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Abstract: Parameterization is the key property of a parametric surface and significantly affects
many kinds of applications. To improve the quality of parameterization, equiareal parameterization
minimizes the equiareal energy, which is presented as a measure to describe the uniformity of iso-
parametric curves. With the help of the binary Möbius transformation, the equiareal parameterization
is extended to the triangular Bézier surface on the triangular domain for the first time. The solution
of the corresponding nonlinear minimization problem can be equivalently converted into solving a
system of bivariate polynomial equations with an order of three. All the exact solutions of the equa-
tions can be obtained, and one of them is chosen as the global optimal solution of the minimization
problem. Particularly, the coefficients in the system of equations can be explicitly formulated from
the control points. Equiareal parameterization keeps the degree, control points, and shape of the
triangular Bézier surface unchanged. It improves the distribution of iso-parametric curves only. The
iso-parametric curves from the new expression are more uniform than the original one, which is
displayed by numerical examples.

Keywords: equiareal parameterization; equiareal energy; binary Möbius transformation; triangular
Bézier surface; computer-aided geometric design
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1. Introduction

Parametric curves and surfaces play an increasingly important role in computer-aided
geometric design [1]. The quality of their parameterization has a profound impact on their
subsequent manipulations. Many applications of geometry processing strongly depend on
the parameterization. Therefore, many scholars reparameterize the curves and surfaces
without changing their shapes [2–10]. If the points or the iso-parametric curves are far from
being uniform, these reparameterizations make them evenly distribute as far as possible
with evenly distributed parameter values in the parameter domain.

For parametric curves, good parameterization can effectively improve the efficiency
of interpolation [11], intersection [12], and real-time compensation of CNC [13]. Based
on the intuitive geometric significance of the arc length parameter, [2,3] used the Möbius
transformation to optimally parameterize the Bézier curve by minimizing the L2 norm
between the parametric flow and the unit speed. The authors of [4] obtained the optimal
parameterization with the piecewise polynomial/rational transformation. The explicit
analytical solution for an optimal parameterized rational quadratic Bézier curve was
obtained in [5]. In addition, the uniformity of the angular speed was also developed to
optimize the quality of the parameterization [6].

Similar to the curves, the parameterization of surfaces is important in many surface
algorithms such as rendering [14], tessellation [15], sampling [16], texture mapping [17],
and so on. Based on the earlier work on curves, the reparameterization has been extensively
applied to the tensor-product surface on the rectangular domain in the past decade. Using
rational bilinear transformation, rational Bézier surfaces were reparameterized to improve
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the uniformity and orthogonality of iso-parametric curves with the cost of degree eleva-
tion [7]. Then, a new quality measure for the parameterization, called equiareal energy,
was introduced to reparameterize the NURBS surface with the Möbius transformation [8]
and composite Möbius transformations [9]. Recently, the equiareal energy was also used to
generate a hierarchical NURBS surface for an area-preserving parameterization with the
freeform transformation [10].

However, the existing reparameterization methods of surfaces are only for tensor-
product surfaces, and there are no relevant results for triangular Bézier surfaces. The
triangular Bézier surface is also an important tool in geometric modeling. It can effec-
tively deal with the interpolation of scattered data points and can be widely used in any
topological structure [1,18,19]. The parameterization of the triangular Bézier surface also
greatly affects the results of many surface algorithms. A better parameterization is also
widely desired. The qualities of the parameterization and the uniformity of iso-parametric
curve distribution are compared in Figure 1. Therefore, the reparameterization method of
triangular Bézier surfaces is as important as the existing work on tensor-product surfaces.
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The aim of this study was to present the equiareal parameterization of the triangular
Bézier surface for the first time, such that the equiareal energy is minimized. The equiareal
energy measures the deviation from the uniformity of the iso-parameter curves. The
minimum value of the energy function results in the equiareal parameterization. Different
from the tensor-product surfaces, it is difficult to extend the same reparameterization
methods from curves to triangular Bézier surfaces. This is mainly because the expression
of triangular Bézier surfaces is completely different from that of curves or tensor-product
surfaces [1]. The equiareal energy of triangular Bézier surfaces is more complicated than
that of tensor-product surfaces.

