A
(
z2
)

0 1−
(

p2 + p3
) ˆ

A
(
z2, z2

)
0 0 0 0

−p2
ˆ
A
(
z1
)

0 0 −p1
ˆ
A
(
z2, z2

)
1− p3

ˆ
A
(
z1, z2

)
0 0 0

0 0 −p3
ˆ
A
(
z1, z1

)
0 0 1− p1

ˆ
A
(
z1, z1, z2

)
−p2

ˆ
A
(
z1, z2, z2

)
0

0 0 0 0 −p3
ˆ
A
(
z1, z2

)
0 1− p2

ˆ
A
(
z1, z2, z2

)
−p1

ˆ
A
(
z2, z2, z2

)
0 0 0 −p3

ˆ
A
(
z2, z2

)
0 0 0 1−

(
p1 + p2

) ˆ
A
(
z2, z2, z2

)



g =



G(z1)
G(z2)

G(z1, z1)
G(z2, z2)
G(z1, z2)

G(z1, z1, z2)
G(z1, z2, z2)
G(z2, z2, z2)


and p =



p1
p1
0
0
0
0
0
0


.

In the Section 3.2.3, we further reduce the computational effort by splitting the 8 × 8
linear set into two subsets of order 2 × 2 and 3 × 3, respectively.

3.2.3. Matrix Representation Simplification

The 8 × 8 linear set constructed in Section 3.2.2 can further be contracted into two
smaller systems of triangular matrices, one of order 2 × 2 the other of order 3 × 3.

G(z) is derived immediately from Equation (6)

G(z) = p1

1−(p2+p3)
ˆ
A(z)

, z = z1, z2, z3

G(z2, z2) and G(z1, z2) are obtained from1− (p1 + p3)
ˆ
A(z2, z2) 0

−p1
ˆ
A(z2, z2) 1− p3

ˆ
A(z1, z2)

(G(z2, z2)
G(z1, z2)

)
=

p2
ˆ
A(z2)G(z2)

p2
ˆ
A(z1)G(z1)


Finally, G(z1, z1, z2), G(z1, z2, z2) and G(z2, z2, z2) are calculated by
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
1− p1

ˆ
A(z1, z1, z2) −p2

ˆ
A(z1, z2, z2) 0

0 1− p2
ˆ
A(z1, z2, z2) −p1

ˆ
A(z2, z2, z2)

0 0 1− (p1 + p2)
ˆ
A(z2, z2, z2)


G(z1, z1, z2)

G(z1, z2, z2)
G(z2, z2, z2)

 =


p3

ˆ
A(z1, z1)G(z1, z1)

p3
ˆ
A(z1, z2)G(z1, z2)

p3
ˆ
A(z2, z2)G(z2, z2)


where G(z1, z1) is calculated in step 2 by substituting z2 = z1 in the variable G(z2, z2).

Now, with an appropriate substitution in G(z1, z1, z2), the PGF G(z2, z2, z3) is obtained.
Similarly, G(z1, z3, z3) is obtained from G(z1, z2, z2). Finally, by substituting the above as
well as G(z1, z2), in (6), the explicit solution given in Equation (7) is rederived.

Proposition 3. Only eight variables are required to solve
{

G
(
zi, zj, zk

)∣∣1 ≤ i ≤ j ≤ k ≤ 3
}

.

Proof. Suppose one obtains an explicit formula for G(z1, z2, z2). Then, by substituting
z2 = z3, G(z1, z3, z3) is obtained. Furthermore, by substituting z1 = z2, the PGF G(z2, z2, z3)
is given. Thus, for a complete solution, one needs only eight PGF variables, namely,
G(z1), G(z1, z1), G(z1, z2), G(z1, z1, z2), G(z1, z2, z2), G(z2, z2, z2) together with G(z2) and
G(z2, z2).

These eight variables in eight linear equations construct two distinct triangular linear
sets of order 3 × 3 and 2 × 2, leading to a unique solution. �

To summarize, instead of originally having a 20 × 20 size linear system, one can
solve the problem with only eight linear equations that can be further decomposed to
smaller subsets.

3.2.4. Arrivals to the First Site Only and Gamma Distributions Inter-Gate Openings Times

In the special case that particles arrive to site Q1 only, such that the PGF of the number

of arrivals per gate opening is given by
ˆ
A(z1) =

ˆ
A(z1, 1, 1), Equation (7) becomes simpler:

G(z1, z2, z3) =

p3
1 p2

2 p3
ˆ
A

3
(z3)

ˆ
A

2
(z2)(

1−(p2+p3)
ˆ
A(z3)

)(
1−(p1+p3)

ˆ
A(z3)

)(
1−(p1+p2)

ˆ
A(z3)

)+
p2

1 p2 p3
ˆ
A

3
(z2)

1−p3
ˆ
A(z2)−p1 p2

ˆ
A

2
(z2)


(

1−(p1+p3)
ˆ
A(z2)

)(
1−(p2+p3)

ˆ
A(z2)

)
(

1−p1
ˆ
A(z2)

)(
1−p2

ˆ
A(z2)

)(
1−p3

ˆ
A(z2)

)
+

p2
1 p2

2 p3
ˆ
A

3
(z3)A(z1)(

1−(p2+p3)
ˆ
A(z3)

)(
1−(p1+p3)

ˆ
A(z3)

)(
1−(p1+p2)

ˆ
A(z3)

)+ p1 p2
2 p3

ˆ
A

3
(z1)

1−
ˆ
A(z1)(p2+p3)(

1−p2
ˆ
A(z1)

)(
1−p3

ˆ
A(z1)

)
+

p2
1 p2 p3

ˆ
A

2
(z2)A(z1)(

1−
ˆ
A(z2)(p2+p3)

)(
1−

ˆ
A(z2)(p1+p3)

)+ p1 p2 p3
ˆ
A

2
(z1)

1−
ˆ
A(z1)(p2+p3)

1−p3
ˆ
A(z1)

(8)

We now calculate explicit results for the wide family of Gamma distributed inter-
opening times.

The Family of Gamma Distributions as the Inter-Gate Openings Times

Suppose that the time O between two successive gate openings is Gamma distributed,

Γ(α, αµ), with density f (t) = e−αµt(αµ)αtα−1

Γ(α) and mean E[O] = α
αµ = 1

µ . We assume
that the arrival process during an inter-opening time interval is composed of three in-
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dependent Poisson processes, each with intensity λi to site i. Then, the PGF is given by

ˆ
A(z1, z2, z3) =

 αµ

αµ+
3
∑

i=1
λi(1−zi)


α

.

Substituting the above in Equation (7) for the 20 possible values of
ˆ
A(z1, z2, z3) leads

to an explicit expression for the PGF G(z1, z2, z3).

