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Abstract: Video monitoring has a wide range of applications in a variety of scenarios, especially in
smart parks. How to improve the efficiency of video data processing and reduce resource consump-
tion have become of increasing concern. The high complexity of traditional computation offloading
algorithms makes it difficult to apply them to real-time decision-making scenarios. Thus, we propose
a multi-agent deep reinforcement learning algorithm with credit assignment (MACA) for compu-
tation offloading in smart park monitoring. By making online decisions after offline training, the
agent can give consideration to both decision time and accuracy in effectively solving the problem of
the curse of dimensionality. Via simulation, we compare the performance of MACA with traditional
deep Q-network reinforcement learning algorithm and other methods. Our results show that MACA
performs better in scenarios where there are a higher number of agents and can minimize request
delay and reduce task energy consumption. In addition, we also provide results from a generalization
capability verified experiment and ablation study, which demonstrate the contribution of MACA
algorithm to each component.

Keywords: computation offloading; deep reinforcement learning; credit assignment; multi-agent;
video monitoring

MSC: 68T42

1. Introduction

Video monitoring systems represent the momentous application of the Internet of
Things while also playing an important role in urban security, traffic management, building
security, and other fields [1]. According to data statistics, the number of global Internet
video monitoring system has multiplied several fold in recent years [2], and the masses
of data are bringing new challenges to video data processing. With the rise of mobile
internet, it has become a new trend to offload computing tasks to the cloud center or the
edge computing node of the network. Mobile edge computing (MEC) technology [3] is
a distributed computing architecture and an intermediate layer connecting a traditional
cloud center and devices. It was deployed as close as possible to the users and only sends
necessary results to the cloud data center, which greatly reduces the time delay of the
data transmission process. MEC technology aims at offloading computing tasks to mobile
edge servers, which are always connected to the user device. Thus, computing intensive
and delay critical tasks can be well supported because of the short distance between user
devices and the mobile edge server.

This paper will focus on the computation offloading approach in smart park monitor-
ing. In Figure 1, the video analysis data are first collected by the camera sensor and then
transmitted to the MEC server for further computation. For high complexity and delay
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critical image processing tasks, the bottleneck to solve the delay problem is the limitation
of computing capability and communication resources between the channels. The existing
MEC based on video data analysis computation offloading task approaches usually tends to
allocate all computing tasks to local video devices or mobile edge servers. However, both of
the approaches have their own inherent problems [4]. Due to the unacceptable level of en-
ergy consumption, it is impractical to allocate sufficient computation resources to the local
video device to satisfy the video analysis task. On the other extreme, offloading the entire
task to the MEC consumes excessive bandwidth resources for transmitting the raw video
data, which is also unrealistic because of the limitation of bandwidth resources. In order to
resolve the abovementioned problems, an MEC based on computation offloading approach
is proposed, in which assignment of the computing task is balanced between the local
device and MEC server. However, the NP hard problem gives rise to a new issue, namely
that traditional approaches often fail to provide the allocation scheme of computational
offloading in time [5]. At the same time, the transmission order of multiple local devices
and the time-varying communication channel raise new challenges for the computation
offloading strategy.

Figure 1. Computation offloading scenario comprising multiple video monitoring devices, multiple
edge computing nodes, and a cloud data center. The video analysis data can be offloaded from local
monitoring devices to an edge computing node and thereafter to the cloud data center.

In this paper, we aim to establish a computation offloading approach to minimize the
request delay while reducing the task energy consumption. We model the computation
offloading task as a cooperative multi-agent reinforcement learning (MARL) problem. We
proposed a multi-agent deep reinforcement learning algorithm with credit assignment
(MACA) and introduce a centralized training with decentralized execution framework.
In addition, we focus on the online decision-making ability speed and the accuracy after
offline training. The contributions of this paper are as follows:

(1) In order to solve the video monitoring analysis task in smart parks, the edge comput-
ing node and cloud data center are introduced to satisfy the computation offloading
requirements. The system model includes multiple devices and multiple edge com-
puting nodes, taking into account the dynamically changing communication channel
states and task characteristics. We introduce reinforcement learning to overcome the
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ultra-high computation time of traditional methods through offline training and on-
line decision-making, which makes the computation offloading utilizable in real-time
scenes.

(2) To deal with the curse of dimensionality caused by the expansion of the decision
feasible region, we introduce a credit assignment method into value-based reinforce-
ment learning, which is converted from being a single-agent scenario to a multi-agent
scenario. The credit assignment method decomposes the global Q-value Qtot to each
individual Q-value Qa, which enforces the monotonous constraint between global and
individual Q-values. Meanwhile, the centralized training and decentralized execution
framework makes use of the global statue information when training agents, which
makes agents work more cooperatively and accelerates the training process.

(3) In addition, we introduce a double Q-network, dueling Q-network, and priority
experience replay method into our proposed multi-agent reinforcement learning
algorithm and analyze the contribution of each component via an ablation study.
Through numerical simulation, we demonstrate that our proposed MACA algorithm
can achieve better performance compared with traditional DQN algorithms and other
approaches, especially when the number of agents increases. Furthermore, we also
verify the generalization capability of our proposed MACA algorithm.