In this paper, we try to make the reparameterization, algorithm procedure, and expres-
sion of the resulting surface uncomplicated. The equiareal energy is simplified to a definite
integral of a polynomial with the help of the binary Möbius transformation, which can
modify the distribution of iso-parameter curves and maintain the shape of the triangular
Bézier surface. Thus, the nonlinear optimization problem, which minimizes the equiareal
energy, is transformed into solving a system of bivariate polynomial equations with an
order of three. Finally, all the exact solutions of the equations can be obtained. One of
the exact solutions is chosen as the global optimal solution of the nonlinear optimization
problem, and the corresponding equiareal parameterization is obtained.

In summary, the process of the equiareal parameterization is uncomplicated. The main
contributions of this paper are as follows:

• With the help of the binary Möbius transformation, a nonlinear optimization problem
is explicitly formulated to improve the equiareality of the triangular Bézier surface.
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• The global optimal solution of the optimization problem is obtained by solving the
bivariate polynomial equations with an order of three.

• That global optimal solution directly leads to the equiareal parameterization.

The rest of this paper is organized as follows: In Section 2, we describe the triangular
Bézier surfaces and the binary Möbius transformation. In Section 3, we introduce the
equiareal parameterization by the minimization of the equiareal energy. In Sections 4 and 5,
we show the explicit expressions of the equiareal energy and equations. In Section 6, using
the exact solutions of the equations, we obtain the equiareal parameterization from the
global optimal solution of the minimization problem. Several examples present more
uniform iso-parametric curves across the triangular Bézier surfaces in Section 7. Section 8
concludes the paper.

2. Triangular Bézier Surfaces and the Binary Möbius Transformations

In this section, we introduce the triangular Bézier surfaces and the binary Möbius
transformation. The binary Möbius transformation is a reparameterization technology
specifically for triangular Bézier surfaces.

A triangular Bézier surface in R3 is formulated by

P(u, v) = ∑
i+j≤n

Bn
i,j(u, v)Pi,j, 0 ≤ u, v, u + v ≤ 1. (1)

where Pi,j are the control points, and the basis functions Bn
i,j(u, v) are the nth-degree binary

Bernstein polynomials defined by

Bn
i,j(u, v) =

n!
i!j!(n− i− j)!

uivj(1− u− v)n−i−j, 0 ≤ u, v, u + v ≤ 1. (2)

The binary Möbius transformations [20] of the triangular Bézier surface are defined by

u = u(s, t) = αs
(1−s−t)+αs+βt , v = v(s, t) = βt

(1−s−t)+αs+βt ,
α, β > 0, 0 ≤ s, t, s + t ≤ 1.

(3)

The positive parameters α and β determine the transformations, which is a bijection.
Based on the binary Möbius transformations, the reparameterization converts the triangular
Bézier surface P(u, v) to the triangular rational Bézier surface R(s, t), which is derived in
the following form

R(s, t) = P(u(s, t), v(s, t)) =
∑

i+j≤n
Bn

i,j(s, t)αiβjPi,j

∑
i+j≤n

Bn
i,j(s, t)αiβj , 0 ≤ s, t, s + t ≤ 1. (4)

The new reparameterized surface R(s, t) is a rational triangular Bézier surface that has
the same geometric shape as the triangular Bézier surface P(u, v). Furthermore, R(s, t) has
the same control points Pi,j as P(u, v) in light of expression (1). Meanwhile, the weights ωi,j

of R(s, t) can also be obtained as
{

αiβj}
i+j≤n for the control points Pi,j.

The binary Möbius transformations do not change the degree, control points, or
geometric shape of the original surface P(u, v), but only change the distribution of the
iso-parametric lines on the surface. Different values of α and β will have different effects
on the distribution of iso-parametric lines and the surface parameterization.

