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Abstract: Descriptions are given of the Langevin and diffusion equation of passively marked fluid
particles in turbulent flow with spatially varying and anisotropic statistical properties. The descrip-
tions consist of the first two terms of an expansion in powers of C−1

0 , where C0 is an autonomous
Lagrangian-based Kolmogorov constant: C0 ≈ 7. Solutions involve the application of methods of
stochastic analysis while complying with the basic laws of physics. The Lagrangian-based descrip-
tions are converted into Eulerian-based fixed-point expressions through asymptotic matching. This
leads to novel descriptions for the mean values of the fluctuating convective terms of the conservation
laws of continua. They can be directly implemented in CFD codes for calculating fluid flows in
engineering and environmental analysis. The solutions are verified in detail through comparison
with direct numerical simulations of turbulent channel flows at large Reynolds numbers.
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1. Introduction

Fluid flow that exhibits turbulence is more of a rule than an exception. It occurs when
the Reynolds number of the flow Re is sufficiently large. The number is specified as

Re = ULν−1, (1)

where U [m/s] is the fluid velocity, ν [m2/s] is the kinematic viscosity of the fluid and L
[m] is the spatial dimension of the flow configuration, e.g., the diameter of a tube, length
of an air foil, or height above the earth’s surface. Values for ν in the cases of water and
air are typically 10−6 and 10−5 m2/s, with the corresponding velocities 0.1 and 1 m/s. A
configuration where L = 0.1 m results in a value of Re of 105. This exceeds, by far, the
critical value of approximately 103, where turbulence starts to occur.

Turbulence can be considered as a statistical process. General descriptions of the
statistical parameters have yet to be found. What is known are partial results, such as the
solutions for the log layer by Von Karman and the theory of the small viscous scales by
Kolmogorov: e.g., Monin and Yaglom [1]. However, a general description for the statistical
parameters of the large scale is missing. The key problem is the description of the statistics
of the fluctuations of the convective accelerations in the governing conservation equations.

The averaged representations of the conservation equations lack well-founded statisti-
cal descriptions of the non-linear convective terms. Instead, semi-empirical versions are
used, which are adapted and calibrated from case to case. These are a common feature
of the methods used in fluid mechanics, including computational fluid mechanics (CFD),
which are widely used in engineering and environmental analysis (Bernard and Wallace [2],
Hanjalic and Launder [3]). The presented analysis does not resort to empirical construction.
Instead, statistical descriptions are derived by applying the methods of stochastic analysis
(Stratonovich [4], Van Kampen [5]) and obeying the basic laws of physics.

The first part of the analysis is a presentation and update of previous work [6–9]
concerning the Langevin and diffusion equations for the motion of passively marked
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fluid particles. In the Langevin equation, the autonomous universal Lagrangian-based
Kolmogorov constant C0 appears. Its reciprocal value is about 0.14. Its smallness forms
the basis for approximation. Solutions are given in descending powers of C−1

0 where the
leading and next to leading terms are retained.

All these solutions comply with the known laws of physics. The Lagrangian-based
descriptions are subsequently converted into Eulerian-based fixed-point expressions by
matching using C−1

0 as the small parameter. They can directly be employed in the averaged
equations of fluid mechanics. The outcome of the C−1

0 expansion is tested through com-
parison with the results of Hoyas et al. [10,11] and Kuerten et al. [12] for direct numerical
simulations (DNS) of turbulent channel flow at a high Reynolds number.

2. Langevin Equation Including Kolmogorov Similarity

Turbulent flow occurs for large values of Reynolds numbers, Re, a situation that is
frequently encountered in practice. For Re� 1, the time over which fluid particle acceler-
ations decorrelate compares to the decorrelation times of particle velocity as Re−1/2 to 1,
e.g., [1]. This forms the basis for assuming that the velocity process can be represented by a
Markov process, where accelerations are modelled as delta correlated. The corresponding
Langevin equation reads as

dv′i
dt

= ai(v′, y) + bij(v′, y)wj(t), (2)

where the time-dependent position of the moving fluid particle is described by

dyi
dt

= u0
i (y(t)) + v′i, (3)

and i, j = 1, 2, 3. In the above equations:

t = time.

v′t = a statistical representation of the fluctuating fluid particle velocity at time t.

yi(t) = a statistical representation of the particle position at time t.

ai(v′, y) = a damping function.

bij(v′, y) = the amplitude of white noise.

wj(t) =white noise of unit intensity.

u0
i (y(t)) = the velocity based on the mean Eulerian velocity evaluated at the particle

position y(t).

Fluid velocities at a fixed point in a fixed frame of reference using the Eulerian descrip-
tion are indicated by u, while velocities of fluid particles that move with the flow using
the Lagrangian description, are indicated by v. The coordinate x is used to denote a fixed
position in the non-moving fixed coordinate system, while y(t) is the position of a moving
particle. The turbulent flow field is considered to be stationary in a fixed frame of reference.
Statistical averages of Eulerian flow variables can be calculated by time averaging, which is
indicated by angled brackets or superscript 0. The white-noise amplitude can be specified
by implementing the Lagrangian version of Kolmogorov’s similarity theory of 1941, also
referred to as K-41 theory: [13] and [1] Section 21.3. This yields

bij(v′,y)wj(t) = {C0ε(y)} 1
2 wi(t), (4)

where C0 is a universal Lagrangian-based Kolmogorov constant, and ε = ε(y) is the mean
energy dissipation rate averaged at a fixed position x and evaluated at particle position y(t)
when applied in Equation (4):

ε =
1
2

ν

〈(
∂u′i
∂xj

+
∂u′j
∂xi

)2〉
, (5)



Mathematics 2022, 10, 4619 3 of 18

where u′i is a fluctuating component of Eulerian velocity at fixed position x.
The observation that second-order correlations of fluid particle accelerations tend to

those of a delta-correlated process, when Re � 1, is, in itself, not sufficient to justify the
Langevin model [9]. The description of the forcing term by Gaussian white noise leads to
applying ordinary non-intermittent Kolmogorov (K-41) theory. The effects of intermittency,
apparent in corrections in higher-order structural functions, are not accounted for in the
Langevin model [9]. For that purpose, one can adopt a fractal model based on Kolmogorov’s
refined similarity theory: [1] Section 25.2.

However, the statistical averages of particle displacement that determine turbulent
dispersion change little under such an approach: [1] and Borgas [14]. The effect of inter-
mittency is apparent in small viscous scales, which govern the acceleration process, rather
than in large energetic scales, which govern the velocity process of turbulence. In many
applications, a Langevin model resting on K-41 theory can be considered to be a sound
approach for describing the mean dispersion on distances of large-scale turbulence.