If particles arrive to site Q1 only, then (denoting λ1 = λ),
ˆ
A(z) =

(
αµ

αµ+λ(1−z)

)α
, so

that

G(z1, z2, z3) =

=





p3
1 p2

2 p3
(αµ)3α

(αµ+λ(1−z3))
3α

(αµ+λ(1−z2))
α

(αµ)α(
1− (p2+p3)(αµ)α

(αµ+λ(1−z3))
α

)(
1− (p1+p3)(αµ)α

(αµ+λ(1−z3))
α

)(
1− (p1+p2)(αµ)α

(αµ+λ(1−z3))
α

)+
p2

1 p2 p3

1− p3(αµ)α

(αµ+λ(1−z2))
α −

p1 p2(αµ)2α

(αµ+λ(1−z2))
2α


(

1− (p1+p3)(αµ)α

(αµ+λ(1−z2))
α

)(
1− (p2+p3)(αµ)α

(αµ+λ(1−z2))
α

)
((

1+
λ(1−z2)

αµ

)α

−p1

)((
1+

λ(1−z2)
αµ

)α

−p2

)((
1+

λ(1−z2)
αµ

)α

−p3

)


+

p2
1 p2

2 p3(αµ)3α

(αµ+λ(1−z3))
3α(

1− (p2+p3)(αµ)α

(αµ+λ(1−z3))
α

)(
1− (p1+p3)(αµ)α

(αµ+λ(1−z3))
α

)(
1− (p1+p2)(αµ)α

(αµ+λ(1−z3))
α

)+
p1 p2

2 p3(αµ)2α

(αµ+λ(1−z1))
2α

1− (p2+p3)(αµ)α

(αµ+λ(1−z1))
α(

(αµ+λ(1−z1))
α

(αµ)α
−p2

)(
1− p3(αµ)α

(αµ+λ(1−z1))
α

)


+

p2
1 p2 p3(αµ)2α

(αµ+λ(1−z2))
2α(

1− (p2+p3)(αµ)α

(αµ+λ(1−z2))
α

)(
1− (p1+p3)(αµ)α

(αµ+λ(1−z2))
α

)+
p1 p2 p3(αµ)α

(αµ+λ(1−z1))
α

1− (p2+p3)(αµ)α

(αµ+λ(1−z1))
α

(αµ+λ(1−z1))
α

(αµ)α
−p3



(9)

Note that Equation (9) generalizes the result obtained in [28] where
ˆ
A(z) = µ

µ+λ(1−z)
is the PGF of the Poisson (λ) number of arrivals to Q1 during an Exponential inter-opening

time with rate µ = µ1 + µ2 + µ3. In this case pi =
µi
µ , so that pi

ˆ
A
(
zj
)
= µi

µ+λ(1−zj)
. Similarly,

setting α = 1 in (9) yields Equation (40) in [28].

Deterministic Inter-Opening Times

When α→ ∞, the gates inter-opening time follows the Deterministic distribution. If

arrivals occur to the first site only the PGF
ˆ
A(z) =

(
1 + λ(1−z)

αµ

)−α
becomes

ˆ
A(z) = e−

λ(1−z)
µ

and Equation (9) becomes
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G(z1, z2, z3) =

=

p3
1 p2

2 p3e
λ(1−z2)

µe
λ(1−z3)

µ −(p2+p3)

e
λ(1−z3)

µ −(p1+p3)

e
λ(1−z3)

µ −(p1+p2)

+

p2
1 p2 p3

e
2λ(1−z2)

µ −p3−p1 p2


e

λ(1−z2)
µ −(p1+p3)

e
λ(1−z2)

µ −(p2+p3)

(
e

λ(1−z2)
µ −p1

)(
e

λ(1−z2)
µ −p2

)(
e

λ(1−z2)
µ −p3

)
+

p2
1 p2

2 p3e
λ(1−z1)

µe
λ(1−z3)

µ −(p2+p3)

e
λ(1−z3)

µ −(p1+p3)

e
λ(1−z3)

µ −(p1+p2)

+
p1 p2

2 p3

e
λ(1−z1)

µ −(p2+p3)(
e

λ(1−z1)
µ −p2

)(
e

λ(1−z1)
µ −p3

)
+

p2
1 p2 p3e

λ(1−z2)
µ −(p2+p3)

e
λ(1−z2)

µ −(p1+p3)

+
p1 p2 p3

e
λ(1−z1)

µ −(p2+p3)

e
λ(1−z1)

µ −p3

(10)

4. Site Occupancy PGF in a G-ASIP: n = 4

In this section, we apply the matrix approach introduced and utilized in Section 3 to
derive the PGF of a 4-site G-ASIP. A general arrival process occurs at all sites Q1, Q2, Q3

and Q4 during the time between two successive gate openings where
ˆ
A(z1, z2, z3, z4) is

the PGF of the number of arrivals to the sites. All other model assumptions are similar
to those in Section 3. G(z1, z2, z3, z4) = E

[
z1

X1 z2
X2 z3

X3 z4
X4
]
, |zi| ≤ 1 is the PGF of the site

occupancies.
In what follows, we derive an explicit solution for the PGF G(z1, z2, z3, z4).

4.1. Derivation

The multidimensional law of motion yields
If gate 1 opens at step r + 1:

X(r+1)
1 = 0, X(r+1)

2 = X(r)
1 + A(r+1)

1 + X(r)
2 + A(r+1)

2 , X(r+1)
3 = X(r)

3 + A(r+1)
3 , X(r+1)

4 = X(r)
4 + A(r+1)

4

If gate 2 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1)
1 , X(r+1)

2 = 0, X(r+1)
3 = X(r)

3 + A(r+1)
3 + X(r)

2 + A(r+1)
2 , X(r+1)

4 = X(r)
4 + A(r+1)

4

If gate 3 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1)
1 , X(r+1)

2 = X(r)
2 + A(r+1)

2 , X(r+1)
3 = 0, X(r+1)

4 = X(r)
3 + A(r+1)

3 + X(r)
4 + A(r+1)

4

If gate 4 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1)
1 , X(r+1)

2 = X(r)
2 + A(r+1)

2 , X(r+1)
3 = X(r)

3 + A(r+1)
3 , X(r+1)

4 = 0

In steady state we have:
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G(z1, z2, z3, z4) = E
[
z1

X1 z2
X2 z3

X3 z4
X4
]

= p1E
[
z1

0z2
X1+X2+A1+A2 z3

X3+A3 z4
X4+A4

]
+ p2E

[
z1

X1+A1 z2
0z3

X2+A2+X3+A3 z4
X4+A4

]
=

+p3E
[
z1

X1+A1 z2
X2+A2 z3

0z4
X3+A3+X4+A4

]
+ p4E

[
z1

X1+A1 z2
X2+A2 z3

X3+A3 z4
0]

= p1
ˆ
A(z2, z2, z3, z4)G(z2, z2, z3, z4) + p2

ˆ
A(z1, z3, z3, z4)G(z1, z3, z3, z4)

+p3
ˆ
A(z1, z2, z4, z4)G(z1, z2, z4, z4) + p4

ˆ
A(z1, z2, z3)G(z1, z2, z3)

That is,

G(z1, z2, z3, z4) = p1
ˆ
A(z2, z2, z3, z4)G(z2, z2, z3, z4) + p2

ˆ
A(z1, z3, z3, z4)G(z1, z3, z3, z4)

+ p3
ˆ
A(z1, z2, z4, z4)G(z1, z2, z4, z4) + p4

ˆ
A(z1, z2, z3)G(z1, z2, z3)

(11)

As indicated, one can tediously apply a successive substitutions approach. Instead,
we use the concise matrix representation approach developed in Section 3.2.3.