Different from the Möbius transformations of tensor-product surfaces [8,9], the binary
Möbius transformations in (3) are more complex and flexible. For example, the variation
in α in transformations of tensor-product surfaces [8,9] changes the distribution of iso-
parametric u-lines only. Meanwhile, the variation in α in the binary Möbius transformations
can change not only the distribution of iso-parametric u-lines but also the distribution of
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iso-parametric v-lines. Figure 2 shows the different (u, v) curves in the definition domain
when we change the value of α only.
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3. Equiareal Parameterization

In this section, we first introduce the equiareal energy, which measures the deviation
from the uniformity of the iso-parameter curves. The equiareal energy is connected to the
binary Möbius transformations. The equiareal parameterization seeks the positive parame-
ters α and β of the binary Möbius transformations, which minimizes the equiareal energy.

The equiareal energy e [8–10] of the triangular Bézier surface in (1) is defined as follows:

e =
x

D

(
EG− F2

)
dudv, E = Pu · Pu, F = Pu · Pv, G = Pv · Pv. (5)

where Pu = ∂
∂u P(u, v) and Pv = ∂

∂v P(u, v) are the partial derivative vectors of surface
P(u, v), and D = {(u, v)|0 ≤ u, v, u + v ≤ 1}. The symbols E, F, and G are from the first
fundamental form of the surface.

The equiareal energy e measures the deviation in the current surface parameteriza-
tion from its uniform parameterization, which makes the iso-parametric lines uniformly
distributed [8–10]. Different values of α and β in binary Möbius transformations result
in a different equiareal energy e. Hence, we denote the equiareal energy e(α, β) of the
re-parameterized surface R(s, t) as follows:

e(α, β) =
s

D

(
EG− F2)dsdt,

=
s

D

(
‖Rs(s, t)‖2‖Rt(s, t)‖2 − ‖Rs(s, t)Rt(s, t)‖2

)
dsdt.

(6)

where Rs =
∂
∂s R(s, t) and Rt =

∂
∂t R(s, t) are the partial derivative vectors of surface R(s, t).

The equiareal parameterization chooses the values of α and β in the binary Möbius
transformations in (3), such that the equiareal energy e(α, β) becomes as small as possible.
The goal of this study was to solve the following optimization problem with respect to α
and β:

min
α,β

e(α, β) =
s

D

(
‖Rs(s, t)‖2‖Rt(s, t)‖2 − ‖Rs(s, t)Rt(s, t)‖2

)
dsdt,

s.t.α > 0, β > 0.
(7)
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The equiareal energy e(α, β) is a continuous function of α and β. By setting the partial
derivatives of the equiareality energy to zero [21], the solution of α and β to obtain the
minimum of the equiareal energy e(α, β) is identified by the roots of the two equations{

∂
∂α e(α, β) = 0,
∂

∂β e(α, β) = 0. (8)

Considering the expression of R(s, t) in (4) is a rational function, the integrand in (6)
is also a fraction. This means that the equiareal energy e(α, β) is highly nonlinear, and
the exact integration is too expensive. It is almost impossible to obtain the expressions
of the equations in (8). In other words, there is no closed-form solution for the equations.
Hence, the key of the equiareal parameterization is to simplify the double definite integral
in (6) and obtain the explicit expressions of the equations in (8). They are presented in
Sections 4 and 5.

For nonlinear equations in (8), some iterative methods can be used to obtain a numeri-
cal solution by specifying an initial value [7–10]. This numerical solution is regarded as a
local optimal solution of the nonlinear minimization problem (7). The equations in (8) are
polynomial; all the exact solutions of the equations can be obtained. The global optimal
solution is determined from them. More details are shown in Section 6.

4. Expression of Equiareal Energy e(α, β)

In this section, we achieve the explicit expressions of the equiareal energy e(α, β) in
order to solve the nonlinear programming problems in (7). The equiareal energy e(α, β)
is eventually reduced to a double integral whose integrand is a polynomial of the inte-
gral variable.