The rest of this paper is organized as follows: In Section 2, we introduce relevant
research results of computation offloading and deep reinforcement learning algorithms.
In Section 3, we introduce the system model of the computation offloading scenario and our
proposed MACA multi-agent reinforcement learning algorithm, in which credit assignment
is applied in the training process. Section 4 introduces the simulation experiment. Finally,
Section 5 concludes this article.

2. Related Works
2.1. Computation Offloading Task

Edge computation offloading, which deploys multiple edge devices with computa-
tional capability as nodes of providing services [6], extends the concept of cloud computing.
It can reduce the request delay, but the timing-vary bandwidth and resources required
for users give rise to a crucial problem regarding to which server node the computational
task can be offloaded such that the requirements of computational resource and delay are
satisfactory. Computation offloading is one of the important research directions of edge
computing. Computation offloading generally includes two aspects: one is the offload
decision, which mainly concerns determining whether a computation offloading process is
required and the selection of computation offloading nodes; the second is resource allo-
cation, which aims to solve how to allocate resources for global nodes, or how to allocate
communication resources in the process of offloading and transmission. The application
of edge computation multi-level offloading technology in real-time video monitoring net-
works has important research significance. Real-time video monitoring networks need to
satisfy the characteristics of low delay requirement. At the same time, due to the wide
application of video monitoring networks, it is also necessary to consider reducing energy
consumption in resource-constrained scenarios.

2.2. Reinforcement Learning

Reinforcement learning [7] can be seen as the process of interaction between agents
and the environment in addition to the constant exploration of strategies for learning to
obtain the maximum cumulative reward in experiments. In reinforce learning [8], the agent
performs actions in the environment, and the environment is transformed to a new state
while the agent can obtain a certain reward. The interaction process can be described as
follows: at time t, the agent executes action according to the probability distribution of
strategy πt, and at the next time t + 1, the state of the environment changes from St to St+1,
and propagates the agent with a certain reward Rt. The Markov process can be described
as follows: at the next time t + 1, the state St+1 of the environment is only related to St,
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and has nothing to do with the time of the past environment. Reinforcement learning is
usually described using five tuples (S, A, P, R, γ), where P is the action to environment
mapping and γ is the discount factor.

The reinforcement learning algorithm can be classified into different categories: ac-
cording to the algorithm update mechanism, where it can be divided into a round update
Monte Carlo algorithm and one-step update temporary difference algorithm; according
to the consistency of policy execution and policy evaluation, where it is divided into an
on-policy and an off-policy algorithm; according to whether to build a model, where it is
divided into model-free algorithm and model-based algorithm; according to the way of
action selection, where reinforcement learning is divided into value-based, policy-based,
and actor–critic reinforcement learning algorithms. Using deep reinforcement learning,
end-to-end learning from perception to decision-making is realized.

Among the value-based reinforcement learning algorithms, the traditional reinforce-
ment learning algorithms include the Q-learning and SARSA [9] algorithm. The deep
Q-network [10] algorithm is based on experience replay and estimation of the value func-
tion of the target network and surpasses human players in Atari games. Since then, there
has been various variants of the DQN algorithm [11], which effectively solves the over-
fitting problem in the DQN algorithm and has higher learning efficiency, value function
evaluation, and search ability [12].

In the model-based reinforcement learning algorithm, the strategy parameters are
updated by directly searching the best strategy to maximize the return. The classic RE-
INFORCE [13] algorithm uses the Monte Carlo method to estimate the gradient strategy.
In the estimation process, the information of the whole trajectory is considered, and it has a
large strategy gradient variance. By introducing the value baseline, it can effectively reduce
the variance. In order to improve the stability and convergence speed of the algorithm,
avoid excessive update step size, and obtain returns monotonically and incrementally to
continuously obtain the optimal policy, there are trust region policy optimization algo-
rithms (TRPO) [14], proximate policy optimization algorithms (PPO) [15] and distributed
proximate policy optimization algorithms (DPPO) [16].

In the reinforcement learning algorithm based on combined value strategy, strategy
and value are learned at the same time. The actor–critic algorithm [17] is used as the
benchmark of the strategy gradient. The actor network trains the strategy according to
the value function fed back by critic network, and the critic network trains the value
function, and uses the time series difference method for one-step update. The actor–critic
algorithm has the characteristics of small variance of value function estimation, high
sample utilization, and fast training speed. Subsequently, a series of reinforcement learning
algorithms that are improvements of the actor–critical algorithm have appeared, such as
deep deterministic policy gradient algorithm (DDPG) [18], asynchronous advanced actor–
critical algorithm (A3C) [19], twin delayed deep deterministic policy gradient algorithm
(TD3) [20], and soft actor–critical algorithm (SAC) [21].