4.2. Direct Matrix Solution

Following the approach of Proposition 1 (for n = 3 system), when n = 4 the site
occupancies PGF can be constructed from Equation (11) by solving a 70× 70 linear system(

D(5, 4) =
(

8
4

)
= 70

)
, or more efficiently, following Proposition 2, with a 35× 35 linear

system
(

D(4, 4) =
(

7
3

)
= 35

)
. The 5-steps substitutions are described in Appendix D

and yield the following sets
G(z) is derived immediately from Equation (11)

G(z) =
p1

1− (p2 + p3 + p4)
ˆ
A(z)

(12)

G(z2, z2) and G(z1, z2) are obtained from

1− (p3 + p4)
ˆ
A(z1, z2) −p1

ˆ
A(z2, z2)

0 1− (p1 + p3 + p4)
ˆ
A(z2, z2)

(G(z1, z2)
G(z2, z2)

)
=

p2
ˆ
A(z1)G(z1)

p2
ˆ
A(z2)G(z2)

 (13)

G(z1, z1, z2), G(z1, z2, z2) and G(z2, z2, z2) are calculated from

1− (p1 + p4)
ˆ
A(z1, z1, z2) −p2

ˆ
A(z1, z2, z2) 0

0 1− (p2 + p4)
ˆ
A(z1, z2, z2) −p1

ˆ
A(z2, z2, z2)

0 0 1− (p1 + p2 + p4)
ˆ
A(z2, z2, z2)

(G(z1, z1, z2)
G(z1, z2, z2)
G(z2, z2, z2)

)
=

p3
ˆ
A(z1, z1)G(z1, z1)

p3
ˆ
A(z1, z2)G(z1, z2)

p3
ˆ
A(z2, z2)G(z2, z2)

 (14)

From the fourth step in Appendix D we obtain:

1−
(

p1 + p2
) ˆ

A
(
z1, z1, z1, z2

)
−p3

ˆ
A
(
z1, z1, z2, z2

)
0 0

0 1−
(

p1 + p3
) ˆ

A
(
z1, z1, z2, z2

)
−p2

ˆ
A
(
z1, z2, z2, z2

)
0

0 0 1−
(

p2 + p3
) ˆ

A
(
z1, z2, z2, z2

)
−p1

ˆ
A
(
z2, z2, z2, z2

)
1−

(
p1 + p2 + p3

) ˆ
A
(
z2, z2, z2, z2

)

(G
(
z1, z1, z1, z2

)
G
(
z1, z1, z2, z2

)
G
(
z1, z2, z2, z2

)
G
(
z2, z2, z2, z2

)
)
=

p4
ˆ
A
(
z1, z1, z1

)
G
(
z1, z1, z1

)
p4

ˆ
A
(
z1, z1, z2

)
G
(
z1, z1, z2

)
p4

ˆ
A
(
z1, z2, z2

)
G
(
z1, z2, z2

)
p4

ˆ
A
(
z2, z2, z2

)
G
(
z2, z2, z2

)

 (15)

The last set gives
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
1− p1

ˆ
A(z1, z1, z2, z3) 0 0

0 1− p2
ˆ
A(z1, z2, z2, z3) −p3

ˆ
A(z1, z2, z3, z3)

0 0 1− p3
ˆ
A(z1, z2, z3, z3)


 G(z1, z1, z2, z3)

G(z1, z2, z2, z3)
G(z1, z2, z3, z3)



=


p2

ˆ
A(z1, z2, z2, z2)G(z1, z2, z2, z2) + p3

ˆ
A(z1, z1, z3, z3)G(z1, z1, z3, z3) + p4

ˆ
A(z1, z1, z2)G(z1, z1, z2)

p1
ˆ
A(z2, z2, z2, z3)G(z2, z2, z2, z3) + p4

ˆ
A(z1, z2, z2)G(z1, z2, z2)

p1
ˆ
A(z2, z2, z3, z3)G(z2, z2, z3, z3) + p2

ˆ
A(z1, z3, z3, z3)G(z1, z3, z3, z3) + p4

ˆ
A(z1, z2, z3)G(z1, z2, z3)



By substituting the PGFs G(z2, z2, z3, z4), G(z1, z3, z3, z4), G(z1, z2, z4, z4) and G(z1, z2, z3)
in Equation (11), the required site occupancies PGF G(z1, z2, z3, z4) is obtained.

5. Matrix Representation for an n-Site System
5.1. Computational Effort

Proposition 4. The G-ASIP model of n queues with arrivals at all sites can be solved by a linear

system of size D(n + 1, n) =
(

2n
n

)
.

Proof. The set
{

G
(
zi1 , zi2 , zi3 , . . . , zin

)∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ in ≤ n + 1, zin+1 := 1
}

contains
all vertices and leaves representing a G-ASIP model with n sites. With appropriate
substitutions of the equation derived from the laws of motion, one can create a set of

D(n + 1, n) =
(

2n
n

)
linear equations with the same number of variables leading to a

unique solution. This follows, since the number of variables in the set{
G
(
zi1 , zi2 , zi3 , . . . , zin

)∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ in ≤ n + 1, zin+1 := 1
}

is equal to the amount
of numbers one can create using the digits i1, i2, . . . , in in a non-decreasing order with
repetition. �

Proposition 5. The above G-ASIP model can be solved by a linear system of half the size, namely,

with size D(n, n) =
(

2n− 1
n

)
.

Proof. The set
{

G
(
zi1 , zi2 , zi3 , . . . , zin

)∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ in ≤ n
}

contains all vertices and
leaves representing a G-ASIP model with n sites except for variables that contain z = 1.
Once the latter system is solved with its D(n, n) variables, the digit 1 can be substituted as
zik = 1 to achieve all remaining needed vertices. Since D(n, n) = 1

2 D(n + 1, n), only half of
the variables are required. �

Let us denote the PGF Gn
i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik

 where ij denotes

the number of zj element repetitions in Gn
i1,i2,...,ik

(·), such that
k
∑

j=1
ij = n.
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Lemma 1. For a given k there are
(

n− 1
k− 1

)
PGFs variables

Gn
i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik



Proof. The number of PGFs Gn
i1,i2,...,ik

(·) where ij denotes the number of zj element repe-

titions such that
k
∑

j=1
ij = n, is equal to the number of n-digit numbers produced by the k

digits 1, 2, . . . , k (k ≤ n) in an increasing order, where all digits are used at least once. It is
equal to the number of combinations to distribute n− k identical elements in k cells, being

equal to D(k, n− k) =
(

k− 1 + n− k
k− 1

)
=

(
n− 1
k− 1

)
. �

Lemma 2. There is a total of 2n−1 − 1 PGFs distinct variables

Gn
i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik

.