Individual values of displacement y(t) and velocity v(t) obtained from Equations (2)
and (3) do not represent the actual values of fluctuating displacements and velocities of
fluid particles as they occur in turbulent flow. Instead, they are dummy variables that
enable the specification of statistical averages of actual fluid flow. This is achieved by
generating many realizations using w(t) as a random generator and averaging the results.
In the case of passive marking of fluid particles all starting at position y = x0 at t = 0, the
fluctuating velocities v′ should, for every realization, be selected randomly in accordance
with the distribution of the Eulerian fluctuating velocity at position x0:

t = 0; y = x0; v′ = u′ (6)

During a simulation, the coefficients in Equations (2) and (3) vary in magnitude with
the particle position in accordance with their value at y = x. A probabilistic description of
particle displacement and its velocity is obtained after performing many simulations and
averaging the result at every moment in time. This enables evaluating the average spatial
distribution of particles with time. This type of Lagrangian averaging is denoted by an
overbar: In the case of the simulated variable fn(t), it can be written as

f (t) = lim
N→∞

N

∑
n=1

fn(t), (7)

where fn(t) is the value of f at time t in the case of simulation n.
As alternative to time simulation using the Langevin equation the same statistical

distributions of fluid particle velocity and position can be obtained from the Fokker–Planck
equation associated with Equations (2) and (3). It is given by

∂p
∂t

+ u0
i

∂p
∂yi

+ v′i
∂p
∂yi

= − ∂

∂v′i

(
ai(v′,y)p

)
+

1
2

C0ε
∂2 p

∂v′i∂v′i
(8)

where p = p(v,y, t) is the joint probability density function of velocity and position at time t.

3. Specification of Damping Function by C−1
0 -Expansion

Thus far, I have not specified the damping term ai(v′, y) in the Langevin equation.
The specification of the damping term in a form that is generally applicable has long been
an issue [6–9,15]. A method was proposed in which Kolmogorov constant C0 is used
as the basis for an expansion. Solutions are described in terms of an expansion [7–9] in
consecutive powers of C−1

0 . The expansion is not related to a dimensionless combination of
parameters, which can attain a vanishingly small or large value. Such a combination does
not exist. Instead, C0 is used as a scaling parameter, facilitated by its autonomous position
in statistical turbulence at a large Reynolds number [9].

The scaling parameter enters by the white-noise term and results in specific powers
of C0 in each of the terms on the basis of the required balances between them. The
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accuracy of the expansion depends on the truncation of subsequent terms. According to the
measurements and data from numerical simulations, C0 has a value of about 7: Sawford [16]
and Section 9. The accuracy of the resulting expressions is discussed in Sections 8 and 9.

Realistic solutions in the limit of C−1
0 → 0 are obtained from the Langevin equation

when all terms scale in the same manner with C0. For this to happen, the damping term
must scale as C0, and the time of correlation, which is the statistically relevant time as C−1

0 ;
thereby, noting that the white noise term w(t) scales as C−1/2

0 . The displacement due to
fluctuations during correlation scales is C−1

0 . This initial scaling allows for a number of
approximations [9]. To the leading order in C−1

0 , the displacement of a particle is small, and
values of fixed-point statistical quantities used in the parameters of the Langevin equation
can be represented by their values at the marking point x = x0.

We can thus discuss a homogeneous statistical process in the initial stages after mark-
ing [6–9]. During that short time, the dissipation of energy by viscous action is small. The
change in the Hamiltonian by viscous dissipation (d/dt)H ≈ ε(x0) is small and propor-
tional to C−1

0 . The statistical process is initially one that can be described by Einstein’s
fluctuation theory, e.g., Reichl [17]. In the leading order formulation in powers of C−1

0 ,
the damping term is linear in velocity, satisfies Onsager symmetry, and its magnitude is
determined by the fluctuation–dissipation theorem [8,9]. As a result,

a′i = −
1
2

C0λijεv′j, (9)

where λij is the inverse of the covariance tensor of the Eulerian velocity field

λij = σ−1
ij =

〈
u′iu
′
j

〉−1
(10)

4. Higher-Order Formulation of the Langevin Equation

Until now, attention has been focused on the leading-order term in the expansion with
respect to C−1

0 . The resulting descriptions involve a truncation error of O(C−1
0 ). Such an

error will become smaller, the larger C0 is. However, in turbulence, the value of C0 is limited
to about 7. This corresponds to C−1

0 = 0.14 and implies that the truncation error can become
large. Deriving expressions for higher-order terms is, thus, desired [7]. For that purpose,
one can resort to the well-mixed principle of Thomson [15]. Given an initial distribution,
particles will, in the course of time, mix up with the fluid and attain the distribution of fluid
velocity. This equilibrium distribution satisfies the Eulerian interpretation of Equation (8),
which is given by [7]

u0
i

∂pE
∂xi

=
1
2

ε0C0
∂2 pE

∂u′i∂u′i
− ∂

∂u′i
(ai pE)− u′i

∂pE
∂xi

(11)

where ai = ai(u′,x) and pE = pE(u′) is the distribution of the fluctuating component of
the fixed-point Eulerian fluid velocity u′. There is no time derivative in Equation (11) when
considering stationary turbulence: Statistical averages at a fixed point do not vary with
time. Note further that x is not a statistical variable but a fixed position. Statistical averages
can be obtained from time averaging at fixed point x. Derivatives of pE with respect to x
attain values whenever the statistical parameters of pE (covariances, etc.) vary in space
(inhomogeneous turbulence).