At present, there are many excellent algorithms to complete the control of a single
agent, among which DDPG, PPO, and other deep reinforcement learning algorithms are
the most effective. Strategically, a multi-agent system composed of multiple independent
agents lacks flexibility, due to the complexity and dynamic characteristics of the envi-
ronment. The MADDPG [22] algorithm proposed in an article published by OpenAI on
nips in 2017 is an extension of the DDPG [18] algorithm, which enables an actor to learn
decision-making ability through interaction with complex environments and provides a
good idea for multi-agent collaborative control.

Based on reinforcement learning algorithm to solve computation offloading problem,
Lee et al. [23] proposed a reinforcement learning method based on an auction mechanism
to solve the problem of computation offloading using the real secondary price auction as
the baseline, in which the requirements of personal rationality and incentive compatibility
are met. The experimental simulation showed that the proposed method can meet the
above characteristics and increase the overall income of the seller. Pradhan et al. [24] used
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reinforcement learning to solve the problem of computation offloading of IOT applications
in multiple input and output cloud wireless access networks. A computation offload-
ing algorithm was proposed to minimize the total transmission power of the Internet of
Things, and a low complexity supervised deep learning method was used to solve the prob-
lem. The effectiveness of the method was demonstrated using comparative experiments.
Zhang et al. [25] proposed a method to alleviate the heavy burden of equipment through
mobile edge computing and adopted a reinforcement learning method to design different
states of multiple different edge servers and offloading modes of various vehicles. The ex-
periments show that the proposed computation offloading scheme has great advantages
in optimizing system utility and improving offloading reliability. Ren et al. [26] solved
the problem of fog computing access node in the industrial Internet of Things through
deep reinforcement learning. The created environment has multiple IIOT devices and
multiple access nodes. The multi-agent reinforcement learning method was compared with
a greedy algorithm and genetic algorithm. It was shown that the proposed algorithm can
overcome the dimensional curse caused by the increase of access nodes and is competi-
tive among the many algorithms in use. Yu et al. [27] proposed a new deep simulation
learning-driven MEC network edge cloud computing offload framework. By optimizing
behavior cloning to minimize the offloading cost in time-varying networks, the direction
and advantages of applying the deep learning method to multiple MEC research fields are
discussed, including edge data analysis, dynamic resource allocation, security, and privacy.

3. The Proposed Approach

In this section, we will first establish the task model, delay model, energy consumption
model, and transmission model in computation offloading and determine the goal of com-
putation offloading tasks, namely minimizing calculation delay and energy consumption,
which will play an important role in subsequent simulation experiments. The main notation
in our model is listed in Abbreviations. We will then introduce the multi-agent reinforce
learning framework and our proposed MACA algorithm.

3.1. Problem Definition

We consider a computation offloading scenario where a large number of video mon-
itoring cameras are set up in the smart park, and multiple cameras transmit monitoring
video data to a relay node, which can complete some computational tasks. The camera
that transfers computational tasks to the same node is called a camera group. There are N
camera groups that generate computationally intensive tasks. In this paper, a camera group
denotes the minimum unit device for computation task offloading. We assume that the
decision-making time is slotted as t = 0, 1, . . . , which is called a computation offloading
cycle. In a computation offloading cycle, each device generates only one computationally
intensive task (if a device generates multiple tasks, the device can be decomposed into
multiple devices). The task characteristics are (Ot, Bt), where Ot denotes the amount of data
that needs to be uploaded to complete the task, and Bt denotes the number of CPU cycles
for computing tasks (in this paper, it is assumed that the number of CPU cycles required
to complete a task is unchanged no matter where the task is executed). Above the relay
node, multiple edge computing access nodes are deployed in the smart park to process the
computing tasks offloaded by the camera group. If the edge computing node remains busy,
it can choose to further offload the computing task to the cloud data center for executing.
In a computation offloading cycle, the relay node can select to execute computing task
locally or offload the task to the edge computing node, the edge computing node can
directly calculate the task or further offload the task to the cloud computing service center.
In this way, a three-level cloud-edge-segment computation offloading scenario from camera
groups to edge computing nodes to a cloud computing center is built.

Due to the limited number of edge computing nodes, it may not be enough to meet
the needs of computing all tasks at the same time in one computation offloading cycle. We
define the channel bandwidth between the device n and the edge computing node f as
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Wn, f . Since the available bandwidth resources between device and edge computing node
is time-varying, we assume that the bandwidth variation conforms to a Markov process.
There are three states of original bandwidth, 0.6 times bandwidth and 0.2 times bandwidth.
The transition probability between each state is shown in Figure 2.

Figure 2. The transition probability between three bandwidth status, where the origin state remains
unchanged with a probability of 0.7, transitions to the 0.6 times bandwidth status state with a proba-
bility of 0.2, then transitions to the 0.2 times bandwidth status with a probability of 0.1. The 0.6 times
bandwidth state remains unchanged with a probability of 0.4, transitions to the 0.2 times bandwidth
status state with a probability of 0.3, and then transitions to the origin bandwidth status with a proba-
bility of 0.3. The 0.2 times bandwidth state remains unchanged with a probability of 0.2, and then
transitions to the 0.6 times bandwidth status state with a probability of 0.4, and then transitions to
the origin bandwidth status with a probability of 0.4.