We can see that Rs(s, t) and Rt(s, t) in (6) are the partial derivative vectors of rational
surface R(s, t) in (4). The expression of the integrand in (6) is very complex, making the
expression of the definite integral e(α, β) almost impossible to be displayed explicitly.

The goal of this section is to obtain the explicit expression of equiareal energy e(α, β)
out of (6). Considering that P(u, v) is polynomial and R(s, t) is fractional, we use a back
substitution in the integral. The integrand function in (6) is converted to the expression of
P(u, v). Correspondingly, the definite integral about (s, t) in (6) is converted to the definite
integral about (u, v).

With the help of chain rule, we have

Rs(s, t) = ∂
∂s P(u(s, t), v(s, t)) = Pu(u, v) ∂u

∂s + Pv(u, v) ∂v
∂s ,

Rt(s, t) = ∂
∂t P(u(s, t), v(s, t)) = Pu(u, v) ∂u

∂t + Pv(u, v) ∂v
∂t .

(9)

By substituting (9) into the integrand in (6), we have

‖Rs(s, t)‖2‖Rt(s, t)‖2 =
(

Pu(u, v) ∂u
∂s + Pv(u, v) ∂v

∂s

)2(
Pu(u, v) ∂u

∂t + Pv(u, v) ∂v
∂t

)2
,

‖Rs(s, t)Rt(s, t)‖2 =
((

Pu(u, v) ∂u
∂s + Pv(u, v) ∂v

∂s

)
·
(

Pu(u, v) ∂u
∂t + Pv(u, v) ∂v

∂t

))2
.

(10)

Now, the integrand in (6) can be presented as follows:

‖Rs(s, t)‖2‖Rt(s, t)‖2 − ‖Rs(s, t)Rt(s, t)‖2

=
(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)((
∂u
∂s

∂v
∂t −

∂u
∂t

∂v
∂s

)2
)

=
(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)(
∂(u,v)
∂(s,t)

)2
(11)

where ∂(u,v)
∂(s,t) is the Jacobian determinant [21].
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To simplify the expression of the equiareal energy e(α, β), we transform the integration
variable in (6) back to the original parameters (u, v). Considering ∂(u,v)

∂(s,t) is the Jacobian
determinant, we have

∂(u, v)
∂(s, t)

=
1

∂(s,t)
∂(u,v)

. (12)

Meanwhile, according to the relationship between area elements before and after
variable replacement in the double integral [21], we have

dsdt =
∂(s, t)
∂(u, v)

dudv. (13)

By substituting (11)–(13) into the double integral in (6), we have

e(α, β) =
s

D

(
‖Rs(s, t)‖2‖Rt(s, t)‖2 − ‖Rs(s, t)Rt(s, t)‖2

)
dsdt

=
s

D

(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)
1(

∂(s,t)
∂(u,v)

)2 dsdt

=
s

D

(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)
1(

∂(s,t)
∂(u,v)

)2
∂(s,t)
∂(u,v)dudv

=
s

D

(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)
1

∂(s,t)
∂(u,v)

dudv.

(14)

Now, we obtain the equiareal energy e(α, β)

e(α, β) =
x

D

(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

) 1(
∂s
∂u

∂t
∂v −

∂s
∂v

∂t
∂u

)dudv. (15)

The partial derivatives ∂s
∂u , ∂t

∂v , ∂s
∂v , ∂t

∂u can be expressed with the help of the inverse
transformations of (3), which are shown as follows:

s(u, v) = βu
αβ(1−u−v)+αv+βu , t(u, v) = αv

αβ(1−u−v)+αv+βu ,
0 ≤ u, v, u + v ≤ 1.