The Eulerian distribution pE is equivalent to the non-equilibrium steady state distribu-
tion in statistical mechanics. Equation (11) represents the general form of the fluctuation–
dissipation theorem that is appropriate for turbulence. Given pE(u′i), Equation (11) can
be used to derive expressions for the damping function a′i. Noting the leading-order
formulation with respect to C0, cf. Equation (9), we have

ai = −
1
2

C0λijεu′j + a′i, (12)
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where a′i = a′i(u′,x) is to be determined. The Eulerian velocity distribution can be taken
as Gaussian to the leading order,

pE = pG + C−1
o fe pG, (13)

where pG = pG(u′) is the zero-mean Gaussian while fc = fc(u′) is the correction on the
Gaussian behavior. Values of the zero, first-, and second-order moments are fully captured
by the Gaussian part of the description,∫ +∞

−∞
fc(u′)pG(u′)du′ =

∫ +∞

−∞
u′i fc(u′)pG(u′)du′

=
∫ +∞

−∞
u′mu′n fc(u′)pG(u′)du′ = 0,

(14)

values of cumulants higher than second order are determined by fc(u′). Substituting the
description for pE and Equation (12) into Equation (11), one obtains, for a′i, the equation

∂a′i
∂u′i
− λiju′ja

′
i

=
1
2

[
λ−1(u0

i + u′i)
∂λ

∂xi
− (u0

i + u′i)
∂λmn

∂xi
u′mu′n

]
+

1
2

ε

(
∂2 fc

∂u′i∂u′i
− λiju′j

∂ fc

∂u′i

)
,

(15)

where there are dropped terms of relative magnitude O(C−1
0 ) in the contributions due to

non-Gaussianity, i.e., the second term on the right-hand side of Equation (15). Equation (15)
is exact, i.e., it does not involve any approximation or truncation with regard to C0 in the
case of Gaussian Eulerian velocities ( fc = 0). The solution of Equation (15) is [7]

a′i =
1
2

λjmu0
k

∂σmi
∂xk

u′j +
1
2

λjn
∂σij

∂xm
(u′mu′n + σmn) + gi, (16)

where gi = gi(u′,x),
gi =

1
2

ε
∂ fc

∂u′i
+ a′Hi , (17)

where a′Hi = a′Hi (u′,x) is the solution of the homogeneous problem

(∂/∂u′i)(a′Hi pG) = 0 or (∂/∂u′i)a′Hi = λiju′ja
′H
i . (18)

A variety of solutions exists for a′Hi , linear and nonlinear in u′; however, each of them
contains a degree of indeterminacy apparent in unspecified constants. When confining the
damping function to linear representations in ui, the solution of Equation (18) is

a′Hi = bkσijεkiju′j (19)

where εkij is the alternating unit tensor. Solution (19) constitutes an antisymmetric extension
to the symmetric damping tensor derived in the previous section as described by the first
term of solution (12). In this solution bk are three dimensionless constants whose values are
unknown. It is a reflection of the nonuniqueness problem: Except for isotropic turbulence,
it is impossible to fully specify the damping function on the basis of a specified fixed-
point Eulerian velocity distribution. Yet, there is a practical way out of the nonuniqueness
problem [7–9].

It appears that a′Hi yields only contributions of relative magnitude O(C−2
0 ) compared

to the previously determined leading terms in the statistical distributions of particle dis-
placement. This conclusion is arrived at when deriving the diffusion equation from the
Langevin equation: see Section 5. This reveals the contributions of relative magnitude
O(C−2

0 ) in diffusivity and convection only. The same result is obtained for the other term
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in solution (17), which describes the effect of non-Gaussianity. In general, the contribution
of gi in solution (16) can be disregarded in any description, which allows for a relative error
of O(C−2

0 ) in the diffusion limit. Setting gi = 0, we arrive at a Langevin model, which has,
as a damping function,

ai =−
1
2

C0λijεv′j +
1
2

λjmu0
k

∂σmi
∂xk

v′j

+
1
2

λjn
∂σij

∂xm
(v′mv′n + σmn).

(20)

While the first term in this solution corresponds to the result of the Hamiltonian
base case, the second and third terms represent the correction due to inhomogeneity
in an otherwise locally homogeneous statistical field. The corrections can be related to
the change of energy, which was disregarded in the leading-order formulation where
underlying particle mechanics can be considered Hamiltonian [7,8]. The second term
describes the change of energy due to changes of covariances in the direction of the mean
flow. Accelerating or decaying the mean flow results in non-zero values of the second term.
The third term describes the effects of the spatial gradient of the fluid velocity covariance.
This can be associated with shearing due to external forcing.

Solution (20) corresponds to a previous result of Thomson [15]. It was one of several
proposals made for the damping functions, which all satisfy the well-mixed criterion and
which correspond to an entirely Gaussian Eulerian velocity distribution. This is a reflection
of indeterminacy because of the nonuniqueness. The present analysis provides an answer.
It reveals descriptions for statistical displacement obtained from Equation (20), which are
unique up to an error of O(C−2

0 ).

5. The Diffusion Limit

The diffusion limit concerns the description of random particle displacements on a
time scale that is much larger than the correlation time of the fluctuating velocity. As
indicated by a balance between the acceleration term and damping term in the Langevin
equation, the correlation time can be expressed as

τc = C−1
0 τE, τE = |u′|2ε−1 (21)

where |u′| is the magnitude of velocity flucutations and τE is the characteristic time of large
scales or of the eddy turn-over time. The description of the time scale t� τc is known as
coarse graining, e.g., [1] vol.I, Section 10.3. The magnitude of the fluctuating fluid particle
displacement during correlation can be represented by

lc = τc|u′| = C−1
0 |u

′|3ε−1 (22)

where |u′|3ε−1 represents the size of the eddies, which is also the distance over which the
statistical parameters vary in magnitude.

The Langevin model is centered around the fluctuating particle velocity relative to
the mean Eulerian velocity: cf. Equations (2) and (3). In line with this representation, the
displacement of a fluid particle by the sum of a component due to the mean flow and a
component representing the zero-mean random displacement are described (see also [18]
and [5] Section XVI.5):

yi(t) = y′i0 + y′i(t) (23)

where y′i0 is the particle track according to the Eulerian mean velocity:

dy′i0
dt

= u0
i (y
′
0) , y′i0 = x0 at t = 0 (24)

For general inhomogeneous turbulent flow, the Eulerian-based coefficients in the
Langevin model vary in magnitude with the space coordinates. This makes the coefficients
time-dependent in the Langrangian-based description of the Langevin model. Representing
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displacement by Equation (23), the time dependency occurs in two ways [8]: (i) through
spatial variations when following the particle according to the mean velocity y′0 and
(ii) through dependency on random displacement y′

λij = λij(y′0 + y′), ε = ε(y′0 + y′), σij = σij(y′0 + y′),

u0
i = u0

i (y
′
0 + y′), a′Hi = a′Hi (v′, y′0 + y′)

(25)

In the next analysis, I shall disregard the dependency on y′. Furthermore, I disregard
the non-linear third term in the damping function as well as a′Hi . Requiring the Gaussian
behavior in the leading order formulation and mixing for next-to-leading order, all these
terms yield contributions of relative magnitude O(C−2