If multiple devices simultaneously select one edge computing node to offload the task,
the channel bandwidth will be equally allocated to all devices to offload data. Therefore,
the data offload rate of the device can be expressed as Formula (1):

rc, f =
Wn, f

N
log(1 +

P · h
W
N · noise

) (1)

where N denotes the number of devices offloading tasks at the same time, P denotes the
offload power of the computation offloading task, h denotes the gain of the communication
channel when the task is transmitted, and noise is the variance of the complex Gaussian
white channel noise. Next, we will introduce the time delay and energy consumption
model of local computation.

If device n determines that the computing task Rn should be executed locally, we
define the local request time delay as Tl

n. The local computing request delay only includes
the CPU processing delay during the local computing of tasks. The computing capacity
(CPU cycles per second) of each relay node may be different, which is expressed in Fl

n.
Then, the time delay of the local calculation can be defined as Formula (2):

Tl
n =

Bn

Fl
n

(2)

We define the energy consumption of tasks as El
n, which can be expressed as Formula (3):

El
n = Bu · (Fl

n)
2 · δ f (3)



Mathematics 2022, 10, 4616 7 of 18

where Bu denotes the number of CPU cycles required by the task, δ f denotes the calculation
factor, set as 10−27, and Fl

n denotes the computing capacity of the local relay node.
If device n chooses to offload task Rn in the computation process, the task needs to go

through three stages: task data uploading, task calculation, and result data downloading.
Due to the fact that, when computing tasks are uploaded, there is often a large amount
of raw data, the data can be ignored when the results are being downloaded in contrast
to when they are being uploaded, and the downlink communication capability is often
strong, the delay when the task results are downloaded is not considered in this paper.
Moreover, since the edge computing nodes can choose whether to further offload tasks
to the cloud center via the greedy algorithm, we integrate the computing capabilities of
the cloud computing center into the edge computing nodes and then only consider the
computation offloading process from the device to the edge computing node.

According to the above analysis, the delay of task uploading can be expressed as:

To
n,t =

On

rn
(4)

where rn denotes the data upload rate when device n is connected to the edge access node
through the communication channel. Similarly, the calculation delay in the task calculation
can be expressed as:

To
n,p =

Bn

Ff
(5)

where Ff denotes the computing capacity of the edge computing node (CPU cycles per
second). A requirement is that the sum of computing resources allocated to each task does
not exceed the overall computing capacity of the current node ∑N

n=1αn fn ≤ F.
The calculation delay in the whole computation offloading process can be expressed as:

To
n = To

n,t + To
n,p (6)

Correspondingly, the energy consumption in the offloading process is calculated as:

Eo
n,t = PnTo

n,t =
PnOn

rn
(7)

where Pn denotes the energy gain in the transmission process, and the energy consumption
in the calculation task can be expressed as:

Eo
n,p = Bn · (FF)

2 · δ f (8)

Then, the energy consumption after offloading can be expressed as:

Eo
n =

PnOn

Rn
+ Bn · (FF)

2 · δ f (9)

3.2. Multi-Agent Reinforcement Learning Scenario

In this subsection, we first provide some necessary background on reinforcement
learning as a basis for deriving our proposed algorithm. Then, we model computation
offloading scenario as a multi-agent reinforcement learning process and introduce the four
key elements in reinforcement learning: action, state, observation, and reward.

Differently from the reinforcement learning algorithm of a single agent, the multi-agent
cooperative algorithm can be described as Γ = 〈S, A, P, r, Z, O, N, γ〉, where Γ denotes a
stochastic Markov decision process. St denotes the global state at time step t, and the action
of each agent u is au

t ∈ A, which generate the joint action at ∈ A. The mapping of action
change state of the environment is P(St+1 | St, at) : S× A× S. Since the problem is modeled
as a cooperative task, all agents share a global reward function r(St, at). In addition, O
denotes the global observation of agents. N denotes the number of agent participate in the
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game. In particular, Z denotes a partial observation in which each agent draws individual
observations z ∈ Z according to the observation function O(s) : S→ Z.

The reward discount function is γ, which denotes the total return as Rt = ∑∞
k=0γkrt+k.

An agent trains its own policy πu(au
t | zu

t ) to maximize the expected reward. There are
three standard definitions to describe a joint action policy, the state-action value function
Qπ , the state value function Vπ , and the advantage function Aπ :

Qπ(st, at) = Est+1,at+1 [Rt | st, at] (10)

Vπ(st) = Est+1,at [Rt | st] (11)

Aπ(st, at) = Qπ(st, at)−Vπ(st) (12)

All the agents work together to maximize the total reward and generate a joint
policy as:

π = arg max
π

η(π) (13)

Next, we will introduce four key elements of reinforcement learning settings in the
computation offloading experiment.

Action: In the video monitoring computation offloading scenario of the smart parks,
each device (camera group) is set as an agent with its own individual environment observa-
tion. In each computation offloading cycle, agents make action decisions by observing the
partial state of the environment. Agents can choose local computing or to offload tasks to
an edge computing node.