Proof. According to Lemma 1, there are
(

n− 1
k− 1

)
PGFs Gn

i1,i2,...,ik
(·) variables. Summing

over all k = 1, . . . , n− 1, yields,
n−1
∑

k=1

(
n− 1
k− 1

)
= 2n−1 − 1. �

Proposition 6. The n-site G-ASIP can be solved by a set of 2n − (n + 1) linear equations, which
can be decomposed into n− 1 subsystems, each of 2k−1 − 1 linear equations, k = 1, 2, . . . , n.

Proof. The set of variables needed to retrieve G(z1, z2, . . . , zn) isGj
i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik

|1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ j, 1 ≤ j ≤ n

. This

set can be decomposed into the disjoint union
n
∪

j=1

{
Gj

i1,i2,...,ik
(·)
∣∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ j, 1 ≤ j ≤ n

}
.

Using the disjoint property,

∣∣∣∣ n
∪

j=1

{
Gj

i1,i2,...,ik
(·)
∣∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ j, 1 ≤ j ≤ n

}∣∣∣∣ = n

∑
j=1

∣∣∣{Gj
i1,i2,...,ik

(·)
∣∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ j, 1 ≤ j ≤ n

}∣∣∣
According to Lemma 2, the number of distinct variables inGj

i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik

|1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ j, 1 ≤ j ≤ n

 is 2j−1 − 1.

Hence,
n
∑

j=1

(
2j−1 − 1

)
= (2n − 1)− n = 2n − (n + 1). �
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5.2. The Effort Required to Move from a Solution of an n-Site Network to a Solution of an
(n + 1)-Site Network

In previous sections, we developed a procedure describing how to derive a solution
for the site occupancies PGF in the G-ASIP networks with n sites. Specifically, we first

showed that its solution requires a set of
(

2n
n

)
equations, and then the cut of the number

of equations in half to
(

2n− 1
n

)
. It was further shown that the latter set can be reduced to

a set of 2n − (n + 1) equations.
For example, the site occupancies PGF of the n = 3 site G-ASIP could be obtained by a

20× 20 system
(

D(4, 3) =
(

6
3

)
= 20

)
, according to Proposition 4. Then, according to Propo-

sition 5, the system can be reduced and solved by a 10× 10 system
(

D(3, 3) =
(

5
3

)
= 10

)
.

Furthermore, the system was solved in Section 3.2.3 by as little as two subsystems of sizes
2× 2 and 3× 3 only.

Similarly, to obtain the site occupancies PGF for the n = 4 site G-ASIP, instead of

solving a 70× 70 system
(

D(5, 4) =
(

8
4

)
= 70

)
, according to Proposition 4, or a 35× 35

system
(

D(7, 4) =
(

7
4

)
= 35

)
according to Proposition 5, the PGF can be obtained with as

few as 3 systems of order 2× 2, 3× 3, and 7× 7 only, as shown in Section 4.2. Furthermore,
the latter 7× 7 system is decomposed into two subsystems of order 4× 4 and 3× 3.

We now present a scheme showing how to expand the solution of the n-site G-ASIP
into an (n + 1)-site network.

Proposition 7. Given the sites occupancies PGF G(z1, z2, . . . , zn) of an n-site G-ASIP, one can
expand the solution to an (n + 1)-site network with a system of 2n − 1 linear equations.

Proof. Denoting by G(z1, z2, . . . , zn+1) the sites occupancies PGF of the (n + 1)-site net-
work. As seen in Proposition 3, the set of variables needed to retrieve G(z1, z2, . . . , zn+1)
is
{

G
(
zi1 , zi2 , zi3 , . . . , zin+1

)∣∣1 ≤ i1 ≤ i2 ≤ . . . ≤ in+1 ≤ n + 1
}

. With G(z1, z2, . . . , zn) given,
one needs only the reduced setGn+1

i1,i2,...,ik

z1, . . . , z1︸ ︷︷ ︸
i1

, z2, . . . , z2︸ ︷︷ ︸
i2

, . . . , zk, . . . , zk︸ ︷︷ ︸
ik

|1 ≤ i1 ≤ i2 ≤ . . . ≤ in+1 ≤ n + 1

. Accord-

ing to Lemma 2, there are only 2n − 1 such distinct variables. �

The site occupancies PGF of the n = 5 site G-ASIP can be obtained by a 252× 252 sys-

tem
(

D(6, 5) =
(

10
5

)
= 252

)
according to Proposition 4. However, given G(z1, z2, z3, z4)

the site occupancies PGF of the 4-site G-ASIP, one can expand it to the n = 5 sites with as
little as 24 − 1 = 15 additional equations, according to Proposition 7.

6. Mean Site Occupancies
6.1. Mean Site Occupancies in a G-ASIP with n = 3 Sites

Focusing on mean site occupancies, one can take a direct approach while using the
occupancies laws of motion from Section 3.1:

If gate 1 opens at step r + 1:

X(r+1)
1 = 0, X(r+1)

2 = X(r)
1 + A(r+1)

1 + X(r)
2 + A(r+1)

2 , X(r+1)
3 = X(r)

3 + A(r+1)
3
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If gate 2 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1)
1 , X(r+1)

2 = 0, X(r+1)
3 = X(r)

2 + A(r+1)
2 + X(r)

3 + A(r+1)
3

If gate 3 opens at step r + 1:

X(r+1)
1 = X(r)

1 + A(r+1)
1 , X(r+1)

2 = X(r)
2 + A(r+1)

2 , X(r+1)
3 = 0

Thus, the mean number of particles in site Q1 is given by:

E[X1] = p2(E[X1] + E[A1]) + p3(E[X1] + E[A1]) = (p2 + p3)E[X1] + (p2 + p3)E[A1]

Simplification yields,
p1E[X1] = (1− p1)E[A1]

Thus,

E[X1] =
1
p1

E[A1]− E[A1]

Next,

E[X2] = p1(E[X1] + E[A1] + E[X2] + E[A2]) + p3(E[X2] + E[A2])
= p1(E[X1] + E[A1]) + (p1 + p3)E[X2] + (p1 + p3)E[A2],

(16)

which leads to,
p2E[X2] = p1(E[X1] + E[A1]) + (p1 + p3)E[A2]

Substituting (17) in (18) yields,

p2E[X2] = p1

(
(1− p1)

p1
E[A1] + E[A1]

)
+ (p1 + p3)E[A2] = E[A1] + (p1 + p3)E[A2]

resulting in

E[X2] =
1
p2

2

∑
j=1

E
[
Aj
]
− E[A2] (17)

Similarly, considering site Q3:

E[X3] = p1(E[X3] + E[A3]) + p2(E[X2] + E[A2] + E[X3] + E[A3])
= (p1 + p2)E[X3] + (p1 + p2)E[A3] + p2(E[X2] + E[A2])

p3E[X3] = (p1 + p2)E[A3] + p2(E[X2] + E[A2]) (18)

Substituting (17) in (18) yields

p3E[X3] = (p1 + p2)E[A3] + p2

(
1
p2

(E[A1] + (1− p2)E[A2]) + E[A2]

)
= (p1 + p2)E[A3] + (E[A1] + E[A2])