0 ) in the diffusion model: see Ap-
pendix of [8]. The Langevin model, which specifies diffusion to the leading order and
next-to-leading order now follows from Equations (2) and (3) as

dv′j
dt

=

(
−1

2
C0λij(y′0)ε(y

′
0) +

1
2

λjm(y′0)u
0
k(y
′
0)

∂σmi(y′0)
∂y′k0

)
v′j

+
(
C0ε(y′0)

)1/2wi(t)

(26)

From Equations (3), (23) and (24), we obtain

v′i =
dy′i
dt

(27)

Fluctuating Equations (26) and (27) can be transformed into a Fokker–Planck equation
for the joint probability of v′ and y′. The solution is a multi-dimensional Gaussian distribu-
tion with time-dependent parameters: [5] Section VIII.6. The zero-mean probability density
distribution for the fluid particle position in the fixed coordinate system x′, which moves
with the mean Eulerian velocity u0 is specified by the diffusion equation

∂p(x’, t′)
∂t′

=
∂

∂x′i

(
y′kv′i

∂p(x’, t′)
∂x′k

)
(28)

subject to a suitably chosen initial distribution at t′ = 0, i.e., the delta pulse δ(x′) in the
case of passive marking of particles at t′ = 0 and x′ = 0. Note that the time derivative in
the above Eulerian description applies to the coordinate system, which moves with the
mean velocity according to Equations (23) and (24) (∂/∂t′ = ∂/∂t + u0

i ∂/∂xi). To evaluate
the diffusion coefficient y′kv′i, note that

d
dt

y′kv′i = v′kv′i + y′k
dv′i
dt

= σki(y
′
0) + y′k

dv′i
dt

(29)

where the latter term can be calculated by multiplying Equation (26) with x′k and averaging

y′k
dv′i
dt

= −1
2

C0λij(y′0)ε(y
′
0)y
′
kv′j +

1
2

λjm(y′0)u
0
n(y
′
0)

∂σmi(y′0)
∂y′n0

y′kv′j (30)

There is no contribution of the last term of Langevin Equation (26) because wi(t) is
only correlated with v′i(t). Substituting Equation (30) into the r.h.s. of Equation (29) results
in the following first-order differential equation for the diffusion coefficient

d
dt

(
y′kv′i

)
+

1
2

C0λij(y′0)ε(y
′
0)y
′
kv′i =

σki(y
′
0) +

1
2

λjm(y′0)u
0
n(y
′
0)

∂σmi(y′0)
∂y′n0

y′kv′j

(31)

subject to the initial condition y′kv′i = 0 at t′ = 0. The equation describes the transient of the
diffusion coefficient towards its value valid in the diffusion limit when t� τc. This limit
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value can be time-dependent on the time-scale t � τc and can be obtained by iteration
using C−1

0 as the small parameter [8]. The leading order follows from a balance between
the second term on the l.h.s. and the first term on the r.h.s. Substituting this solution into
the neglected other terms and noting that, according to our definitions, y′kv′i = Dki when
t� τc, we obtain, in terms of the Eulerian coordinates of the non-moving frame [8]

Dkn = 2C−1
0 ε−1σkiσin + 2C−2

0 ε−2σinσkmu0
l

∂σmi
∂xl

− 4C−2
0 ε−1σinu0

l
∂

∂xl

(
ε−1σkmσmi

) (32)

The leading order term in the diffusion tensor is symmetric; however, the terms that
are next to the leading order are not. However, the non-symmetric part of the tensor is
found to make contributions of O(C−2

0 ) in the convection of fluid particles and admixture
only: [8]. The non-symmetric part makes no contribution to the next-to-leading order terms
in the diffusion coefficient.

In the above derivation, I considered the limit t� τc by which velocities de-correlated
from their initial value at t = 0. At the same time, one can take t � |u′|2ε−1, which is
the time scale of the large eddies and the time scale of inhomogeneous behavior. Under
this condition, the values of parameters can be represented by their values at the initial
marking: yt

0 = x0. As one can repeat the derivation for any other point of marking, one can
replace x0 by x: i.e., u0

i = u0
i (x), σij = σij(x) and ε = ε(x) in (32).

The diffusion equation in a non-moving Eulerian frame now follows from Equations (28)
and (32) as

∂p
∂t

+ u0
i

∂p
∂xi

=
∂

∂xk

(
Dkn

∂p
∂xn

)
(33)

where p = p(x, t) is the probability density of a marked fluid particle at position x and
time t. The probability distribution applies equally to parameters whose values are linearly
connected to the value of the particle position: i.e., concentrations of passive or almost
passive admixtures, such as aerosols or the temperature in incompressible or almost in-
compressible fluids; see also Section 7. To determine the distributions from (33), the mean
values u0

i , co-variances σij and mean dissipation rates ε need to be known. These can be
obtained using techniques of Computational Fluid Dynamics.

6. Statistical Descriptions of Momentum Flux

Momentum flux plays a central role in the conservation equations of fluid mechanics.
An issue is the specification of the Reynolds stresses, i.e., the mean value of the fluctuat-
ing components of the momentum flux tensor. The conservation equations are typically
formulated with respect to a fixed coordinate system, viz. the Eulerian formulation. The
aim of the present analysis is to derive expressions for the mean value of the fluctuating
components that fit in the Eulerian frame. First, the Lagrangian-based momentum flux
tensor vi(t)vj(t) is considered where vi(t) are the velocities of moving fluid particles that
all pass at t = 0 through the surface at xj0 (alternatively, one can choose the velocity vj(t)
and the surface xi0 but with ultimately the same Eulerian result due to the symmetry of the
diffusion tensor).

Statistical averages are determined at close distance from xj0 using Lagrangian-based
expressions for vi(t), which were derived in the previous sections. Taking the diffusion
limit of the Lagrangian-based solutions and letting the distance from xj0 approach zero
on the coarse scale of the diffusion approximation, a connection can be made with the
Eulerian-based value of the tensor: < ui(x0, t)uj(x0, t) >. This enables the completion of
the description of the averaged representation of the conservation equations of momentum
for fluid mechanics.