Suppose there are N devices, each of which acts as an agent. After receiving the
offloading request from a device, the agent n observes the local status Zn. Then, the offload-
ing decision is generated by back-propagation of the Q-network reward. In this process,
due to the limitation of computing capability, we set the maximum number of CPU cycles
that each edge computing node can allocate. The maximum allocatable task number that
the agent can assign on each edge computing node is Fu

n , and agent n executes operation
an, which can be expressed as:

an ∈ {0, 1, 2, . . . , fn} (14)

where an = 0, 1, 2, . . . , fn−1 means that the agent chooses to offload the task, and an = fn
means the agent chooses to complete the task locally.

State and Observation: When making offloading decisions, the agent’s local observa-
tion of the environment Zn can be defined as:

Zn =
{

bn
t , Ot

n, Bt
n
}

(15)

where bt
n denotes the channel gain state between device n and edge computing nodes, Ot

n
denotes the number of bits required for the task to upload, and Bt

n denotes the CPU cycle
required for the task to complete the calculation. The global observation Sn is composed of
all agents’ partial observations, which can be expressed as:

Sn =
{

bt, Ot, Bt} (16)

After the agent makes a decision to offload, it propagates the action to the environment
and gains rewards Rt, and it then enters the next stage St+1, so as to constantly interact
with the environment. Next, the obtained information is placed in the experience buffer D.

Reward: In this paper, the task of computation offloading process is set to minimize
request delay and energy consumption. It is obvious that the request delay of computation
offloading process is lower than the local computing because of the higher computing
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capability of edge computing nodes. Thus, we can define relative increments of request
delay as:

Ct =
N

∑
n=1

Tl
n − Tno

Tl
n

(17)

The smaller the value of Tl , the larger the reward value, which is consistent with our
target. In the same way, we can define the relative increments of energy consumption as:

Ce =
N

∑
n=1

El
n − Eno

El
n

(18)

Combined with the above time delay and energy consumption formula, the reward
can be expressed as:

Reward = εtCt + εeCe (19)

where εt and εe denote the proportion weight of request delay and energy consumption
in the computation offloading task Rn, which needs to meet the constraints of 0 ≤ εt ≤ 1,
0 ≤ εe ≤ 1, and εt + εe = 1. The proportion weight may change with different task
scenarios. After estimation, we take εt = εe = 0.5 as remaining unchanged during the
entire computation offloading process in this paper.

3.3. MACA Algorithm Design for Computation Offloading

In the real computation offloading scene, monitoring devices’ cooperation in making
decisions in a decentralized manner. However, in the experimental environment, we can
train the agents using a centralized function [28]. Thus, there is a question of how to
represent and use the action-value function defined in Formula (10). On the one hand,
some approaches forgo the use of centralized information and estimate the Qa of each
agent, which cannot explicitly reflect the communication between a cooperative agent and
the confounded contribution of each agent in the total reward. At the other extreme, having
a training processing that is fully centralized makes it impractical to train agents with mass
information, and it becomes impossible to support the global observation hypothesis in
some application scenarios [29].

Thus, the multi-agent reinforcement learning algorithm with credit assignment (MACA)
for computation offloading is proposed by us, in which we introduce centralized training
and decentralized execution thinking. We assume that the agents jointly interact with the
environment and receive a global reward, denoted as Qtot. Each agent holds an individual
Q function Qa, and the global reward Qtot can be decomposed into individual rewards Qa
for each agent. The relationship between Qn and Qtot is much more than simple factoriza-
tion and involves a complex nonlinear combination in which a neural network, called a
mixing network, is implemented and can distinguish the contribution between each agent
with credit assignment process.

We focus on the consistency of partial reward and global reward, namely the mono-
tonicity constraint of Qn and Qtot. Therefore, we rule that the weight of the mixing network
must be non-negative; that is, there is a requirement to satisfy the relationship between the
individual reward and the global reward:

∂Qtot

∂Qn
≥ 0, ∀n ∈ N (20)

We add global observation information S to the mixing network while imposing the
limitation that the weight of the mixing network must remain non-negative. The addition of
global information allows the mixing network to more explicitly determine the contribution
of each agent. In addition, when building the Q-network, we introduced some existing
tricks for Q-networks, such as the double Q-network and dueling Q-network, which can
improve the training effect. The double Q-network requires the construction of two action-
value functions, one for estimating the action and one for estimating the value of that action.
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In the application of the MACA algorithm, the evaluation network is used to determine the
action, and the target network is used to determine the action value. This double Q-network
architecture can effectively solve the overestimation problem generated by the Q-network.

Similarly, considering that the reward obtained from the computation offloading
scenario is less related to the environment state but more related to the joint action selected
by the agent, we introduce the dueling Q-network architecture during training. Dueling
Q-network changes the output value to two branches, which are the scalar state value V of
the state and the advantage value A of each action. The advantage value A is a vector of
the same dimension as the action space. Under this framework, Q-network is more inclined
to change each advantage value A of each action instead of changing the state value V,
and this architecture can better distinguish the pros and cons of each action of the agent,
speeding up training. The overall architecture of our proposed MACA algorithm is shown
in Figure 3.