Therefore,

E[X3] =
1
p3

(E[A1] + E[A2] + (1− p3)E[A3]) =
1
p3

3

∑
j=1

E
[
Aj
]
− E[A3]

6.2. Mean Site Occupancies in an n-Site G-ASIP

Expanding the solution of Section 6.1 to the non-homogeneous n-site G-ASIP we get

E[X1] =
1
p1

E[A1]− E[A1] (19)
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E[Xk] =
1
pk

k
∑

j=1
E
[
Aj
]
− E[Ak], k = 1, . . . , n (20)

The mean site occupancies of the n-site classical ASIP was analyzed in [28], where
arrivals occur only to Q1 with Poisson rate λ, and each gate k opens independently of
other gates following an Exponential distribution with mean 1

µk
. It was shown that under

stationary conditions E[Xk] =
λ
µk

, k = 1, . . . , n. Our general model can be compared to the

above model by substituting pk =
µk
µ , E[A1] =

λ
µ while for k = 2, . . . , n, E[Ak] = 0, where

µ =
n
∑

k=1
µk. Equations (19) and (20) become, respectively,

E[X1] =
λ

µ1

(
1− µ1

µ

)
(21)

E[Xk] =
λ
µk

, k = 2, . . . , n (22)

Note that Xk is defined to be the number of particles in site Qk right after a gate
opening instant. As such, the mean E[Xk] is also calculated right after gate openings. An
important observation is that, when arrivals occur only to Q1, the number of particles
present in each site Qk, k = 2, . . . , n stays constant between instants of gate openings. Thus,
taking expectation right after a gate opening or any other time between gate openings
yields the same result. Hence, (22) coincides with Equation (16) in [28]. However, in site
Q1, since Poisson arrivals occur continuously in between gate openings, the mean E[X1]
is affected by the sampling instant. While the mean site occupancies in [28] was taken
uniformly over time, in the general G-ASIP the mean is taken right after gate openings,
which leads us to expect a smaller term for this mean, as obtained in (21).

Consider now the case where the arriving particles are spread uniformly between the
n sites such that E[Ak] =

λ
nµ , for all k. Gate opening probabilities are as before, pk = µk

µ .
Then, (20) becomes,

E[Xk] =
1
pk

k

∑
j=1

E
[
Aj
]
− E[Ak] =

µ

µk

k

∑
j=1

λ

µn
− λ

µn
=

µ

µk

λk
µn
− λ

µn
=

λk
µkn
− λ

µn
=

λ

nµk

(
k− µk

µ

)

for all k = 1, . . . , n.
If µk = µ1, (µ = nµ1) for all k, then

E[Xk] =
λ

nµ1

(
k− µ1

µ

)
=

λ

µ

(
k− 1

n

)
, k = 1, . . . , n

Notice that the mean difference in occupancy between two consecutive sites, right
after gate opening, yields,

E[Xk+1]− E[Xk] =
λ

µ

(
k + 1− 1

n

)
− λ

µ

(
k− 1

n

)
=

λ

µ
(23)

That is, the mean difference is constant and equals λ
µ , which is the mean total number

of arrivals to the entire system between two gate openings.
The mean load of the first k sites can now be calculated as follows:

Denote by X(k) =
k
∑

j=1
Xj the total load of the first k sites, i.e., the total number of

particles in the first k sites right after gate openings. Equation (24) becomes,

E
[

X(k)

]
= E

[
k

∑
m=1

Xm

]
=

k

∑
m=1

E[Xm] =
k

∑
m=1

(
1

pm

m

∑
j=1

E
[
Aj
]
− E[Am]

)
(24)
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E
[

X(k)

]
= E

[
k

∑
m=1

Xm

]
=

k

∑
m=1

E[Xm] =
k

∑
m=1

(
1

pm

m

∑
j=1

E
[
Aj
]
− E[Am]

)
(25)

Substituting in Equation (24), pk =
µk
µ , E[A1] =

λ
µ and E[Ak] = 0, k = 2, . . . , n, where

µ =
n
∑

k=1
µk, leads to

E
[

X(k)

]
=

k

∑
m=1

(
1

pm
E[A1]− E[Am]

)
=

k

∑
m=1

(
1

pm
E[A1]

)
− E[A1] =

k

∑
m=1

(
µ

µk

λ

µ

)
− λ

µ
=

k

∑
m=1

λ

µk
− λ

µ

whereas the result in [28] is E
[

X(k)

]
=

k
∑

m=1

λ
µk

. The difference of λ
µ between the two results

is due to the same reason explained above, which is the instant in which the system is
observed.

Since E[Xk+1]− E[Xk] =
λ
µ , the load of the first k sites is

E
[

X(k)

]
=

k

∑
j=1

E
[
Xj
]
=

k

∑
j=1

(
E[X1] +

jλ
µ

)
= kE[X1] +

λk(k− 1)
2µ

=
λk
µ

(
1− 1

n

)
+

λk(k− 1)
2µ

=
λk
µ

(
k + 1

2
− 1

n

)

while the load of the entire system is

E
[

X(n)

]
=

λ(n + 2)(n− 1)
2µ

7. Conclusions

An innovative matrix approach to derive the multidimensional probability-generating
function (PGF) of the site occupancies in a generalized n-site ASIP network (G-ASIP) with
arrivals to all sites is developed. The family Γ(α, αµ) of Gamma distributed inter-gate
opening instants is analyzed and its extreme cases, Exponential (α = 1), and Deterministic
(α→ ∞), are further investigated. It is then shown how the matrix approach considerably
reduces the required computational effort to obtain the occupancy PGF. Explicit results for
the cases n = 3 and n = 4 sites are derived. Furthermore, a procedure to move from a PGF
of an n-site network to the PGF of an (n + 1)-site network is constructed. It is shown that the
probability that site k is occupied is a function of both the site’s index and the arrival flux
and not solely of the site’s index, which leads to refined formulae for the probability that site
k is occupied and for its conditional mean site’s occupancy. Consequently, it is shown that,
in the case where the arrival process to the first site is Poisson with rate λ, the following in-
teresting property holds: P(site k is occupied | λ = 1) = P(site k + 1 is occupied | λ→ ∞).
The results are enhanced by numerical calculations exhibited in graphs.
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Abbreviations

TSS Tandem Stochastic System
TJN Tandem Jackson Network
ASEP Asymmetric Simple Exclusion Process
ASIP Asymmetric Simple Inclusion Process
G-ASIP Generalized Asymmetric Simple Inclusion Process
PGF Probability-generating Function

Appendix A. Occupancy Probabilities of the First Five Sites

Direct calculation from Theorem 1 yields the following occupancy probabilities of the
first five sites:

Qλ(1) =
n + λ

n(λ + 1)

Qλ(2) =
1
2

(
1 +

n2

(nλ + n)2

)
=

1
2

(
1 +

λ + 1

(λ + 1)3

)

Qλ(3) =
1
8

(
2 1 n

(λ+n)(λ+1)

)2 0 0
0 1 n

(λ+n)(λ+1)
0 0 2

λ+1


 1

1
n+λ

n(λ+1)