The displacement of a marked fluid particle that is at position x0 at time t = 0 follows
from (3) as
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yi(t) =
∫ t

0
u0

i (y)dt + y′i(t) + xi0, (34)

where u0(y) is value of the Eulerian mean velocity at particle position y = y(t) and

y′i(t) =
∫ t

0
v′i(t)dt. (35)

To describe the position of the particle at times close to t = 0, expand the r.h.s. of (35) as:

yi(t) = xi0 + u0
i0t + y′i(t) +

∂u0
i0

∂xn0

(
1
2

u0
n0t2 +

∫ t

0
y′n(t)dt

)
, (36)

where u0
i0 is the Eulerian mean velocity at x0. Neglected terms on the r.h.s. of (36) are

larger than the quadratic in t and y′. It can be shown that these terms only contribute
to O(C−3

0 ) in the diffusion approximation. In accordance with the above expansion, the
particle velocity is described by

vi(t) =
dyi(t)

dt
= u0

i0 + v′i(t) +
∂u0

i0
∂xn0

(
u0

n0t + y′n(t)
)

. (37)

The objective is to describe the average momentum of particles that approach the
surface at xj0 with velocity v′i(t). The particles are situated in an area that is small compared
to the size of the large eddies so that Eulerian statistical averages can be treated as homo-
geneous in space. Furthermore, the area considered is large compared to the area where
the particle velocities are correlated. For these conditions to be satisfied, C−1

0 � t/τE � 1,
which is the condition for the diffusion limit to apply. This involves a limit process
whereby time approaches zero but on the time scale of coarse graining of the diffusion
limit: t� τc, t→ 0, where τc = C−1

0 τE is the correlation time of the particle velocities.
The momentum for small negative times is given by

vi(−t)vj(−t) = u0
i0u0

j0 + u0
j0

∂u0
i0

∂xn0

(
−tu0

n0 + y′n(−t)
)
+ u0

j0v′i(−t)

+ u0
i0

∂u0
j0

∂xk0

(
−tu0

k0 + y′k(−t)
)

+
∂u0

i0
∂xn0

∂u0
j0

∂xk0

(
−tu0

n0 + y′n(−t)
)(
−tu0

k0 + y′k(−t)
)

+ v′i(−t)
∂u0

j0

∂xk0

(
−tu0

k0 + y′k(−t)
)
+ v′j(−t)u0

i0

+ v′j(−t)
∂u0

i0
∂xn0

(
−tu0

n0 + y′n(−t)
)
+ v′i(−t)v′j(−t).

(38)

The average value of the momentum of all particles passing the surface xj0 is

vi(−t)vj(−t)
∣∣∣
−t�τc ,t→0

= u0
i0u0

j0 + v′i(−t)v′j(−t)
∣∣∣
−t�τc ,t→0

+ v′i(−t)y′k(−t)
∣∣∣
−t�τc ,t→0

∂u0
j0

∂xk0

+ v′j(−t)y′n(−t)
∣∣∣
−t�τc ,t→0

∂u0
i0

∂xn0
,

(39)

with the property that v′i(t) = 0 and y′i(t) = 0 at t = 0. Fluid particles will cross the plane
xj0 at different positions. However, the particles under consideration are in an area whose
size is limited. The spatial variations of the mean Eulerian velocities are small and can
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be disregarded within the order of approximation of the developed perturbation scheme.
In (39), they are taken to be equal to the value at the point of the crossing x0 of (38).

When applying Langevin Equation (2) to negative values of t, the damping term has
to change sign in order to yield the required decay with t → −∞. Hence, v′j(−t) = v′j(t),
y′j(−t) = −y′j(t), and

v′i(−t)y′j(−t) = −v′i(t)y
′
j(t). (40)

The correlation v′i(t)y
′
j(t) can be determined in accordance with (31) and (32), where

the energy dissipation rate and the co-variances can be taken to be equal to their values at
x0 under the limit process of the diffusion limit. The result equals the expression for the
diffusion coefficient of (32).

y′j(t)v
′
i(t)
∣∣∣
−t�τc ,t→0

= Dij(x0). (41)

When shear and mean flow gradients are absent, an isotropic state exists, a feature
that is seen in grid turbulence. In this case,

v′i(−t)v′j(−t) =
2
3

k0δij, (42)

where k0 is the kinetic energy of the isotropic state. Invoking (40)–(42) in (39), we have

vi(−t)vj(−t)
∣∣∣
−t�τc ,−t→0

= u0
i0u0

j0 +
2
3

k0δij − Dik
∂u0

j0

∂xk0
− Djk

∂u0
i0

∂xk0
(43)

Result (43) applies in an area where the diffusion limit holds. The area is of volume l3

where C−1
0 L � l � L and where C−1

0 L is the length of velocity correlations and L is the
size of the large eddies or flow configuration. The presented descriptions are valid in the
limit of C−a

0 → 0, 0 < a < 1. The smallness of C−1
0 is limited: C−1

0 ≈ 1/7. Yet, comparison
with a range of results of measurements and direct numerical simulations shows fairly
good agreement (Section 9). The reason is that terms of order C−2

0 are incorporated into the
expansion, and the correlations decay exponentially with time C0t/τE where τE is the eddy
turnover time (cf. Equation (21)).

Reducing the volume of the area l3 to zero, it becomes identical to a point in the
Eulerian description of the flow field. We can, thus, take

vi(−t)vj(−t)
∣∣∣
−t�τc ,−t→0

=< ui(x0, t)uj(x0, t) > . (44)

Noting that

< ui(x0, t)uj(x0, t) >= u0
i0u0

j0+ < u′i(x0, t)u′j(x0, t) >, (45)

where
< u′i(x0, t)u′j(x0, t) >= σij(x0) (46)

is covariance or Reynolds stress, we have from (43)–(46)

σij(x0) =
2
3

k0 − Dik
∂u0

j0

∂xk0
− Djk

∂u0
i0

∂xk0
. (47)

The mean value of the fluctuating kinetic energy k is given by

k =
1
2
< u′1

2
(x0, t) + u′2

2
(x0, t) + u′3

2
(x0, t) >=

1
2
(σ11 + σ22 + σ33) =

1
2

σnn, (48)

where repeated indices n imply summation. Substituting (47) into (48), one obtains

k = k0 − Dnk
∂u0

n0
∂xk0

, (49)
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which can be used to eliminate k0 from (47) with the result

σij(x0) =
2
3

(
k + Dnk

∂u0
n0

∂xk0

)
δij − Dik

∂u0
j0

∂xk0
− Djk

∂u0
i0

∂xk0
(50)

Similar to the analysis in the previous section, one can repeat the above procedures for
any other point x0 and extend the results (45) and (50) to all positions x by replacing x0 by
x. The resulting statistical descriptions account for inhomogeneity of the turbulence field.