Figure 3. Schematic diagram of MACA network architecture. The Q-network of each agent contains
[256, 256, 64] hidden layers, introducing a double Q-network and dueling Q-network. The global state
information is added to the mixing network, and the global reward is monotonically decomposed
into the local reward of each agent.

At the beginning of each offloading decision cycle, each agent n obtains part of the
current environment state through interaction with the environment, that is, the obser-
vation Zn of the agent is used as the input of the Q-network. The Q-network generates
the estimated Q value for further rewards. The Q value generated by multiple agent
networks is jointly input to the credit assignment mixing network. All weight items in
the network are non-negative, so the output result is positively related to the Q value
generated by the agent Q-network. The credit assignment network back-propagates the
action space to generate and select the maximum reward actions that react to the envi-
ronment. Then, the environment changes from St to St+1 state. Before the next round of
computing offloading decisions, the experience storage (St, St+1, action, reward) enters the
buffer. After interactions with the environment, the agent takes a small batch of experience
values from the buffer to learn and update the Q-network and the mixing network. The loss
function is defined as follows:

L(θ) =
b

∑
i=1

[
(ytot

i −Qtot(τ, action, St, θ))2
]

(21)

where b is the batch size of experience sampled form the replay buffer, and ytot represents
the real future reward. θ represents the parameters for the Q-network. Then, we can obtain
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the corresponding agent’s policy of maximizing the Q value through the following formula
traversal enumeration, naturally avoiding the curse of dimensionality. The whole process
of MACA algorithm can be represented by Algorithm 1.

π(s) = arg max Qπ(s, a) (22)

Algorithm 1: Multi-Agent Deep Reinforcement Learning Algorithm with
Credit Assignment.

1 for agent n = 1, 2, · · · , N do
2 Initialize the Q-network with random weight and bias parameter
3 end
4 Initialize mixing network with non-negative weight parameter
5 Initialize replay buffer D
6 for epoch = 0, 1, · · · , M do
7 Initialize state S0 and observation O0 for each agent i
8 for t = 0, 1, · · · , T do
9 Select an action randomly with probability ε

10 choose ut
i = arg maxut

i
Qi(τ

t
i , ut

i) for each agent i

11 Take action ut
i and get next observation St+1 and reward Rt

12 Store tuple (St, ut, Rt, St+1) in buffer D
13 sample a random minibatch of tuple (St, ut, Rt, St+1) from D
14 Decomposition Qtot value and get the Qn for each agent. Update θ by

minimizing total loss:
15 L(θ) = ∑b

i=1
[
(ytot

i −Qtot(τ, action, St, θ))2]
16 Update target network parameter θ

′
with θ

17 end
18 end

4. Experiment

In this section, we will first outline the simulation experiment settings. Then, we
will compare our proposed MACA algorithm with other traditional algorithms through
discussion and analysis.

4.1. Simulation Settings

In the simulation experiment, we simulate smart park video monitoring computation
offloading of video data processing tasks by considering scenarios consisting of multiple
edge computing nodes and multiple camera groups where tasks are to be assigned to
devices. The simulation process goes through a total of five computation offloading cycles.
During this process, the communication transmission channels of all tasks are shared and
time-varying. The computational capacity of each local relay node is 5× 108 Hz per second.

For actual computation offloading scenarios, the size of task data and the number
of required CPU cycles will not be fixed. Therefore, we assume that a task model within
the scope is randomly generated during the offloading process. In addition, considering
the cumulative cost of computing delay and energy consumption in each computation
offloading cycle, the discounter factor γ is set to 1. In addition, other parameters are
summarized as follows in Table 1.
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Table 1. Main parameters.

Parameter Value Description

On [1000, 1600] The data of the task to be uploaded
Bn [900, 1200] The CPU cycles required for the task
Ff [21× 108, 25× 108, 23× 108] The computational capacity of the edge computing node
δ f 1× 10−27 The computing constant factor of the edge computing node
δl 5× 10−26 The computing constant factor of the local device

W f ,n [1, 0.6, 0.2]× 4× 107 Time-varying bandwidth channel
h 0.1W The channel gain
P 10−3 The transmit power
lr 10−4 The learning rate

batchsize 128 The size sample from buffer
Ff [21× 108, 25× 108, 23× 108] bit per second Computing capacity of the edge computing node
fl 5× 108 bit per second Local computing capacity
B 206 Hz Channel bandwidth

noise 10−3 W Communication channel noise

4.2. Simulation Results

In this subsection, we will introduce the simulation results of the MACA algorithm
experiment from the aspects of the training process, agent number comparison experiment,
and ablation experiment. Through comparison with numerous existing algorithms, we
demonstrate the superiority of our proposed MACA algorithm.