(16)

The partial derivatives ∂s
∂u , ∂t

∂v , ∂s
∂v , ∂t

∂u are shown as follows:

∂s
∂u = αβ(β+v−βv)

(αβ(1−u−v)+αv+βu)2 , ∂s
∂v = αβu(β−1)

(αβ(1−u−v)+αv+βu)2 ,
∂t
∂u = αβv(α−1)

(αβ(1−u−v)+αv+βu)2 , ∂t
∂v = αβ(α+u−αu)

(αβ(1−u−v)+αv+βu)2 .
(17)

Finally, the equiareal energy e(α, β) can be described as follows:

e(α, β) =
x

D

(
‖Pu‖2‖Pv‖2 − ‖PuPv‖2

) (αβ(1− u− v) + αv + βu)3

α2β2 dudv. (18)

Considering the expression of P(u, v) in (1) is polynomial, e(α, β) in (18) is a double
integral of polynomial, which is much simpler than the one in (6).

5. Expressions of the Equations

The solution of the optimization problem in (7) can be transformed to solve the
equations in (8). When the expression of the equiareal energy e(α, β) in (6) is reduced to
(18), the expressions of the equations in (8) can also be accordingly simplified. The goal in
this section is to obtain the explicit expressions of the equations in (8).

By substituting (18) into the equations in (8), we have
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∂

∂α e(α, β) = 1
α3 β2

s

D

(
‖Pu‖2‖Pv‖2 − ‖PuPv‖2

)
(αβ(1− u− v) + αv + βu)2(αβ(1− u− v) + αv− 2βu)dudv = 0,

∂
∂β e(α, β) = 1

α2 β3

s

D

(
‖Pu‖2‖Pv‖2 − ‖PuPv‖2

)
(αβ(1− u− v) + αv + βu)2(αβ(1− u− v)− 2αv + βu)dudv = 0.

(19)

They can be written as a system of bivariate polynomial equations with order 3
as follows: {

d33 + 3d32 + 3d31 + d30 − 3d13 − 3d12 − 2d03 = 0,
d33 − 3d31 − 2d30 + 3d23 − 3d21 + 3d13 + d03 = 0,

(20)

where

dk,l = αkβlck,l , 0 ≤ k, l ≤ 3, k + l ≥ 3.
ck,l =

s

D
B3

3−k,3−l(u, v)
(
‖Pu(u, v)‖2‖Pv(u, v)‖2 − ‖Pu(u, v)Pv(u, v)‖2

)
dudv. (21)

There are 10 different coefficients ck,l in Equation (20). All of them are the double
integrals in (21) and can be calculated by a numerical quadrature method. However,
because the integrands in (21) are polynomials, the expressions of ck,l can be explicitly given.

The partial derivative vectors Pu(u, v) and Pv(u, v) of the surface in (21) are obtained as

Pu(u, v) = n ∑
i+j≤n−1

Bn−1
i,j (u, v)∆1Pi,j, Pv(u, v) = n ∑

i+j≤n−1
Bn−1

i,j (u, v)∆2Pi,j,

∆1Pi,j = Pi+1,j − Pi,j, ∆2Pi,j = Pi,j+1 − Pi,j.
(22)

In this way, the expressions of the coefficients ck,l can be presented as a Bernstein form.

ck,l = n4 ∑
i1 + j1
≤ n− 1

∑
i2 + j2
≤ n− 1

∑
i3 + j3
≤ n− 1

∑
i4 + j4
≤ n− 1

s

D
Bn−1

i1 j1
(u, v)Bn−1

i2 j2
(u, v)Bn−1

i3 j3
(u, v)Bn−1

i4 j4
(u, v)B3

3−l,3−k(u, v) fi1 i2 i3 i4 ,j1 j2 j3 j4 dudv,

fi1 i2 i3 i4 ,j1 j2 j3 j4 =

∣∣∣∣∣ ∆1Pi1 ,j1 ∆1Pi2 ,j2 ∆1Pi1 ,j1 ∆2Pi3 ,j3

∆1Pi2 ,j2 ∆2Pi4 ,j4 ∆2Pi3 ,j3 ∆2Pi4 ,j4

∣∣∣∣∣.
(23)

In order to have an easier computation of the double integrals in (20), we introduce the
multiplication and integral properties of the binary Bernstein polynomials [1] as follows:

Bn1
i1,j1

(u, v)Bn2
i2,j2

(u, v) =

(
n1

i1, j1

)(
n2

i2, j2

)
(

n1 + n2
i1 + i2, j1 + j2

)Bn1+n2
i1+i2,j1+j2

(u, v),
(

n
i, j

)
=

n!
i!j!(n− i− j)!