Equation (50) allows all six co-variances to be determined for given values of k, ε, Dij

and u0
i . Having implemented Equations (32), (45), (46) and (50), the values of the mean

velocities u0
i can be derived from the averaged versions of the equations of conservation of

momentum. To obtain a closed set of equations, two equations determining k and ε have
to be included. In this respect, it is noted that relation (48) is implied by (50) and does not
represent an extra relation for k. The extra equations are provided by the two equations of
the k− ε model that describes these variables [2,3]. The closed system of coupled equations,
thus, obtained is a straightforward extension of the equations of the widely used k − ε
model. The model may be termed the anisotropic k− ε model, and this enables the mean
values of the statistical parameters of an anisotropic inhomogeneous turbulent flow to
be calculated.

7. Statistical Descriptions of Scalar Flux

Examples of scalar flux are the dispersion of substances immersed in fluids and of
temperature distributions in incompressible and almost incompressible fluids. Turbulence
is known to have a significant effect on these phenomena. Similar to the analysis of the
previous section, consider an area that is small to the area of inhomogeneity but large
compared to the area where particle velocities are correlated. The Lagrangian scalar flux is
described by vi(t)φ(t), where vi(t) are the velocities of marked fluid particles that all pass
at t = 0 through a surface at xj0, and φ(t) is the value of the scalar quantity at the position
of each moving particle. When considering the velocities of particles at a short distance, the
time from the surface of passing (37) can be employed. For the value of the scalar quantity
at the position of the particle, we have

φ(t) = θ0
0 + (y′n + u0

n0t)
∂θ0

0
∂xn0

+ φ′(t). (51)

The first and second term on the right-hand side represent dispersion of the scalar
quantity due to fluid particle displacement whereby the scalar does not vary in magnitude
while moving with the fluid particle. The third term is autonomous random changes of
the value of the scalar quantity while moving with the fluid particle. For the first term,
take the Eulerian-based mean value at x0. Similar to the analysis of the previous section,
particles pass through different positions at the surface xj0. However, all these positions
are at a limited distance from each other in accordance with the coarse graining of the
diffusion limit.

On this scale, spatial variations in value of the first term of the expansion can be
disregarded. They can be taken to be equal to the Eulerian mean value at the single point
x0. Furthermore, the first term is allowed to vary deterministically with time t∗, where t∗ is
the time in the Eulerian fixed frame of reference: θ0

0 = θ0
0(x0, t∗). Lagrangian averaging can

take place by adding the simulation results of the Langevin equations at a fixed value of t∗

and subsequently repeating for every other value of t∗. The variation with t∗ is considered
to be slow compared to the rapid variation of the random fluctuations of τc.

Multiplying the right-hand sides of Equations (37) and (51), replacing t by−t, applying
Lagrangian averaging and letting −t → 0 after applying the diffusion limit, one obtains
(similar to the procedure of the previous section)
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φ(−t)vi(−t)
∣∣∣
−t�τc ,−t→0

= θ0
0u0

i0 + y′n(−t)v′i(−t)
∣∣∣
−t�τc ,−t→0

∂θ0
0

∂xn0

+ φ′(−t)y′n(−t)
∣∣∣
−t�τc ,−t→0

∂u0
i0

∂xn0
+ φ′(−t)v′i(−t)

∣∣∣
−t�τc ,−t→0

.

(52)

The third and fourth terms on the right-hand side are contributions due to autonomous
fluctuation of the scalar when moving with the fluid particles. To determine the values of
these terms, fluctuation equations of φ(t) need to be known. No attempts will be made to
derive such equations. We assume that φ‘(−t) is a conserved quantity whose value does
not change while moving with the fluid particle: φ′(−t) = 0. Noting that

y′n(−t)v′i(−t) = −y′n(t)v′i(t) (53)

and implementing (41) then yields

φ(−t)vi(−t)
∣∣∣
−t�τc ,−t→0

= θ0
0u0

i0 − Din
∂θ0

0
∂xn0

, (54)

where φ(−t)vi(−t) equals the Eulerian-based value at x0. As the relation holds for every
position x, we have

< θui >= θ0u0
i − Din

∂θ0

∂xn
, (55)

where θ is a conserved quantity that satisfies the Eulerian-based conservation equation

∂θ

∂t∗
+

∂

∂xi
(θui) = 0. (56)

Applying equation ensemble averaging to the above, substituting Equation (55) and
replacing t∗ by t, yields

∂θ0

∂t
+ u0

i
∂θ0

∂xi
=

∂

∂xi

(
Din

∂θ0

∂xn

)
, (57)

where I employed the averaged version of continuity: (∂/∂xi)u0
i = 0. The above result

equals the equation for fluid particle distribution given by Equation (33). This is consistent
with the feature that the distribution of the particle must be equal to the distribution of a
conserved quantity whose value does not change with value of x following the path of a
fluid particle.

8. Decaying Grid Turbulence

Decaying grid turbulence has been studied many times during the previous century,
and many results are available. Turbulence is generated by a uniform mean flow that
passes through a grid of squarely spaced bars. The grid is perpendicular to the incoming
mean flow. At some distance behind the grid, a homogeneous field of isotropic turbulence
develops and decays in the downstream direction with the mean flow. For grid turbulence,
exact results for the Langevin and diffusion equations are known. In the present section, I
recapitulate these results and compare them with the present results based on the two-term
C−1

0 expansion.
For convenience in presentation, turbulence is described in a frame that moves with

the uniform mean velocity. I thus describe the equivalent situation where the grid moves
with constant speed from right to left through a fluid that is initially at rest. When the
grid has passed, a uniform field of isotropic zero-mean Gaussian fluctuations exists, which
decays in time. The strength is the same in all three coordinate directions. Therefore,
analysis is restricted to fluctuations in one direction only. Corresponding variables are
indicated by a subscript of 1. Regarding the independence of fluctuations in three directions,
a problem of nonuniqueness, as discussed in Section 5, does not exist. The appropriate
Langevin equation in one-dimensional form can be written as
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dv′1
dt

= −1
2

(
εC0

σ1
− 1

σ1

∂σ1

∂t

)
v′1 + (εC0)

1/2w(t), (58)

where σ1 is the Eulerian mean square of the fluctuations

σ1 =< u′21 > . (59)

Expressions for σ1 and ε can be derived from the Von Karman-Howarth equation for
conservation of the mean kinetic energy of fluctuations. For large Reynolds numbers, these
expressions are: [19]

ε = ε0(t/t0)
−2; σ1 = σ10(t/t0)

−1; ε0 =
3
2

σ10t−1
0 , (60)

where t0 is the reference time, i.e., a moment in time where the grid has passed the observer
at a fixed position. The value of σ10 depends on the dimensioning of the grid and can be
established by measurements at time t0. Implementing (60) into (58), we have

dv′1
dt

= − ε

2σ1
(C0 + 2/3)v′i + (C0ε)1/2w(t). (61)

From this result, one can derive (analogous to the derivation in Section 5) the diffu-
sion equation

∂p
∂t

= D1
∂2 p
∂x2 , (62)

where the diffusion coefficient is given by

D1 =
2σ2

10

ε0C0(1 + (2/3)C−1
0 )

. (63)

Note that the diffusion coefficient does not decrease in the stream-wise direction. A
decay in the strength of fluctuations is compensated for by an increase in the correlation time.