4.2.1. Training Process

In the process of the computation offloading experiment, we set up seven agents to
conduct computation offloading decisions. Tasks can be offloaded to three edge computing
nodes or executed locally by agents. In the experiment, the observation space of each agent
is [bn

t , Ot
n, Bt

n], 5 in total. The action space is 4, meaning there are three edge computing
nodes and one local device. Every ten generations of data are collected, and the agent loads
the data with a batch size of 128 from the buffer for learning. The learning rate is 10−4,
and the size of the hidden layer of the neural network is [256, 256, 64]. Since computation
offloading is a continuous process, we set the discounted factor γ as 1. At the same time,
in order to encourage agents to explore more actions, we adopted the ε- greedy method,
with ε decaying from 1 to 0.05 during the training process. We gave the iteration curve of
Q-loss value and reward value in the training process, as shown in Figure 4.

It can be seen from Figure 4 that the network loss value has been declining and finally
approaches zero near the 1.5× 104th generation. The reward function has a significant
improvement in this process and tends to be stable around 1.5 in the 2× 104th generation.
This shows that the agent is increasingly accurate in estimating the environment Q-value
in the continuous interaction of the environment and has learned the method to improve
the target reward value.

In order to more clearly illustrate the results of agent training, we select 10,000 and
30,000 generations of agent training models to evaluate in one round of computing offload-
ing scenarios. The results are shown in Figures 5 and 6.
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Figure 4. Iteration curve of loss value and reward value. The data are smoothed for five generations.
In order to better observe the trend of data changes, the total_loss data are logarithmically processed.
Each evaluation of the agent goes through five interactions with the environment, and the final
reward is stable at around 1.5, which is equivalent to an average reward value of 0.3 per interaction
with the environment. That is, after the computation offloading plan, the current consumption is only
0.7 times of the local computation.

Figure 5. Agent joint-action of 10,000 epoch training. In the above experimental settings, an optimal
situation for two devices would be to select an edge computing node for computation offloading
at the same time. In this scenario, three devices simultaneously select an edge node for offloading,
which will cause channel congestion and increase the request delay. Nodes 2 and 3 are selected
by only one device in computation offloading, which will lead to a waste of resources, while one
device is chosen for local computation. The desired optimal effect was obviously not achieved in this
action situation.

Figure 6. Agent joint-action of 30,000 epoch training. In this scenario, each edge computing node
is selected by two devices for computation offload, which achieves the best utilization of resources.
At the same time, the device No. 5, with the worst channel state, is selected for local computing. It can
be seen that, after 30,000 generations of training, the agent has learned how to make optimal decisions.
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In addition, to demonstrate the rationality of our parameter selection, we conduct
experiments comparing learning rate lr and batchsize. The result is shown as Figure 7.

Figure 7. Reward curse change with learning rate and batch size.

It can be seen that, when a higher learning rate is selected, the learning effect is not
good, and the reward function cannot converge due to oscillation back and forth. When
a lower learning rate is selected, the reward value function converges slowly and cannot
reach the optimal value. Similarly, when a large batch size is selected, convergence of the
reward value function is difficult, and it is difficult to reach the optimal value. When a small
batch size is selected, it is difficult for the agent to effectively learn knowledge, resulting in
non-convergence of the training curve.

4.2.2. Agent Number Comparison Experiment

In order to demonstrate that our proposed MACA algorithm is superior to traditional
methods, we compare the performance of the MACA algorithm with a deep Q-learning
algorithm, random offloading approach, and local computation approach. To ensure
fairness in comparison, we use the same training trick of double Q-network and dueling Q-
network in DQN. It can be seen that the reinforcement learning algorithm is more effective
than the random approach and local computation approach. Moreover, when the number
of devices as independent agents increases, the performance of DQN decreases significantly,
while the performance of our proposed algorithm remains relatively stable. This is obvious
because, as the number of agents increases, the action space of the DQN algorithm will
increase in geometric multiples, while the multi-agent algorithm will combine the rewards
of each agent into an overall reward, which only increases the action space linearly, thus
allowing it to easily avoid this problem, and the specific results are shown in Figure 8.

As the number of agents increases, the reward value obtained by interacting with the
environment is increasingly diminished because the computing resources available to edge
computing nodes also continually decrease, and so to does the reduced value relative to
local computing. It can be seen that the performance of our proposed MACA algorithm
is more stable and higher than the corresponding DQN algorithm, and this phenomenon
is especially obvious when the number of agents increases. However, when the number
of agents is 7, the effect of random assignment approach is even worse than that of local
computation, which further illustrates the importance of planning computing offloading.
More results are shown in Table 2.
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Figure 8. Algorithm performance varies with the number of agents.

Table 2. The reward value varies with devices and computing nodes.

Reward
Edge Computing Nodes Number

f = 2 f = 3

Method Exhaustive
Search

DQN MACA Exhaustive
Search

DQN MACA

edge computing node number

n = 2 2.537 2.273 2.176 2.655 2.412 2.432
n = 3 1.906 1.583 1.764 2.387 2.053 2.124
n = 4 1.387 1.215 1.22 2.109 1.875 2.005
n = 5 1.138 0.965 1.104 1.995 1.748 1.869
n = 6 0.406 0.351 0.362 1.803 1.558 1.687
n = 7 0.319 0.257 0.297 1.604 1.232 1.432

We also evaluate the time taken to solve the computation offloading schedule for dif-
ferent methods. Solving a problem of the same size and parameters on the same computer
configuration, the DQN method takes 0.902 s, our proposed MACA method takes 0.971 s,
and the method using exhaustive search takes 184.985 s. It can be seen that our method
reduces the computation time to about 1/200 of the original.