. (24)

x

D

Bn
i,j(u, v)dudv =

1
(n + 1)(n + 2)

. (25)

By substituting (24) and (25) into the double integral in (23), we have the explicit
expressions of the coefficients ck,l finally as follows:

ck,l =

n3
(

3
3− l, 3− k

)
4(4n + 1) ∑

i1+j1≤n−1
∑

i2+j2≤n−1
∑

i3+j3≤n−1
∑

i4+j4≤n−1

(
n− 1
i1, j1

)(
n− 1
i2, j2

)(
n− 1
i3, j3

)(
n− 1
i4, j4

)
fi1i2i3i4,j1 j2 j3 j4(

4n− 1
i1 + i2 + i3 + i4 + 3− l, j1 + j2 + j3 + j4 + 3− k

) . (26)

To sum up, the values of all 10 coefficients in the bivariate polynomial equations
in (26) can be directly obtained without integral calculation. This greatly reduces the
complexity of the coefficient calculation. The bivariate polynomial equations are solved in
the next section.
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6. Solution of Equiareal Parameterization

The key to the equiareal parameterization is how to seek the values of α and β from
the solution of the bivariate polynomial equations in (20). Before this, we first discuss the
existence of the solution to the equations when α and β are positive.

We assume that the surface in (1) is regular, which has no sharp points, edges, or
self-intersections. We have [22]

‖Pu‖2‖Pv‖2 − ‖PuPv‖2 = ‖Pu × Pv‖2 > 0, (u, v) ∈ D. (27)

Thus, there exist two constants, C1 and C2, with

0 < C1 < ‖Pu‖2‖Pv‖2 − ‖PuPv‖2 < C2, (u, v) ∈ D. (28)

resulting from

x

D

(αβ(1− u− v) + αv + βu)3

α2β2 dudv =
1

20

(
1 + (α + β + αβ)

(
1
α2 +

1
β2 + 1

))
. (29)

by setting

h(α, β) = 1 + (α + β + αβ)

(
1
α2 +

1
β2 + 1

)
. (30)

From (28)–(30), we obtain the inequalities

1
20

h(α, β)C1 < e(α, β) <
1

20
h(α, β)C2. (31)

Note that

lim
α→ 0+

β > 0

h(α, β) = lim
α→ +∞

β > 0

h(α, β) = lim
α > 0

β→ 0+

h(α, β) = lim
α > 0

β→ +∞

h(α, β) = +∞. (32)

We have

lim
α→ 0+

β > 0

e(α, β) = lim
α→ +∞

β > 0

e(α, β) = lim
α > 0

β→ 0+

e(α, β) = lim
α > 0

β→ +∞

e(α, β) = +∞. (33)

Because the equiareal energy e(α, β) is infinite when the α and β approach the “bound-
aries” of the domain of definition, then the optimization problem (7) must have a global
minimum for α > 0 and β > 0. Considering the continuity of the equiareal energy e(α, β)
with respect to α and β, Equation (20) has at least one solution.

However, there is no guarantee that the solution of bivariate polynomial equations
in (20) is unique. Because the equations are polynomial, we can obtained all the exact
solutions (denoted by {(αi, βi)}k

i=1) rapidly using wsolve (a Maple package for solving
system of polynomial equations) [23], which implements zero decomposition algorithms
for systems of polynomial equations [24]. If the positive solution is not unique, all the
solutions should be substituted into the expression of equiareal energy e(α, β) in (18). We
choose the best pair of α and β (denoted by

(
αi0 , βi0

)
) to minimize the equiareal energy. In

practice, we observe that the equations always have a unique positive solution only. We
conclude that the equiareal parameterization is received.