Results (61)–(63) were obtained without using the C−1
0 expansion. The Langevin equa-

tion according to a two term C−1
0 expansion is given by Equations (2) and (20). Introducing

the features of grid turbulence results in an equation that is the same as Equation (61). The
diffusion coefficient according to the two term C−1

0 expansion is given by Equation (32).
This reduces, in the case of grid turbulence, to D1 = 2σ2

10(1 − (2/3)C−1
0 )/(ε0C0). Ex-

panding the exact result given by Equation (63) in powers of C−1
0 yields D1 = 2σ2

10(1−
(2/3)C−1

0 + (4/9)C−2
0 + ...)/(ε0C0).

The first two terms in the diffusion coefficient of the exact result thus agree with
the two-term C−1

0 expansion. The third term amounts to a relative contribution of 0.9%
when C0 = 7. In conclusion, the two-term expansion complies with the corresponding
expansion of the exact result, and the error of truncating the third term is small. The latter
conclusion is, however, of limited value as the grid turbulence is isotropic and only slightly
inhomogeneous in the stream-wise direction. In practice, turbulence is mostly anisotropic
and appreciably inhomogeneous. The next section analyses such a case.

9. Turbulent Channel Flow

Turbulence is a well-known feature of flows in pipes and channels and in boundary layers
along walls, including the boundary layers along the earth’s surface. A representative case for
such flows is a developed turbulent flow in a channel of two parallel flat plates. The statistical
values are constant in the direction of the mean flow between the plates and in the direction
that is parallel to the plates and perpendicular to the mean flow but changes significantly in
magnitude in the direction normal to the plates. The fluctuations are strongly anisotropic.

9.1. Exact Results

Some exact results can be derived from the averaged Navier–Stokes (N-S) Equations:
([1] vol I, p. 268). The averaged equations are given by
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∂

∂xi
< uiuj >= −1

ρ

∂ < p >

∂xj
+ ν

∂2 < uj >

∂xi∂xi
, (64)

where p is the pressure relative to the pressure of the fluid at rest, and ρ is the density. In the
case of a developed turbulent channel flow, the mean values involving fluctuating velocities
and pressure gradients vary only with the wall normal coordinate x2. The averaged N-S
equations then reduce to

− 1
ρ

∂p0

∂x1
=

∂

∂x2
σ12 (65)

− 1
ρ

∂p0

∂x2
=

∂

∂x2
(σ22), (66)

where x1 is the coordinate of the mean flow direction, σij =< u′iu
′
j > are the co-variances of

fluctuating velocities, and p0 =< p > is the mean pressure. The contribution of the viscous
stress represented by the last term in Equation (64) was disregarded in the above equations.
The effect is limited to thin viscous layers near the wall. Their effect on the flow outside
these thin layers can be accounted for by the boundary condition imposed on the shear
stress σ12 at the wall. From Equations (65) and (66), one obtains the solutions

1
ρ

p0 = −u2
τx1/H − σ22 (67)

σ12 = −u2
τ(1− x2/H), (68)

where uτ is the shear velocity and 2H is the distance between the parallel plates. The shear
velocity uτ can be related to the pressure drop in the channel by solving the flow in the
boundary layer at the wall. The relationship is also known from measurements: e.g., [1].
The value of uτ is representative for the magnitude of the fluctuations.

9.2. Results from the C−1
0 -Expansion

The exact results of Section 9.1 can be extended by supplementing the expressions for
the turbulent momentum diffusion of Equation (50). For the channel flow, these become

σ22 =
2
3

k +
2
3

D12
du0

1
dx2

(69)

σ33 = σ22 (70)

σ11 =
2
3

k− 4
3

D12
du0

1
dx2

(71)

σ12 = −D22
du0

1
dx2

(72)

where u0
1 = u0

1(x2) is the mean flow in the channel and where the diffusion coefficients are
given by

D12 =
2

εC0
σ12(σ11 + σ22) (73)

D22 =
2

εC0

(
σ2

12 + σ2
22

)
(74)

Equations (67)–(74) constitute eight relations for 10 variables: p0, σ11, σ22, σ33, σ12,
k, D12, D22, ε and u0

1. A closed system of equations requires two extra equations. These are
provided by the conservation equations for kinetic energy k and dissipation rate ε known
from CFD models [2,3]. Our aim is not to study a complete and closed system of equations
but to analyze all those components that describe turbulent transport in such equations.
For this purpose, one can calculate the values of the left-hand sides and right-hand sides of
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the developed relations using the data of direct numerical simulations and compare them
with each other. This provides a direct test of the outcome of the C−1

0 expansion. An article
in which the complete set of equations is formulated and analyzed is in preparation.

9.3. Comparison with the DNS Results

Super computers have created the possibility to simulate turbulent fluid flows through
direct numerical simulations (DNS) of the equations that govern fluid flow, i.e., the Navier–
Stokes equations. Initially, attention was focused on grid turbulence at modest values of
Reynolds numbers. The calculation power has increased with time. This allows handling
flows at larger Reynolds numbers and with more complex configurations of channel flow.
Hoyas et al. [11] recently published results for channel flow at a friction Reynolds number
Re of 104. This corresponds to a bulk flow Reynolds number of about 3 × 105. DNS is the
most reliable technique to study turbulence, and its outcome can be considered as exact. The
results of Hoyas et al. provide an excellent opportunity to verify the present results.