4.2.3. Ablation Experiment

In this subsection, we ablate each component in the MACA algorithm and compare
the contribution of each component in the algorithm.

We compared the original MACA algorithm, the MACA algorithm without a mixing
network, the MACA algorithm without a double Q-network, and the MACA algorithm
without dueling Q-network, corresponding to a total of four curves. In the ablation
experiment, seven local device and three edge computing nodes are set. In addition, all
experiments were carried out under the optimal experimental conditions selected above.
The results of the ablation experiment are shown as Figure 9.

As can be seen in Figure 9, compared with the original MACA algorithm, if the mixing
network is removed, the training curve will fluctuate greatly, which results in difficulties for
achieving convergence, and it is difficult to obtain the optimal effect. Removing the double
Q-network or dueling Q-network will lead to slower training and worse final results.
The results of the ablation experiments show that our proposed value decomposition
method based on credit assignment can avoid the problem of the dimensional curse and
allow the agent to more effectively learn the cooperative strategy. At the same time,
the addition of the double Q-network and dueling Q-network to the architecture can
effectively alleviate the overestimation of the Q network and help the agent reduce the
interference caused by the dynamic environment, effectively promoting the learning process
of the agent.



Mathematics 2022, 10, 4616 16 of 18

Figure 9. Ablation experiment results.

4.3. Discussion

In this paper, a multi-agent reinforcement learning algorithm is proposed for com-
putation offloading in smart park monitoring. By training the agent offline and making
decisions online, the reinforcement learning method solves the shortcomings of high com-
puting delay in the traditional method and can effectively reduce the delay and energy
consumption in the process of computation offloading. In the experimental part, we demon-
strated the effectiveness of our proposed algorithm by presenting the training process and
training results of the MACA algorithm. Then, through generalization experiments on the
number of agents and devices, we show that, compared with the DQN algorithm, random
allocation, and local computation approaches, our proposed MACA algorithm achieves
the highest performance in most cases. Finally, the contribution of each component of the
MACA algorithm to the overall algorithm is verified through the ablation experiment for
the Q-network architecture.

Although, to a certain extent, some progress has been made in our research in terms
of performance, there are still some limitations. First, more complex challenges are often
faced in real computation offloading environments. On the one hand, the impact of edge
computing node deployment location on offloading efficiency should be considered and,
on the other hand, the queuing theory model between tasks should be considered. Second,
the performance comparison between our proposed value-based multi-agent reinforcement
learning method and some existing policy-based reinforcement learning methods remains
to be conducted. Finally, the safety and interpretability of artificial intelligence algorithms,
such as reinforcement learning, have always been an issue, and further work on the
interpretation of models needs to be conducted.

5. Conclusions

This paper studies the problem of computation offloading for multiple video moni-
toring in smart parks and introduces deep reinforcement learning as a solution, in which
offline training and online decision-making are introduced to resolve unbearable computa-
tional delays, which represent the problem of traditional methods. Credit assignment is
used to extend the single-agent scenario to a multi-agent scenario and solve the problem
of cooperation between agents. As an agent, each device chooses to deal with computing-
intensive tasks locally or through computation offloading. We evaluated the algorithm
effect with different numbers of devices and edge computing nodes, thus demonstrating
that our proposed MACA algorithm is more stable than many existing algorithms and
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can more effectively identify the computation offloading scheme in the search space with
geometric multiple growth. On this basis, the random arrival of tasks and time-varying
bandwidth channel is simulated, and offline training and online decision-making are car-
ried out according to the task size and CPU cycles within a certain range to better formulate
resource allocation strategies. With the introduction of the Q-network tricks, agents can
optimize themselves more clearly based on the double Q-network and dueling Q-network.
A large number of simulation experiments and ablation experiments were used to verify
the validity of the model. This model can meet the requirements of the real-time offload-
ing of computing-intensive tasks and reduce the request delays and computing energy
consumption of tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

Notation Definition
N The set of camera device group
f Edge computing node
T The computation offloading cycle
Ot The amount of data that needs to be uploaded to complete the task
Bt The number of CPU cycles required for computing tasks
Wn, f The channel bandwidth between the device n and the edge computing node f
P The power of the computational offloading task
h The gain of the communication channel when the task is transmitted
noise The variance of the complex Gaussian white channel noise
Tl

n Time delay of execute task locally
Fl

n Local computational capability
Ff Edge computing node computational capability
El

n Energy consumption for executing task locally
To

n,t Time delay of transmission when executing task with edge node
To

n,p Time delay of computation when executing task with edge node
Eo

n,t Energy consumption of transmission when executing task with edge node
Eo

n,p Energy consumption of computation when executing task with edge node
Cost The cost of computation offloading process
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