 =
1
8

(
5 +

λ + 3

(λ + 1)3

)

Qλ(4) = 1
64

(
4 2 1 n

(λ+n)(λ+1)

)
4 0 0 0
0 2 1 n

(λ+n)(λ+1)
0 0 2 2n

(λ+n)(λ+1)
0 0 0 4

λ+1




2 0 0 0
0 2 0 0
0 0 1 n

(λ+n)(λ+1)
0 0 0 2

λ+1




1
1
1

n+λ
n(λ+1)


= 1

16

(
11 + λ2+4λ+5

(λ+1)4

)
= 1

16

(
11 + λ+3

(λ+1)3 +
2

(λ+1)4

)

Qλ(5) =
1

128

(
93 +

5λ3 + 25λ2 + 47λ + 35

(λ + 1)5

)
=

1
128

(
93 +

2(λ + 5)

(λ + 1)5 +
10(λ + 2)

(λ + 1)4 +
5

(λ + 1)2

)

Appendix B. Site Occupancy Probabilities of a 3-Site G-ASIP

With proper substitutions in the matrix system in Section 3.2.3 we get

G(0) = P(I1 = 0) =
p1

1− (p2 + p3)
ˆ
A(0)

(A1)

1− p3
ˆ
A(1, 0) −p1

ˆ
A(0, 0)

0 1− (p1 + p3)
ˆ
A(0, 0)

(G(1, 0)
G(0, 0)

)
=

(
p2

p2
ˆ
A(0)G(0)

)
(A2)

and


1− p1

ˆ
A(1, 1, 0) −p2

ˆ
A(1, 0, 0) 0

0 1− p2
ˆ
A(1, 0, 0) −p1

ˆ
A(0, 0, 0)

0 0 1− (p1 + p2)
ˆ
A(0, 0, 0)


G(1, 1, 0)

G(1, 0, 0)
G(0, 0, 0)

 =


p3

p3
ˆ
A(1, 0)G(1, 0)

p3
ˆ
A(0, 0)G(0, 0)

 (A3)

Solving the set (A2) gives
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(
G(0, 0)
G(1, 0)

)
=

1(
1− (p1 + p3)

ˆ
A(0, 0)

)(
1− p3

ˆ
A(1, 0)

)
1− p3

ˆ
A(1, 0) 0

p1
ˆ
A(0, 0) 1− (p1 + p3)

ˆ
A(0, 0)

(p2
ˆ
A(0)G(0)

p2

)
(A4)

Substituting (A1) in (A4) gives

G(0, 0) =
p1 p2

ˆ
A(0)(

1− (p2 + p3)
ˆ
A(0)

)(
1− (p1 + p3)

ˆ
A(0, 0)

)

G(1, 0) = P(I2 = 0) =
p1

2 p2
ˆ
A(0)

ˆ
A(0, 0)(

1− (p1 + p3)
ˆ
A(0, 0)

)(
1− (p2 + p3)

ˆ
A(0)

)(
1− p3

ˆ
A(1, 0)

) +
p2

1− p3
ˆ
A(1, 0)

Solving the set (A3) leads to

G(1, 1, 0)
G(1, 0, 0)
G(0, 0, 0)

 =



1

1−p1
ˆ
A(1,1,0)

p2
ˆ
A(1,0,0)(

1−p1
ˆ
A(1,1,0)

)(
1−p2

ˆ
A(1,0,0)

) p1 p2
ˆ
A(0,0,0)

ˆ
A(1,0,0)(

1−p1
ˆ
A(1,1,0)

)(
1−p2

ˆ
A(1,0,0)

)(
1−(p1+p2)

ˆ
A(0,0,0)

)
0 1

1−p2
ˆ
A(1,0,0)

p1
ˆ
A(0,0,0)(

1−p2
ˆ
A(1,0,0)

)(
1−(p1+p2)

ˆ
A(0,0,0)

)
0 0 1

1−(p1+p2)
ˆ
A(0,0,0)


 p3

p3
ˆ
A(1, 0)G(1, 0)

p3
ˆ
A(0, 0)G(0, 0)



which gives

G(1, 1, 0) = P(I3 = 0) =
p3

1− p1
ˆ
A(1, 1, 0)

+
p2

ˆ
A(1, 0, 0)p3

ˆ
A(1, 0)G(1, 0)(

1− p1
ˆ
A(1, 1, 0)

)(
1− p2

ˆ
A(1, 0, 0)

) +
p1 p2 p3

ˆ
A(0, 0)

ˆ
A(0, 0, 0)

ˆ
A(1, 0, 0)G(0, 0)(

1− p1
ˆ
A(1, 1, 0)

)(
1− p2

ˆ
A(1, 0, 0)

)(
1− (p1 + p2)

ˆ
A(0, 0, 0)

) .

Appendix C. Site Occupancy Probabilities of a 4-Site G-ASIP

The following 4 substitutions in the sets presented in Section 3.2 yield the site occu-
pancy probabilities of a G-ASIP where arrivals occur to all sites.

Substituting z = 0 in Equation (7) gives

G(0) = P(I1 = 0) =
p1

1− (p2 + p3 + p4)
ˆ
A(0)

Substituting z1 = 1 and z2 = 0 in Equation (8) yields1− (p3 + p4)
ˆ
A(1, 0) −p1

ˆ
A(0, 0)

0 1− (p1 + p3 + p4)
ˆ
A(0, 0)

(G(1, 0)
G(0, 0)

)
=

(
p2

p2
ˆ
A(0)G(0)

)

Substituting z1 = 1 and z2 = 0 in Equation (9) leads to

1− (p1 + p4)
ˆ
A(1, 1, 0) −p2

ˆ
A(1, 0, 0) 0

0 1− (p2 + p4)
ˆ
A(1, 0, 0) −p1

ˆ
A(0, 0, 0)

0 0 1− (p1 + p2 + p4)
ˆ
A(0, 0, 0)

(G(1, 1, 0)
G(1, 0, 0)
G(0, 0, 0)

)
=

 p3

p3
ˆ
A(1, 0)G(1, 0)

p3
ˆ
A(0, 0)G(0, 0)





Mathematics 2022, 10, 4624 28 of 33

Substituting z1 = 1 and z2 = 0 in Equation (10) gives


1− (p1 + p2)

ˆ
A(1, 1, 1, 0) −p3

ˆ
A(1, 1, 0, 0) 0 0

0 1− (p1 + p3)
ˆ
A(1, 1, 0, 0) −p2

ˆ
A(1, 0, 0, 0) 0

0 0 1− (p2 + p3)
ˆ
A(1, 0, 0, 0) −p1

ˆ
A(0, 0, 0, 0)

0 0 0 1− (p1 + p2 + p3)
ˆ
A(0, 0, 0, 0)


G(1, 1, 1, 0)

G(1, 1, 0, 0)
G(1, 0, 0, 0)
G(0, 0, 0, 0)

 =


p4

p4
ˆ
A(1, 1, 0)G(1, 1, 0)

p4
ˆ
A(1, 0, 0)G(1, 0, 0)

p4
ˆ
A(0, 0, 0)G(0, 0, 0)


Solving the sets above leads to the explicit expressions of the site occupancy probabili-

ties in a 4-site G-ASIP.