9.3.1. Statistical Values of Fluctuations

Making u0
1 dimensionless by uτ, σij and k by u2

τ, x2 by H and P and ε by u3
τ/H, and

dropping the subscript 2 from x2, one can derive, from Equations (67)–(74), the relations

σ22 = σ33 = (1− x)(γ−1 − 1)1/2 (75)

σ11 = σ22(1 + 2γ)/(1− 2γ) (76)

where
γ =

2
C0

P/ε (77)

and P is the production of energy defined as

P = (1− x)
d

dx
u0

1 (78)

From Equations (75)–(77), it can be verified that, at x = 1: σ11 = σ22 = σ33 = 2
3 k0. This

is consistent with the solution for a zero mean flow gradient. At x = 0, the solutions for the
log law apply, according to which, P/ε = 1. From Equations (75)–(77), one then finds

σ22 = σ33 = (
C0

2
− 1)1/2 at x = 0 (79)

σ11 = σ22(C0 + 4)/(C0 − 4) at x = 0 (80)

These reveal anisotropy whose magnitude depends on the magnitude of C0.
Figure 1 shows the values of the root mean square of fluctuations σ11, σ22, σ33 according

to Equations (75)–(77) versus x for P/ε taken from DNS and C0 = 7. The values are
compared with the corresponding DNS values of these parameters. Close to the wall at
x = 0, the effect of the viscous layer is seen. Its thickness is about 100/Reτ, which amounts
to 1% of the height of the channel. The results of the C−1

0 expansion only apply outside this
area. Here, it is seen that strong anisotropy in the longitudinal direction is predicted.

A difference between fluctuations in normal and the span-wise direction as forecast
by DNS is not revealed. Differences between the longitudinal fluctuations and normal
fluctuations near the axis x = 1 are not revealed either. Near x = 0, differences between rms
values in the normal and span-wise direction are at maximum. The differences between
longitudinal and transverse fluctuations are at a maximum at x = 1. Otherwise, the
differences between the DNS and C−1

0 expansion are rather limited—keeping in mind the
limited smallness of the perturbation parameter C−1

0 .
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Figure 1. The root mean square values of the velocity fluctuations versus the dimensionless distance
from the wall. The root mean square values obtained from DNS are represented by full lines.
The root mean square values of the C−1

0 expansion are represented by broken lines. They result
from Equations (75) and (76) in which the right-hand sides were evaluated using the DNS values.
Differences between full and broken lines can be ascribed to truncation of the C−1

0 expansion.

9.3.2. Statistical Values of Turbulent Fluxes

An issue in turbulence theory is the statistical description of the non-linear fluctuating
convective terms in the equations of conservation of momentum and energy. The issue is
known as the closure problem. The present analysis provided an answer by the expressions
for turbulent flux and turbulent diffusion coefficients. Figures 2 and 3 present the results
obtained for these terms and compare them with the DNS results.

Turbulent fluxes according to the C−1
0 expansion are present in the descriptions of the

diffusion terms of Equations (69)–(71). The accuracy of these descriptions has been been
tested by the DNS results. The results are shown in Figure 2.
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Figure 2. The mean momentum fluxes versus the dimensionless distance from wall. The values of
σ11, σ22 and σ12 are obtained using DNS and are represented by full lines. The values of D12(d/dx)u0

1
and D22(d/dx)u0

1 result from the C−1
0 expansion and are represented by broken lines. They follow from

Equations (69), (71) and (72) in which the right-hand sides were evaluated using the DNS values.

9.3.3. Diffusion Coefficients

Coefficients of diffusion in the wall normal direction are compared in Figure 3. Dif-
fusion of both momentum using the data of Hoyas et al. [11] and of the conserved scalar
temperature using the DNS data of Kuerten et al. [12] are analyzed.
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Figure 3. Coefficients of diffusion in the wall normal direction for momentum transport < u′1u′2 > and
heat transport < θ′u′2 > versus dimensionless distance from wall. The values of < u′1u′2 > /(d/dx)u0

1
and < θ′u′2 > /(d/dx)θ0 are obtained using DNS and are presented by full lines. The values of D22

result from the C−1
0 expansion. They follow from Equation (74) in which the right-hand side was

evaluated using the DNS values. They are represented by a broken line.

9.3.4. Kolmogorov Constant

In general, it is found that a value of 7 for C0 gives a good fit to the DNS. This value
is somewhat higher than the value of 6.2 mentioned previously considering the DNS of
turbulent channel flow at Re of 0.2 × 104 [8]. A value of C0 of 7 at high Reynolds number
has been claimed by Sawford referring to DNS of grid turbulence [16].

10. Conclusions

The presented statistical descriptions fit within the asymptotic structure of turbulence
at a large Reynolds number with Kolmogorov theory. The descriptions apply to large scales,
which determine the main flow outside small viscous boundary layers at adjoining walls
of the configuration considered. The given representations of the velocity and position of
marked fluid particles are Lagrangian-based and concern Langevin and diffusion equations.
In these equations, the universal Kolmogorov constant C0 appears with a value of about
7. This is used as an autonomous parameter in developing solutions by the first two
terms of perturbation expansions in powers of C−1

0 . The leading solution complies with
the conditions of Hamiltonian dynamics, Gaussian behavior and Onsager symmetry as
C−1

0 → 0. The second term of the solution satisfies mixing with the Eulerian-based statistical
distribution of the flow field.

The Lagrangian-based descriptions were connected to Eulerian statistics through
asymptotic matching. When considering a small but sufficiently large area around a fixed
point in space where the diffusion limit applies, shrinking this area to a point accomplishes
matching the Eulerian description at the corresponding point. The matching involves the
limit process C−a

0 → 0, 0 < a < 1 where 0 < a is required for obtaining the diffusion
limit, and a < 1 to ensure that the considered area is much smaller than the area of
inhomogeneous behavior of the main flow.

The two-term descriptions meet the requirements that follow from the laws of physics
and the methods of stochastic analysis. The presented solutions reveal the functional
relationships between the statistical averages of various fluctuating quantities, such as
turbulent diffusivity. They do not rely on semi-empirical hypotheses and fitted constants.
Limiting factors include inaccuracies due to truncation of the higher order terms. For slowly
decaying grid turbulence, these are small. However, in the case of strong inhomogenity,
the matching of Lagrangian and Eulerian results appears to require small values of C−a

0 ,
0 < a < 1. Yet, comparison with the DNS of turbulent channel flow at high Reynolds num-
ber reveals deviations of limited magnitude despite large inhomogeneity and anisotropy.
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An underlying reason is likely the inclusion of next to leading terms and exponential
decay of velocity correlations by C0t/rE, where τE is the eddy turnover time or characteristic
time of large-scale turbulence: (21).

The results for the main Eulerian statistical parameters in the case of channel flow are
shown in Figures 1–3. They reveal fairly good agreement between the predictions of the
C−1

0 model when compared with those of DNS. This conclusion applies to turbulent channel
flow, which is a case of turbulence that is significantly anisotropic and inhomogeneous. As
the C−1

0 model has a general basis, this entails the prospect of yielding reliable results for
other cases of anisotropic inhomogeneous turbulent flow.
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