In summary, given a triangular Bézier surface P(u, v), the algorithm flow for the
equiareal parameterization of triangular Bézier surfaces (denoted by Algorithm EPT) is
presented as follows:
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Algorithm EPT: The equiareal parameterization of triangular Bézier surfaces.

Input: The control points of triangular Bézier surfaces.
Output: The parameters α and β for the binary Möbius transformations.
Step 1. Compute the coefficients ck,l in (23) and (26);
Step 2. Obtain all the solutions (denoted by {(αi, βi)}k

i=1) of the system of equations with the
Maple package wsolve;
Step 3. By substituting {(αi, βi)}k

i=1 into the equiareal energy e(α, β) in (18), choose a positive
solution (denoted by

(
αi0 , βi0

)
), which makes the equiareal energy e

(
αi0 , βi0

)
to be the minimum

in {e(αi, βi)}k
i=1.

By substituting
(
αi0 , βi0

)
into the binary Möbius transformations in (3), we obtain the

equiareal parameterization.
Remark: Algorithm EPT is highly efficient. In practice, step 3 can be omitted, because the
equations in (20) always have a unique positive solution only. The proof of the uniqueness of the
solution will be our future work.

7. Experimental Results

Applying Algorithm EPT, Figures 3 and 4 illustrate the equiareal parameterization of a
triangular Bézier surface. The original triangular Bézier surfaces in Figures 3a and 4a are far
from being equiareal. With the help of equiareal parameterization, the uniformities of the
iso-parametric curves in Figures 3b and 4b are considerably improved. The iso-parameter
curve networks are shown to display the superiority of the reparameterization.
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As mentioned above, the equations in (20) always have a unique positive solution,
which is the global optimal solution of minimization problem (7), such that step 3 in
Algorithm EPT is omitted. That shows our algorithm is simple and efficient.
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8. Conclusions and Future Work

In order to improve the uniformity of iso-parametric curves for triangular Bézier
surfaces, equiareal parameterization was presented in this paper. Based on the binary
Möbius transformations, the equiareal energy can be minimized by solving a system
of bivariate polynomial equations with order three. The global optimal solution of the
corresponding nonlinear minimization problem can be obtained. Particularly, equiareal
parameterization generates a ration triangular Bézier surface, which is also a common
tool for geometry processing in CAD systems. The reparameterized surface has a clear
and concise expression and maintains the degree, control points, and shape of the original
surface. It modifies the distribution of iso-parameter curves only. Experimental examples
were given to show the effectiveness of the method.

We will focus on two directions in the future. One is to improve the quality of the
parameterization. In practice, the equiareal parameterization cannot uniformly distribute
iso-parameter curves all over the surface. Some local parts may be not good enough. That
is mainly because the binary Möbius transformations have only two degrees of freedom.
In order to improve the parameterization, more degrees of freedom should be introduced
into the transformations. The rational bilinear transformations [7], composite Möbius
transformations [9], and the optimal freeform transformations [10] were presented on the
rectangular domain with more degrees of freedom. The extension of these transformations
to the triangular domain is left as our future work. Furthermore, constructing new energy
functions to match these new parameterizations for some simple optimization problems is
a more challenging task.

The other direction of our future work is the application of equiareal parameterization.
In order to obtain a better result, we can apply equiareal parameterization to triangular
Bézier surface algorithms such as rendering, tessellation, sampling, and texture mapping. If
the parameterization is far from the equiareal parameterization, there are large distortions of
the mapping from the definition domain to the surface. These distortions usually introduce
many difficulties. Additionally, the equiareal parameterization uniformly triangulates the
definition domain and leads to more robust and stable computations for those surface
algorithms. How to combine equiareal parameterization and surface algorithms effectively
is another goal of our future work.
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