Appendix D. Derivation of G(z1,z2,z3)

The successive substitution procedure to calculate G(z1, z2, z3) is detailed below.
The procedure is to iterate Equation (6) repeatedly, in a branching tree structure, until

reaching the leaves G(1, 1, 1) = 1. Then, the tree is folded back, yielding the value of the
root G(z1, z2, z3). See also [28].

Figure A1 illustrates the iterative solution when n = 3, following Equation (6).
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Since there are various leaves that repeat themselves in Figure A1, one can shrink
Figure A1 into Figure A2 below:
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Starting with the term G(z1, z2, 1) and substituting z3 = 1 in Equation (6) results in
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G(z1, z2, 1) = p1
ˆ
A(z2, z2, 1)G(z2, z2, 1) + p2

ˆ
A(z1, 1, 1)G(z1, 1, 1) + p3

ˆ
A(z1, z2, 1)G(z1, z2, 1) (A5)

Hence,

G(z1, z2, 1) =
p1

ˆ
A(z2, z2, 1)G(z2, z2, 1) + p2

ˆ
A(z1, 1, 1)G(z1, 1, 1)

1− p3
ˆ
A(z1, z2, 1)

(A6)

Substituting z2 = 1 in Equation (A6) leads to

G(z1, 1, 1) =
p1

1− (p2 + p3)
ˆ
A(z1, 1, 1)

(A7)

Substituting (A7) in (A6) yields

G(z1, z2, 1) =

p1
ˆ
A(z2, z2, 1)G(z2, z2, 1) + p2

ˆ
A(z1, 1, 1) p1

1−(p2+p3)
ˆ
A(z1,1,1)

1− p3
ˆ
A(z1, z2, 1)

(A8)

To calculate G(z1, z2, 1), we substitute z1 = z2 in (A8) and obtain

G(z2, z2, 1) =
p1 p2

ˆ
A(z2, 1, 1)(

1− (p1 + p3)
ˆ
A(z2, z2, 1)

)(
1− (p2 + p3)

ˆ
A(z2, 1, 1)

) (A9)

Substituting (A9) in (A8) results in

G(z1, z2, 1) =

p2
1 p2

ˆ
A(z2,1,1)

ˆ
A(z2,z2,1)(

1−(p1+p3)
ˆ
A(z2,z2,1)

)(
1−(p2+p3)

ˆ
A(z2,1,1)

) + p1 p2
ˆ
A(z1,1,1)

1−(p2+p3)
ˆ
A(z1,1,1)

1− p3
ˆ
A(z1, z2, 1)

(A10)

We move on to calculate G(z1, z3, z3)

To simplify notation, set
ˆ
A
(
zi, zj, 1

)
≡

ˆ
A
(
zi, zj

)
and

ˆ
A(zi, 1, 1) ≡

ˆ
A(zi). Similarly, set

G
(
zi, zj, 1

)
≡ G

(
zi, zj

)
and G(zi, 1, 1) ≡ G(zi).

Substituting z2 = z3 in (6) gives

G(z1, z3, z3) = p1
ˆ
A(z3, z3, z3)G(z3, z3, z3) + p2

ˆ
A(z1, z3, z3)G(z1, z3, z3) + p3

ˆ
A(z1, z3)G(z1, z3)

Hence,

G(z1, z3, z3) =
p1

ˆ
A(z3, z3, z3)G(z3, z3, z3) + p3

ˆ
A(z1, z3)G(z1, z3)

1− p2
ˆ
A(z1, z3, z3)

(A11)

Substituting z2 = z3 in (A10) leads to

G(z1, z3) =

p2
1 p2

ˆ
A(z3)

ˆ
A(z3,z3)(

1−(p1+p3)
ˆ
A(z3,z3)

)(
1−(p2+p3)

ˆ
A(z3)

) + p1 p2
ˆ
A(z1)

1−(p2+p3)
ˆ
A(z1)

1− p3
ˆ
A(z1, z3)

(A12)
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Now, to calculate G(z3, z3, z3), we substitute z1 = z3 in (A11) to get

G(z3, z3, z3) =
p3

ˆ
A(z3, z3)G(z3, z3)

1− (p1 + p2)
ˆ
A(z3, z3, z3)

(A13)

Substituting z1 = z3 in (A12) yields

G(z3, z3) =

p2
1 p2

ˆ
A(z3)

ˆ
A(z3,z3)

1−(p1+p3)
ˆ
A(z3,z3)

+ p1 p2
ˆ
A(z3)(

1− p3
ˆ
A(z3, z3)

)(
1− (p2 + p3)

ˆ
A(z3)

)
Hence,

G(z3, z3) =
p1 p2

ˆ
A(z3)(

1− (p2 + p3)
ˆ
A(z3)

)(
1− (p1 + p3)

ˆ
A(z3, z3)

) (A14)

Substituting (A14) in (A13) yields

G(z3, z3, z3) =
p1 p2 p3

ˆ
A(z3, z3)

ˆ
A(z3)(

1− (p1 + p2)
ˆ
A(z3, z3, z3)

)((
1− (p2 + p3)

ˆ
A(z3)

))(
1− (p1 + p3)

ˆ
A(z3, z3)

) (A15)

Finally, substituting (A15) and (A12) in (A11) leads to

G(z1, z3, z3) =

p2
1 p2 p3

ˆ
A(z3,z3,z3)

ˆ
A(z3,z3)

ˆ
A(z3)(

1−(p1+p2)
ˆ
A(z3,z3,z3)

)((
1−(p2+p3)

ˆ
A(z3)

))(
1−(p1+p3)

ˆ
A(z3,z3)

)+
p2

1 p2 p3
ˆ
A(z1,z3)

ˆ
A(z3)

ˆ
A(z3,z3)(

1−(p1+p3)
ˆ
A(z3,z3)

)(
1−(p2+p3)

ˆ
A(z3)

)+
p1 p2 p3

ˆ
A(z1,z3)

ˆ
A(z1)

1−(p2+p3)
ˆ
A(z1)

1−p3
ˆ
A(z1,z3)

1−p2
ˆ
A(z1,z3,z3)

(A16)

(c) The last step is to get G(z2, z2, z3)
Substituting z1 = z2 in (A5) results in

G(z2, z2, z3) = p1
ˆ
A(z2, z2, z3)G(z2, z2, z3) + p2

ˆ
A(z2, z3, z3)G(z2, z3, z3) + p3

ˆ
A(z2, z2)G(z2, z2)

Hence,

G(z2, z2, z3) =
p2

ˆ
A(z2, z3, z3)G(z2, z3, z3) + p3

ˆ
A(z2, z2)G(z2, z2)

1− p1
ˆ
A(z2, z2, z3)

(A17)

G(z2, z2) was already calculated in (A9), so to find G(z2, z2, z3) we substitute z1 = z2
in Equation (A16) and get
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G(z2, z2, z3) =

ˆ
A(z2,z3,z3)

p2
1 p2

2 p3
ˆ
A(z3,z3,z3)

ˆ
A(z3,z3)

ˆ
A(z3)(

1−(p1+p2)
ˆ
A(z3,z3,z3)

)((
1−(p2+p3)

ˆ
A(z3)

))(
1−(p1+p3)

ˆ
A(z3,z3)

) +

p2
1 p2

2 p3
ˆ
A(z2,z3)

ˆ
A(z3)

ˆ
A(z3,z3)(

1−(p1+p3)
ˆ
A(z3,z3)

)(
1−(p2+p3)

ˆ
A(z3)

) +
p1 p2

2 p3
ˆ
A(z2,z3)

ˆ
A(z2)

1−(p2+p3)
ˆ
A(z2)

1−p3
ˆ
A(z2,z3)

1−p2
ˆ
A(z2,z3,z3)

1−p1
ˆ
A(z2,z2,z3)

+

p1 p2 p3
ˆ
A(z2,z2)

ˆ
A(z2)(

1−(p1+p3)
ˆ
A(z2,z2)

)(
1−(p2+p3)

ˆ
A(z2)

)

1−p1
ˆ
A(z2,z2,z3)

(A18)

Thus, by substituting (A18), (A16) and (A10) in (6), the PGF G(z1, z2, z3) is obtained.

Appendix E. 4-Site G-ASIP Substitutions

The substitutions that are required in order to calculate the sites occupancy PGF are as
follows

Step 1. Substituting z2 = 1, z3 = 1, z4 = 1 in Equation (11) leads to

G(z1) = p1 + p2
ˆ
A(z1)G(z1) + p3

ˆ
A(z1)G(z1) + p4

ˆ
A(z1)G(z1)

Step 2. Substituting z2 = 1, z3 = 1, z4 = 1 in Equation (11) results in

G(z1, z2) = p1
ˆ
A(z2, z2)G(z2, z2) + p2

ˆ
A(z1)G(z1) + p3

ˆ
A(z1, z2)G(z1, z2) + p4

ˆ
A(z1, z2)G(z1, z2)

By substituting z1 = z2, z3 = 1, z4 = 1 in Equation (11) we get

G(z2, z2) = p1
ˆ
A(z2, z2)G(z2, z2) + p2

ˆ
A(z2)G(z2) + p3

ˆ
A(z2, z2)G(z2, z2) + p4

ˆ
A(z2, z2)G(z2, z2)

Step 3. Substituting z2 = z1, z3 = z2, z4 = 1 in Equation (11) leads to

G(z1, z1, z2) = p1
ˆ
A(z1, z1, z2)G(z1, z1, z2) + p2

ˆ
A(z1, z2, z2)G(z1, z2, z2)

+ p3
ˆ
A(z1, z1)G(z1, z1) + p4

ˆ
A(z1, z1, z2)G(z1, z1, z2)

Substituting z3 = z2, z4 = 1 in Equation (11) results in

G(z1, z2, z2) = p1
ˆ
A(z2, z2, z2)G(z2, z2, z2) + p2

ˆ
A(z1, z2, z2)G(z1, z2, z2)

+ p3
ˆ
A(z1, z2)G(z1, z2) + p4

ˆ
A(z1, z2, z2)G(z1, z2, z2)

By substituting z1 = z2, z3 = z2, z4 = 1 in Equation (11) we get

G(z2, z2, z2) = p1
ˆ
A(z2, z2, z2)G(z2, z2, z2) + p2

ˆ
A(z2, z2, z2)G(z2, z2, z2)

+ p3
ˆ
A(z2, z2)G(z2, z2) + p4

ˆ
A(z2, z2, z2)G(z2, z2, z2)

Step 4. Substituting z2 = z1, z3 = z1, z4 = z2 in Equation (11) leads to

G(z1, z1, z1, z2) = p1
ˆ
A(z1, z1, z1, z2)G(z1, z1, z1, z2) + p2

ˆ
A(z1, z1, z1, z2)G(z1, z1, z1, z2)

+ p3
ˆ
A(z1, z1, z2, z2)G(z1, z1, z2, z2) + p4

ˆ
A(z1, z1, z1)G(z1, z1, z1)
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Substituting z2 = z1, z3 = z2, z4 = z2 in Equation (11) results in

G(z1, z1, z2, z2) = p1
ˆ
A(z1, z1, z2, z2)G(z1, z1, z2, z2) + p2

ˆ
A(z1, z2, z2, z2)G(z1, z2, z2, z2)

+ p3
ˆ
A(z1, z1, z2, z2)G(z1, z1, z2, z2) + p4

ˆ
A(z1, z1, z2)G(z1, z1, z2)

By substituting z3 = z1, z4 = z2 in Equation (11) we get

G(z1, z2, z2, z2) = p1
ˆ
A(z2, z2, z2, z2)G(z2, z2, z2, z2) + p2

ˆ
A(z1, z2, z2, z2)G(z1, z2, z2, z2)

+ p3
ˆ
A(z1, z2, z2, z2)G(z1, z2, z2, z2) + p4

ˆ
A(z1, z2, z2)G(z1, z2, z2)

Finally, substituting z1 = z2, z3 = z2, z4 = z2 in Equation (11) gives

G(z2, z2, z2, z2) = p1
ˆ
A(z2, z2, z2, z2)G(z2, z2, z2, z2) + p2

ˆ
A(z2, z2, z2, z2)G(z2, z2, z2, z2)

+ p3
ˆ
A(z2, z2, z2, z2)G(z2, z2, z2, z2) + p4

ˆ
A(z2, z2, z2)G(z2, z2, z2)

Step 5. Substituting z2 = z1, z3 = z2, z4 = z3 in Equation (11) leads to

G(z1, z1, z2, z3) = p1
ˆ
A(z1, z1, z2, z3)G(z1, z1, z2, z3) + p2

ˆ
A(z1, z2, z2, z2)G(z1, z2, z2, z2)

+ p3
ˆ
A(z1, z1, z3, z3)G(z1, z1, z3, z3) + p4

ˆ
A(z1, z1, z2)G(z1, z1, z2)

Substituting z3 = z2, z4 = z3 in Equation (11) results in

G(z1, z2, z2, z3) = p1
ˆ
A(z2, z2, z2, z3)G(z2, z2, z2, z3) + p2

ˆ
A(z1, z2, z2, z3)G(z1, z2, z2, z3)

+ p3
ˆ
A(z1, z2, z3, z3)G(z1, z2, z3, z3) + p4

ˆ
A(z1, z2, z2)G(z1, z2, z2)

Substituting z4 = z3 in Equation (11) we get

G(z1, z2, z3, z3) = p1
ˆ
A(z2, z2, z3, z3)G(z2, z2, z3, z3) + p2

ˆ
A(z1, z3, z3, z3)G(z1, z3, z3, z3)

+ p3
ˆ
A(z1, z2, z3, z3)G(z1, z2, z3, z3) + p4

ˆ
A(z1, z2, z3)G(z1, z2, z3)

With the above substitutions, the sets are constructed.
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